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Onsager's symmetry in higher order fluid dynamics

By Miroslav Grmela

Centre de recherches mathématiques, Université de Montréal, Montréal, Québec H3C 337, Canada

(1. II. 1977)

Abstract. Example of the higher order fluid dynamics that possesses the properties of the family of
dissipative dynamical systems of macroscopic physics, thus in particular the Onsager symmetry, is
constructed. The non-equilibrium extension of the thermodynamic entropy depends on gradients of the fluid
dynamic state variables.

I. Introduction

The abstract concept of the family of dissipative dynamical systems of macroscopic

physics (hereafter called DDS) that has been developed in References [1], [2],
provides a unified mathematical setting for a large class ofdynamical systems phenom-
enologically introduced in macroscopic physics (e.g., kinetic equations of the
Boltzmann and Enskog-Vlasov type, Navier-Stokes-Fourier fluid dynamics, non-
equilibrium thermodynamics etc. [2]).

In this paper, we construct an example of the higher order fluid dynamics that
possesses the properties of DDS. In Section II the Navier-Stokes-Fourier fluid
dynamics and the concept of DDS are reviewed. The higher order fluid dynamics
generalizing the Navier-Stokes-Fourier fluid dynamics and satisfying the properties
ofDDS is constructed in Section III. In Section IV a brief review of other approaches
to higher order fluid dynamics is presented.

The state of a one component physical system is completely described in fluid
mechanics (completely with respect to the fluid mechanics observations and measurements)

by the triple (E,N,\J) fi where E:il^> R+, (r^-£(r)); A:Q-> R+,
(r h+ N(t)); U: (Ti —> K3'(rn- U(r)); the physical system is confined in Q c i3, we
shall assume that volume of Q equals to one. IR+ denotes the positive real line. Let
T^C be the set of all admissible (again with respect to the fluid mechanic observations
and measurements) states. We shall assume that AC is a smooth (infinite dimensional)
manifold. We define in 7AC the involution /: TTfC -^ 7ÏC ; (E, N, V)A(E, N, -U).
The subset of 7AC that consists of elements fofAC that are invariant with respect to J
(i.e., the elements of the type (E, N, 0)) is denoted AC(+), its elements /(+). We can
also say that AC is a bundle AC (7AC, n(+), Jf<+)), where Jf(+,is the base space,
7T(+> is the projection Js? —» Jf(+) and 777C is the total space. In terms of fluid mechanics
observations and measurements A(r) is the local density of mass E(r) is the local
density of inner energy and U(r) is the local density of velocity of the fluid considered.
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The time evolution of / is governed by the following equations :

in components

*ft -UxVa(E) - ^(PxßVxUß + V.ß.)

dN
dt KiNUJ (1)

0-£=-UßVß(Ux)-±(VßPxß).

The symbol Va d/drx, the summation convention is used. The tensor Pxß is

symmetric Plß Pßa. If the quantities Pxß and Qx are specified as functions of
(E, N, U), or by using the terminology used in fluid mechanics, if the constitutive
laws are specified, then (1) represents a self-contained system of the time evolution
equations. The parameters introduced in the constitutive laws are the phenomenological

quantities entering fluid dynamics (through these phenomenological quantities
the individuality of the particular physical system is expressed) and (1) is a family of
the time evolution equations parametrized by the phenomenological quantities.
Boundary conditions for (E, N, U) have to enter into the specification of AC. The
class of the boundary conditions used in this paper (BC1)-(BC5) in Section II and
(GBC1)-(GBC5) in Section III) reflects our interest in the thermodynamic
equilibrium states and the time approach to these states.

Let 7£ be the set of all constitutive laws. We shall assume that the physical
system considered is isotropic and thus we require that the functional dependence
°f Paß, Qa on f is invariant with respect to the orthogonal transformations in fì.
This requirement determines the subset 7A0 of 7£. (See, e.g., Reference [3] pp. 135.)
Physical considerations of constitutive laws are based on the physical interpretation
of P and Q (Pxß is the pressure tensor, Qx is the heat flow). From the mathematical
point of view, one can look for ^?math such that (1) will be mathematically well
defined (e.g., the flow generated by 1 will exist etc.). It has been shown in Reference [ 1 ]
that the Navier-Stokes-Fourier constitutive laws transform (2) into an example of
DDS. According to the general theory of DDS it means in particular that (i) the
study of the solutions of R(+)f 0 and R{~f | R(+>/=0 0 gives rise to
thermodynamics (R(±) ee ±(R + JRJ)); (ii) the flow exists, at least locally, in the vicinity
of the solutions of the problem (i) that moreover correspond to the thermodynamically
stable equilibrium states. In this paper we shall find a generalization of the Navier-
Stokes-Fourier constitutive laws that transform (1) again into an example of DDS
and the resulting system of partial differential equations is of order higher than two.

For later use, we shall write (1) also in the following form:

|£ /?<->(/) + /?<+>(/), d.l)
in components

f R[fj(f) + R{jjj(f)



R\ûiif) + R\ulifl
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8Ua

dt

R(±) ^(R± JRJ), thus R(+)(Jf) R(+)(f); R(~\Jf) -R(~Xf)- If we write

p _ p(+) p(-)raß — raß T -"aß

ß. ß<+) + ßi"» (2)

(Pxf(Jf) ±P$\F), similarly ß.), then

*{#(/) -cw - \j*&*JmU, - ^vxQA

R$if) -niKUß - VaQ(+}

R{mKf) -VJLNU.) -, (3)

R\v-iif)= -UßVßVm-±Vfü>

II. Navier-Stokes-Fourier fluid dynamics
The Navier-Stokes-Fourier constitutive laws are the following :

p(+) _ »r* X

Pf P'''Kß A PaV

QA -AVa£* (4)
ßi"' o

/>(_) -IJ.V.Ü,*

/>£> -2fKV„tf*).
If T^ is a second order tensor, then fxß \(Txß + Tßx) - \Tn oxß. Thus p(ffA is a

symmetric tensor with zero trace. E*, A* and U* are functions (E, N, U)(r) t-> /s*(r),
(£, A, U)(r) h> A*(r), (£, A, U) h» U*(r) of class C2. Thus, the values of E*, A*, U*
at r e Q depend only on the values of E, N, U at the same r e Q. nv, n and k are
functions (E, A)(r) \-+ Ç„(r) etc. The values of r\„, n, k at r e (I depend also only on
the values ofE, A at the same r e Q. We shall assume moreover that E*(Jf) E*(f),
N*(Jf) N*(f) and V*(Jf) -U*(/). The phenomenological quantities ßNSF

introduced by the Navier-Stokes-Fourier constitutive laws are thus ßNSF

{E*, N*, U*, ì]v, n, k and the relations (4.1), (4.2), (4.3) introduced later in this
Section}.

We shall review the general definition of DDS.

(DDS1) The simultaneous solutions of Ri+'f 0 and /?(_)/ |

R(+>/=0 0, denoted
F, axe physically interpreted as thermodynamically equilibrium states.
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(DDS2) The states F found in (DDS1) are identical with the extremal points of a
smooth function V: JC x E —> IR, where 5 is a two dimensional (in the case of one-
component system) space, its elements are physically interpreted as thermodynamical
fields. In the process of the solution of (DDS1), the components oE, cxN of a e E
appear as integration constants. The requirement that V is invariant with respect to
the orthogonal transformations in Q (the systems considered are isotropic) implies
V(Jf) V(f). The function V evaluated at its extremal points (extremal with
respect to/ e M'), denoted y, is in general a multivalued function H e U. For a e E
for which y is single-valued the function y is identified with the thermodynamic
potential.

(DDS3) Let Fbe a solution of (DDS1). Thermodynamic stability ofFis equivalent
to the local dynamic stability of F. This point is explained later in this Section.

One particular consequence of (DDS1), (DDS2) and (DDS3) is Onsager's
symmetry of the vector field R linearized at F.

In the case of the time evolution equations (1) and (4) the equation R(+)f 0
takes the form

Va0/oV, Uf) + 2Vß(riVßU*x) 0 (S)

WßUtW.U.) + 2r,(VßU*x)(VxUß) + Vx(kVxE*) 0. (6)

If we multiply (5) by U(*) sum over a, integrate over Q and integrate per parts, we
have

d3rUyaU:)r,0(y„Uj) + 2(VßU*)r,(VßU*)] + sv 0. (5.1)

We shall consider the boundary conditions that will guarantee that the surface
integrals sv equal to zero

(BC1)

(4.1)

As a consequence of (5.1), (BC1) and (4.1), we have

VßU* 0

VXU* 0. (7)

If we assume moreover that U* on the boundary dQ of Q equals to zero

£/«*U 0, (BC2)

then (7) implies

U* 0. (8)

sv 0.

We shall moreover assume that

n > 0

«v > °

for all E, N considered.
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From (8) we then have

U. 0 (8.1)

since Ux -> U* preserves the bundle structure (AC, nl+\ Jfi+)). By inserting (7) into
(6), one obtains

Vx(kVxE*) 0. (6.1)

If (6.1) is multiplied by E*, integrated over Q and integrated per parts, one obtains

d3r(VxE*)k(VaE*) + sE 0. (6.2)
i

The boundary conditions that we assume will guarantee that the surface integral sE

equals to zero

sE 0. (BC3)

Moreover, we assume that

k > 0. (4.2)

Then (6.2) implies

V.£* 0 (9)

and thus

E* oE, (10)

where oE is a constant.
The equation R{~}f 0 restricted to the solutions of Ri+)f 0 takes the form

V«A* |

E,=aE 0 (11)

and thus

N* oN, (12)

where cjn is a function of E*. By crN we shall denote 5N restricted to E* oE.
Following the general theory of DDS, we look for a function V : AC x S -» R

(the elements of S are oE and oN introduced in (10) and (12)) such that the solutions
of (8), (10), (12) will be identical with extremal points of V. There are, of course,
many such functions. First of all we restrict ourselves to isotropic systems and thus
V(Jf) V(f). The property (DDS3) defining the families of the dynamical systems
DDS will restrict considerably the class of the functions V that may be considered.

Let o-0 (crE0, aNQ) e E be such that the equations (8), (10), (12) have a unique
solution (denoted F0). We assume that if a e U0, where U0 is a neighbourhood of o0
in S, then the corresponding unique solutions of (8), (10), (12) form a submanifold
J^o in 7AC. The equilibrium state F0 is called thermodynamically stable if the
thermodynamic potential y is a convex function of rr e (erE, aN) at o0. According to (DDS2)
F0 is an extremal point of the function V and the thermodynamic potential y defined
on U0 is identical with the function V evaluated at F0. One can show [1] that the
function y is convex at o0 if and only if V, as a function offe AC, is concave at o0.
Thus F0 is thermodynamically stable if and only if A0 — D(2)V |

Fo (the second
derivative of V with respect to fe AC evaluated at Ff) is a positive definite linear
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operator on H0 TFoA? Q TFoJ%, where TToAC resp. TPo&0 is the tangent space
to AC resp. TA'~0 at F0.

Let P0 denote the Hessian of the vector field R evaluated at F0. We say that F0
is locally dynamically stable if there exists a unique solution to the initial value
problem

8fi-Pof, (13)

fe 3{P0) cz H0 cz H0, f(t 0) f0 e ®(Pf), for all f > 0. If ||/0||0 < oo then
also ||/,||0 < oo; / Ttf0, where {Tt, t > 0} is a strongly continuous semigroup
of contraction operators. H0 is an appropriate Hilbert space, its inner product is
denoted (.,.)0, its norm || ||0.

We recall the Hille-Yoshida-Phillips [4] theorem. A necessary and sufficient
condition for an operator P0 to generate a strongly continuous semigroup of contraction

operator on H0 to itself is that P is closed and both P and its adjoint P* are
dissipative operators. A linear operator P0 with dense domain 7A(P) <zz H0 is said to
be dissipative if

iPof /)o + (/, ^o/)o < 0

for all fK 2(P0).
We want to satisfy the necessary and sufficient condition in the Hille-Yoshida

Phillips theorem by
(i) assuming (4.1), (4.2) already used in the solution of Ri + )f 0 and

tf(_)/U< + >/ o o,
(ii) choosing appropriately the Hilbert space H0.
Let H0 be a fixed Hilbert space, say L2 space, its inner product is denoted by

(¦,•). We shall find, by using (4.1), (4.2), an operator A such that the necessary and
sufficient condition in the Hille-Yoshida-Phillips theorem will be satisfied for
AP0 in H0. The boundary condition that will guarantee that AP0 is closed will be
formally denoted (BC4) (see, e.g., Reference [5]).

(AP0 is closed). (BC4)

Let us suppose that such an operator A has been found. The operator A will be identified

with A0 —D{2)y \Fo. The assumption of thermodynamic stability of F0
becomes equivalent to the assumption that A defines an inner product •, A.
(•,)o in A(A) <zz H0 and subsequently in the Hilbert space H0 cz /70. We shall see

that the identification of A with A0 -Z><2)V |

Fo that is equivalent to (DDS3),
restricts considerably the class of the functions V that can be considered in the
context of DDS.

Now, we shall find the operator A. Since V(.//) V(/), we look for A in the
form

jax aX2 0 0 0

,7 an 0 0 0

A 0 0 a3 0 0 (14)

0 0 0 a3

jD 0 0 0c
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where ax, a2, a3, ax2 are real numbers (in the next Section (see (25) they will_be differential

operators). Thus, in this Section, H0 and H0 axe identical (!3(A) H0) except
the difference in the definition of the inner product. The inequalities (4.1) and (4.2)
enter only in />(+) (TJ<+) is the Hessian of R(+) evaluated at F0). Thus, we look for A
such that (AP0)i+) is selfadjoint (more generally, essentially selfadjoint) and
dissipative and (AP0)(~} is skewadjoint (more generally essentially skewadjoint). We
assume the boundary conditions, denoted (BC5) that will guarantee the identity of
the domains of AP and its adjoint (or a weaker requirement in the case of essential
selfadjointness—see Reference [5]). By using the terminology introduced in [1], [2],
we look for A such that AP0 is an Onsager operator in H0 or in other words 7?0 is an
Onsager operator in H0. [The Hilbert space H0 is equipped with the inner product
(.,.)A and with the fundamental decomposition H0 H\f) © H\f) that reflects
locally the bundle structure of 7AC. If n(+) resp. n(~> are projection operators to the
complete subspaces lP0+) resp. H\f\ then the operator J n(+) - n(_). One can
define in H0 an indefinite inner product J.)A and H0 becomes a Krein space [6].
We say that P0 is an Onsager operator in H0 if P0 is selfadjoint with respect to the
indefinite inner product (.,J.)A and P0 is dissipative with respect to the inner
product (.,.)„.]

From (1), (3), (4), we have (the notation E% dE*/dE |

fo etc. is used);

ro —

X0A 0 0 0 o\ Ißt F* 0 0 0 \

0 0 0 0 0 a12 a2 0 0 0

0 0 0 0 £/* 0 0

0 o p0y 0 0 0 U% 0

0 0 / o 0 0 0 Ufi

(15)

where

((°02
)ll (P()2 /12 (°02 /13

(M)2 )l2 (°02 I22 VM)2 )23

(P02 )l3 C"02 I23 (°02 )33/

(^2% no tijA + it)v0 + hoWFj,
A VjV,-, k0 k\Fo, nv0 ifv\To, no n\Po-

Thus, if we make the identifications

ai -E%,
*a

F*

— TJ* — ¦ TI* — TI* — TI*uu2 c u3 uv>
(16)

then (AP0)i + (using (4, 1), (4, 2) and the boundary conditions (BC5)) is selfadjoint
and dissipative.
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From (1), (3), (4), we obtain also

p(-) _ro —

0

0

/V*V N*V
N0

°Vl
A0 ^2

-N0VX -

^o
AJV:

¦^0V2

/V*V N*V
»r jvevi A7- JVJVV1
An

N,
N*EVX

N0

1

"ff. A*V2

A,
-N*EVi -t5-A*V2

AV

0

0

0

where

N0 N\Fo A7* M* I i\f*ly 0 C ' I Fo ' ly E

dN*
~d~E

Fo

0

0

0

AT*
dN*

¦N0V3

0

0

0

(17)

Fo

By multiplying (17) from the left by A, taking into account (16), one obtains the
following conditions which have to be satisfied for APjf) to be skewadjoint:

A
rr* \f* — p* N* 4- N F*

An

Uf,N* =—E*N*0- N0a2

(18)

^o An

If we choose the function V such that the following relations

dy
rrzz E*-crE

1

dE

dy
dN '

^A

N2

-E*U,

(N*E* - aN) (19)

are satisfied then (18) is satisfied and also the solutions of (8), (10), (12) are identical
with the extremal points of V. The equations (19) imply that the functions E*, A*
entering the Navier-Stokes-Fourier constitutive laws are not independent. The
relation between them (the generalized Maxwell's relation) is implied by the symmetry
of/>(2)V

(D{2)y is symmetric)

The general solution of (19) is

y(E,N,V;crE,oN)= f d3r
Jn

S(E(r), N(r), U(r)) aEE-±<rNJ,

(4.3)

(20)
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where

This function V is identical with the non-equilibrium extension of the thermodynamic
potential postulated in non-equilibrium thermodynamics [7]. We have obtained this
function V as the consequence of the postulated Navier-Stokes-Fourier constitutive
laws and the requirement that the resulting family of the time evolution equations
possesses the formal structure of DDS.

III. Higher order Navier-Stokes-Fourier fluid dynamics

We shall consider the following generalization of the Navier-Stokes-Fourier
constitutive laws :

p( + _ ir*S. i „( +
raß — •" °xß i" pxß

Pai' P{~\ß + Ài'
QA -kvxs*
QA PvWx(VßU*) + pAU* (21)

PÌV =fVa(AV,£*)
p<-' -r,vVxU:

Ài' -2nV,U;.
Vetj(E, N) ee (AE, AN, VXEVXE, VaAVaA, VXEVXN). The functions S* and AC*
are defined as follows :S*:(E,N, j(E, A), U)(r) h» ê *(r) and S *(r) |

j(E N) 0 E*(r)
introduced in (4). Similarly Jf * : (E, N,j(E, A), U)(r) ^ AC*(t) and rV*(r) \j{EN) 0

N*(t) introduced in (4). We assume moreover that S*(Jf) S*(f) and Af'*(Jf)
Ar*(f). U* is assumed to be the same as in (4). A, pv, p, k, nv, n are real valued
functions of (E, N,j(E, A)) (e.g., A: (E, N,j(E, A))(r)-> A(r) etc.). The
phenomenological quantities ßGNSF introduced by the Generalized Navier-Stokes-Fourier
constitutive laws are thus ßGNSF {S*, AC*, U*, A, pv, p, k, rjv, r\ and the relations
(21.1), (21.2), (21.3) introduced later in this Section}.

If (21) is inserted into (1) then clearly the system of partial differential equations
of the order higher than two is obtained. In the constitutive laws (21) the assumption,
used in (4), that Pxß and Qx at r depend only on the values of E, N, U at the same r
has been relaxed. The non-locality of the dependence of Pxß and Qx on (E, N, U) is

expressed in (21) by letting the quantities entering (4) to depend also on the gradients
of £ and A.

The discussion of (1), (21) follows closely the discussion of (1), (4) in Section II.
The equation R(+)f 0 remains the same as in (5)—(10). We assume again that

n>0,riv>0 (21.1)

k > 0 (21.2)

for all (E,N,j(E,N)) considered and the boundary conditions (GBC1HGBC3)
corresponding to (BC1)-(BC3) in Section II. The equation (10) reads now

S * oE (22)
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The equation R/ '/ 0 restricted to the solutions of /?(+)/ 0 takes the form

** I »-„, o

and thus

(23)

(24)

where cfN is a function of <?*. By oN we shall denote again òN restricted to S* oE.
The problem is now to find the function "V'¦_ (£, N, U, j(E, A); oE, oN) —>

¦V(E, N, V,j(E, N);cje,cjn) such that (i) the solutions of (8), (22), (24) will be identical
with the extremal points of "V, (ii) thermodynamic stability of a thermodynamically
equilibrium state will be equivalent to its local dynamic stability, (iii) ifj(E, A) 0
then "P reduces to V that has been introduced in (20). We shall indeed find an example
of such a function V. It will become evident however that the requirement (DDS3) -
the equivalence of thermodynamic and local dynamic stability - is not strong enough
to single out the function if. A systematic study of the higher order fluid dynamic
requires a generalization of (DDS3). The local dynamic stability has to be replaced
by a type of global dynamic stability (the requirement that iC is a Liapunov function).

Let F0 be a solution of (8), (22), (24) (thus also an extremal point of the function
"V") and let moreover F0 does not depend on r. Similarly as in Section II, we shall
find the operator A such that AP is an Onsager operator. The operator A will be then
identified with — D(2A |

Fo. Since F0 is independent of r and ~f~ can depend only on
(E, N, U, j(E, A)) the operator A has to have the form

A Ai0) + A{1)A,

where Am is a 5 x 5 matrix of real numbers identical with (14) and

(25)

bX2 b2

Aw

[b, bl2 0 0 0 \

0 0 0

b3 0 0

0 b3 0

0 0bo

(26)

where bx, b2, bX2, b3 axe real numbers. Since the operator A is a differential operator,
i.e., A is unbounded operator in H0, (7A(A) ^ Hf) the Hilbert space H0 # H0.
Construction of H0 cz H0 in which the given operator A defined in 2(A) czz H0 is
bounded and can thus be used, if moreover A is positive definite, to define an inner
product in H0 is explained for example in Reference [8].

From (1), (3), (21), we have

0 0\

0 0

ro

lk0A 0 0 0

0 0 0 0

0 0

0 0 p(+)

\o 0

\e*e p* 0 0 0 \
«12 a2 0 0 0

0 0 TI* 0 0

0 0 0 Tf*u U 0

\o 0 0 0 ui]

+
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"12. ^22

0 0

0 0

\o 0
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0 0 o\

0 0 0

0 0 0 A

0 0 0

0 0 °/

(27)

where P\ff is the same as in (15), k0 k \

Fo, E%, E%, ai2, a2 axe the same as in (15)
and S*2E is the part of the di*/dE \

Fo that is proportional to A. Thus if ax, a2, a12
axe the same as in (16),

2Fbx

bX2= -S*2E, (28)

63 0.

and appropriate boundary conditions (GBC4), (GBC5) that correspond to (BC4),
(BC5) are assumed, then (APf){+) is selfadjoint and dissipative.

From (1), (3), (21), we obtain also

pi-) -ro —

0 0

0 0

0

0

1 1

~Y0N*Vl -"- N%v

-N0V1

No

-N0V2

1

"Ar ASV3

-A0V3

"a^
1

No

1

A,
N*VX 0

An

A*V2

AIV3

An N,2 0

ivo

0 P1V1 P2V2 p3v3\
(29)

0 0 0 0 0

P1V1 P3Vi 0 0 0

p2V2 />3v2 0 0 0

WV3 /J3V3 0 0 0

A,

where

Pi —kriPvo + Po), P2

P3

A

-jj-Wn + AES).

N0
(JV*2E + AE*)

(30)

The first term on the right hand side of (29) is identical with (17) since, according
to our assumption, F0 is independent of r and thus j(E, N)\ Fo 0. By multiplying
(27) from the left by A (see (25), (26)), taking into account the boundary conditions
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(GBC4), (GBC5), and considering only the derivatives up to and including the fourth
order, one obtains the following conditions that have to be satisfied for (AP0){~)
to be skewadjoint :

axpx + bx

C12P1 + bu

1

"An
1

'No

Ni) + bX2(-N0) a3p2
(31)

N*0 +b2(-N0) a3p3.

By inserting (28), (16) and (30) into (31), we have

1

E*E(pV0 + Po) +
1

An"

1

At + N0S*2N +—E*(rV*2E + AE*)
AnAV

-^E*(pvo + p0) + ±-£*NN*0 + N0b2 ~E*(rV*2N + AE*).
JV0 i\0 iv0

If the function ic satisfies the following relations :

ô ¦V ** - ov

(32)

àvE

KA
ÔVN

ôa_
S.,Un

—Kiß
N2K

-S*U„

*jV* + VX(AVXE*) + (pv + p)AE* - aN) (33)

then (32) is satisfied, the extremal points of Y are identical with the solutions of
(8), (22), (24) and V reduces to V introduced in (20) ifj(E, N) 0. The differentiation

ò„r ô-r or
+ A or

ôvcp ôq) "\ôVxcpJ
'

~\ôAcpj
is the variational differentiation, cp E or cp N. The quantities cf*, JC*, pv, p, A
are not independent. The relation among them is implied by the generalized Maxwell's
relations

(P72A is symmetric). (21.3)

A function V satisfying (33) is

r(E,N,V,j(E,N);oE,oN) d3T 79(E(x), N(x), V(r),j(E, N)(r))

-oEE--o
t? 13(£,iv)=o S introduced in (20),

Ô..SC _

(34)

JA
«¦&
SA
s„u.

S*A~* + VX(AVXE*) + (p.v + p)AE*,

*Ûor •
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The thermodynamic potential yf constructed from "K is in general different from the
thermodynamic potential yv constructed from V. In particular, a thermodynamic
equilibrium state F0 can be thermodynamically stable with respect to yr but
thermodynamically unstable with respect to yv. There is a possibility of relating these
different notions of thermodynamic stability to the appearance of the metastable
states known from experience with fluids. This problem will be hopefully discussed
in detail in a subsequent paper.

We have found that if the constitutive laws (21) are postulated and the non-
equilibrium extension of the thermodynamic potential is given by (34) then the
linearized infinitesimal generator of the time evolution possesses the Onsager
symmetry. The non-equilibrium thermodynamic potential "P is not however
determined uniquely by studying the equivalence of the thermodynamic and local dynamic
stability. We cannot decide for example if in (34) should be the term VX(AVXE*) or
the term AAE*. A systematic study of higher order fluid dynamics will require the
study of a type of global dynamic stability where the function f will play the role
of a Liapunov function.

IV. Discussion

An example of the higher order fluid dynamics possessing the structure of the
family of dissipative dynamical systems of macroscopic physics [1], [2] has been
constructed.

The non-equilibrium extension of the thermodynamic potential cannot be
obtained in higher order fluid dynamics by using the method used in non-equilibrium
thermodynamics [7] (i.e., S(E, N) is extended to )c. d3TS(E(r), A(r)), where E, A are
the thermodynamical conjugates of the thermodynamic fields oE and aN, E(r) and A(r)
are the fluid mechanics state variables, called the assumption of the local
thermodynamic equilibrium). The situation in higher order fluid mechanics is similar, as
for example in the Boltzmann kinetic theory. The non-equilibrium extension of the
thermodynamic potential, so called Boltzmann's H-function, cannot be also obtained
by using the method used in non-equilibrium thermodynamics. We have seen that
the method associated with the theory of DDS applies in the Navier-Stokes-Fourier
fluid dynamics (Section II) kinetic theory [ 1 ] and higher order fluid dynamics (Section
III). The higher order fluid dynamics indicates however the necessity of generalizing
the point (DDS3) in the definition of the formal structure of DDS. A type of global-
Liapunov-dynamic stability has to replace the local, Hille-Yoshida-Phillips-
dynamic stability.

Several different approaches to higher order fluid dynamics have been developed
in fluid mechanics. We mention three of them.

In the point of view advocated by Coleman [3] the inequality dS/dt + J > 0 is
added to the system of equations (1). / is a known function of Pxß, Qx ; S is another,
in addition to Pxß and Qx, unknown function of fluid mechanics state variables.
The higher order fluid dynamics in the framework of Coleman's point of view has
been discussed recently by de Sobrino [9].

Reduction of the Boltzmann kinetic theory to fluid dynamics inspired the
Burnett [10] [11] and the Waldmann [12] [13] approach to higher order fluid
dynamics. The Burnett approach has been inspired by the iterations of the Chapman-
Enskog method, the Waldmann approach by Grad's thirteen moment method of
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solution of Boltzmann's equation. The linearized Burnett equations together with
the non-equilibrium thermodynamic potential used in non-equilibrium
thermodynamics do not possess the Onsager symmetry [11]. Waldmann has suggested the
generalization of the entropy production and the entropy flux that are appropriate
for the constitutive laws he used (e.g., the entropy production is evidently positive
definite) but the generalization of the non-equilibrium entropy itself, that has to
depend on gradients, has not been discussed.
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