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Summary. For a large class of distribution functions — the so-called infinitely divisible distribution
functions — the KNO scaling is interpreted as a particular manifestation of a general property of this
class, namely the first-passage time behaviour. This allows a rationale for the early onset of the KNO
scaling and provides a simple recipe to determine the KNO-scaling functions.

1. Introduction

Recently [1], using duality considerations of the Huan Lee-Veneziano-Chan-
type [2], we studied a simple bootstrap model for the multiplicity distribution
functions and showed that the corresponding solution is the class of the so-called
infinitely divisible distribution functions (IDDF)!) [3, 4]. Using general properties
of the IDDF’s combined with some additional ingredients, we proved that this
class of distribution functions displays the Koba-Nielsen-Olesen (KNO)-scaling
behaviour [5].

The purpose of this paper is to show that for the IDDF’s (which — as we pointed
out in [1] — contain almost all the distribution functions used to study the high
energy multiplicities) the KNO scaling may be interpreted as a particular mani-
festation of a general property of the class, namely the so-called first-passage time
(FPT) behaviour [6].

The next section will be devoted to the presentation of basic results, some
special questions being relegated to appendices.

2. The basic formalism

We start with the observation that any IDDF may be generated by a stochastic
process with stationary independent increments (or is the limit of a sequence of such
stochastic processes) [ 3, 4] and we shall work in what follows with a (one-dimensional)
stationary jump process. Let x(f) be the random variable corresponding to such a

1) A distribution function f(x) is called infinitely divisible [3, 4] if the corresponding random variable
x may be written for each positive n, as

x=x +x;+ - +x,

where x; are independent random variables. If ¢(¢) (¢,(¢)) is the characteristic function of x(x,) then

@(1) = [.(0]"
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process and F(&, ¢) its distribution function. The ‘time’ T when the process crosses for
the first time the value x = £ is called the first passage time. More precisely

7(¢) = min (z|x(1) = &) (1)

As F(£) is the probability that x(t) never crosses x = & in the time interval 0 < t < ¢,
one result is that (we neglect here a possible dependence on the initial state of the
system)

K&, t) = Prob (T(¢) > 1) (2)

From (1) and (2) one can calculate the moments of T(¢), i.e.,
quqL de RED, g=1,23,... (3)

Now, the first passage time (FPT) behaviour is a specific approximation of F(¢, 1)
in terms of the first moment 7', for ¢ and ¢ large. Let us explain more deeply this
approximation. In this respect we shall utilise a method due in essence to Gusak and
Korolyuk [7]. This method bears on the observation (see, e.g. [1]) that any IDDF
can be considered as a compound Poisson process, i.e., its characteristic function
may be written as

q)(t) = gMvn—1] (4)

where (7) 1s the characteristic function of the mixing distribution and A the first
moment of the initial (Poisson) distribution. In [7] it has been proved that the first-
passage time moment 7' is determined from the equation

Y(—iT) =0 (3)
and the FPT approximation is nothing but the mixed distribution written in terms
of T, (T, large).

To illustrate this technique we shall work a simple example, namely the well-

known Polya-distribution [8]. It is known that Polya-distribution is a compound
Poisson-distribution with the Gamma-distribution as mixer, i.e.

/‘d,L . (Ay)a B /1"
y M) —a 6
P(a, x) = Jie (a—l)!e - (6)
— ! '
=(1—x)“x”(n+a L8 n=123... (6)

n!(ax— 1!

where
y=1—x’ 0<x<l1, (n)=— 4y (7)
X 1 — x

The characteristic function of the Gamma distribution may be easily calculated,
namely

W(t) = (1 - ’—t) (8)
C

where ¢ = {n)/a and c is the constant which enters in the Wroblewski’s relation [9]

(D? = (n*y — {n)?)
1
2 ~ " nd*  (n>— 9)
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Using Equation (5) one gets
Ty = {n)/a (10)
and the first passage time approximation of the Polya-distribution is (see Equation (6))
g EE T
" T — 1)
—naj/{n) a—1
_ae (no/{n>) (12)
(n) (¢ — D!

From these relations one observes that the KNO approximation of the Polya dis-
tribution is nothing but its first passage time approximation. One can prove that a
similar result holds for all the distribution functions from the IDDF class.

For the simple jump process we started with, we can obtain the following
expression for the first passage time approximation, namely

(11)

F(¢& 1) ~ % e~ T (13)
1

1.e., a particular case of KNO scaling. Let us justify the above relation. For a jump
process (with stationary independent increments) one can, obviously, write

F(&, ) ~ (1 — A&)-ADk+ O(AD) (14)

where k is the number of observations performed on the system. When k — oo,
At — 0, k- At = const, one has

E, 1) = g 8 (15)
If we insert this result in Equation (3) we obtain
q!
T() ~——s g=1,23,... (16)
1= 1 |

The distribution (13) may be immediately derived from (15) and (16), taking into
account the normalization condition. As for a stationary jump process A(¢) is con-
nected to the jump frequency, which, in turn, is proportional to the average number
of particles of the system, one can conclude that the approximation (13) is a KNO
scaling function (¢ — proportional with the particles number).

At the end of this Section several observations are in order.

1) From the Equation (13)—(15) one can observe that a system which displays
the FPT behaviour possesses certain ergodic properties. It is interesting to
note that in [10] a stochastic system whose distribution function F(n), v)
may be written as ~f{(n, v)/v (where v is the stationary jump frequency,
v >~ {(n)) is called an ergodic one.

i1) Recent papers due to Mandl (6), Newell [11], and Stone [12] have pointed
out that the FPT behaviour is precocious, i.¢., it is valid even at non-asympto-
tic values of the variables. This result may explain the observed precocious
behaviour of the KNO scaling.

iii) A natural problem which arises in connection with the FPT behaviour is
how one can determine the possible corrections to the FPT approximation.
To get an answer to this question one must proceed as follows. One attaches
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a Sturm-Lionville system (SLS) to the corresponding stochastic process
[13, 14] and the problem is reduced to the determination of the SLS set of
eigenfunctions and eigenvalues (i.e., T, defined by Equation (3)). The
method is obviously rather laborious. However, it has the advantage to
permit (in principle) the calculation of all T,’s. (For further details see
Appendix A.)

3. Conclusions

At the end of the paper we shall try to recapitulate the principal results! In
essence, our purpose has been to provide a rationale for the KNO-scaling behaviour
of the multiplicity distribution functions. We showed that for a large class of distri-
bution functions (the IDDF class) it may be interpreted as a limiting behaviour
inherent to this class. At the same time our paper provides a simple recipe to deter-
mine the KNO scaling function.

It is necessary to point out that these considerations do not exhaust neither
other possible forms for KNO scaling functions,?) nor the mathematical content of
the KNO scaling. (For a discussion of this second question see Appendix B.)
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Appendix A

Here we shall present the spectral theory for the differential equations corre-
sponding to a stochastic process [13, 14]. It will provide a method to determine the
moments of the first passage time, i.e., corrections to the first passage time approxi-
mation.

For the sake of definiteness we shall consider a simple birth and death process
(a slight generalization of the Polya process). The corresponding differential equations
are

)
= Pt) = =P (1) + i Pr()

0
_'_Pn(t) = _()“n + #n)Pn(t) + j’n—lpn(t) + #n+1Pn+l(t)9 1 SRS N

ot B l(A.l)

0
o Py(0) = —unPy(t) + Ay 1 Py—1(0)

) The reader may provide as a counter example the Buras-Koba [15] KNO-function

nn nf n\?
P = 2y exp[_ 4 (Z?S) ]

To some extent, this function and the FPT approximation are complementary in the sense that the
first one is valid in the domain where the Central Limit Theorem [3] applies, while the second gives
the tail of the actual distribution. In principle, it is possible to give an ad hoc statistical interpretation
for the Buras-Koba function, too.
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Here P;,i = 0,1,2,..., Nare the transition probabilities and 4;, p; are appropriately
defined real parameters.
Let us now define

A
7Is = 1: 7tn = -l nn-—ls h ? 0 (Az)
and write
P()=mnH(®, n=012...,N | (A.3)

The system (A.1) becomes
uimy AHy(t), n=20
o H, =4 Ay, AH,_,(), 1<n<N -1 (A4)
—punty AHy (1), n=N

where Af, = f,.1 — f,- The new system (A.4) may be recast in a matricial form

% éa} H() = LA() (A.5)

where L is a linear difference operator.
The corresponding Sturm-Liouville system is

Ly = prj (A.6)

where B(y) denotes the corresponding eigenvalues (eigenfunctions). Using the
orthogonality condition

W, mp®) = 6, (A.7)
the Green’s function of (A.5) (i.e., the transition probability) is
N
G = 7, ), YU &8 (A.8)
J=0

The term with J = 0 is the FPT approximation and the other terms are successive
corrections to it.

Appendix B

This Appendix is devoted to a short discussion of some mathematical aspects of
the KNO scaling relations

o 1 n

On __, B.1

s e <n>‘”(<n>) B-D
and ' .

nHiKny? ~ C, g=1,2,3,... (B.2)

Here o, is the cross-section for the process a + b—n(charged) + any neutral,
c=2,0, <n?) =3 niP(n,s) is the g-th order momentum of the multiplicity
distribution P(n, s) = o,/c and s is the c.m. energy squared. The C’s are assumed
energy independent.
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As we have observed in [16] Equation (B.1) may be formally written as

P(n, {n)) = J'#(x) o(n — {nyx) 0x, x = nj{n) (B.3)

i.e., P(n, (n>) may be interpreted as the Radon-transform of y(x), [17]. Now, in
order to converge the integral on the right-hand side of Equation (B.3), it is usually
assumed that (x) is an infinitely differentiable rapidly decreasing function. (A less
stringent condition is summatibility of y/(x).) Under this assumption one can prove
that the necessary and sufficient conditions for P(n, {n) to satisfy Equation (B.3) are:

i) P(an, alnd) = a~ ' P(n, {(n)), i.e., P(n, {n)) is homogeneous of degree —1.
ii) P(n, {n)) is infinitely- differentiable with respect to both the variables
({n> # 0) and rapidly decreasing with respect to n.
iii) Forany g > 0, the integral | n?P(n, {n)) 0n,q = 1,2,3, ... is a polynomial
in {n), homogenous of degree q.

Let us now shortly comment on these conditions. It is easy to see that the
condition (iii) is essentially equivalent with the Equation (B.2). We point out that
there have been some attempts to identify the KNO scaling (i.e., Equation (B.1)
with the property (i), see, e.g., [18], [19]). From the above theorem one can conclude
that the content of the KNO scaling is richer than the homogeneity property (i).

In a recent paper [20] the KNO-scaling is obtained from a so-called renor-
malization-group equation (RGE) for the distribution P(n, {n)). In essence, one
utilises the conditions (ii), (the RGE property is nothing but the differentiality of
P(n, {n))) and (ii1), the result being obviously a particular case of KNO scaling. As a
matter of fact, the KNO function obtained in [20] is just the Gamma-distribution
(Equations (11)—(12)). In this paper we considered the IDDF class which also
satisfies the properties (ii) and (iii) (approximately).

We observed that for these distribution functions the KNO scaling is a particular
manifestation of a general property of this class and we pointed out a simple method
‘to determine the KNO-scaling function. |
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