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Stochastic processes I :

Asymptotic behaviour and symmetries1)

by P. Hänggi2)

Institut für Physik, Universität Basel, Switzerland

(19.X.1977)

Abstract. Various features of Markov processes describing statistical systems in equilibrium and
nonequilibrium are discussed. We study the spectral properties of stochastic operators and the
consequences for the asymptotic behaviour of solutions of general master equations. In this context we introduce
the concept of ergodic classes in state space and extremal probabilities. Furthermore, we investigate the
symmetry properties of stochastic processes. We discuss the consequences for stochastic processes ofboth:
symmetry transformations in state space and symmetry properties obtained by interchanging the time
arguments in the joint-probability (generalized detailed balance). Various symmetry relations for multivariate
probabilities and multi-time correlation functions are obtained. In addition, a necessary and sufficient
operator condition for the generalized detailed balance symmetry is derived.

1. Introduction

Our concern here will be to present a phenomenological theory of macroscopic
systems which are not necessarily in a thermodynamic equilibrium. For the description

of systems in terms of a finite set of degrees of freedom which do not behave in a
deterministic way but display statistical fluctuations of the system variables, the
theory of stochastic processes plays an important role. Statistical fluctuations always
reflect a lack of knowledge about the exact state of the total system, either because of
quantum noise, or because of the impossibility of keeping track of the huge number of
uncontrolled fine-grained variables. They may also be imposed on the system from
the outside by random external forces, e.g. by coupling the system to reservoirs. The
interactions between all the degrees of freedom may lead to a cooperative behaviour
of the system. Such cooperative systems can then usually be described in terms of a
small number of collective state variables (macrovariables) obtained through a
coarse-graining in phase space. The theory of continuous time-parameter stochastic
processes has been applied with good success to the description of such cooperative
phenomena in nonequilibrium systems [1-5]. Particularly, a treatment with in
general multidimensional Markov processes turns out to be successful.

The following work on real stochastic Markov processes is organized as follows :

In the first part we derive some useful stochastic equations for Markov processes,
needed for the description of the fluctuation dynamics in physical systems, and discuss

') Work supported by Swiss National Science Foundation.
2) Present address: Department of Physics, University of Illinois, Urbana, Illinois 61801 USA.
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the main properties of those equations. Loosely spoken the Markov principle states
that the future of the dynamics depends only on the present dynamics. We present the
description of continuous Markov processes in terms of stochastic differential
equations. By introducing a generalization of the Stratonovitch stochastic integral
we clear up some differences in recent physical works on continuous Markov
processes. In Section 3 we investigate the spectral properties of the stochastic operators
and the consequences for the asymptotic behaviour of solutions of the stochastic
equations. In this context we introduce the concept of ergodic classes in state space
and extremal probabilities. In Section 4 we study the symmetry properties of stochastic
processes. We discuss the consequences of both: symmetry transformations in state
space and symmetry properties obtained by interchanging the time arguments in the
joint-probability of stationary Markov processes (generalized detailed balance).
Various symmetry relations for multivariate probabilities and multi-time correlation
functions are given; in addition a necessary and sufficient operator condition for
generalized detailed balance is derived.

2. Stochastic equations for Markov processes

The different dynamical behaviour of a set of macrovariables x (xx,... ,x„)
forming the state space E can be treated in a unified way in terms of master equations.
The stochastic properties of the system are then characterized by probability functions
p(xt) defined in the state space Z. Next we study the differential equations governing
the time evolution of, in general, real time-inhomogeneous strong Markov processes
x(t) [5-9].3) In the following we use the notation: x(t) for the stochastic process
itself, and x(t), for the random variables at time t or a single value in the configuration
space S. The specific interpretation of x(t) will be understood from the context. Using
usual operator notation, the semi-group property of the conditional probability
R(xt | ytx), t > tx, reads [5-9] (Chapman-Kolmogorov equation)

R(t | tx) R(t | s)R(s | tx), t > s > tx (2.1)

with

R(t+ | t) H. (2.2)

Note that the conditional probability where s < tx, R(ys\xtx) R(xtx \ys) x
p(ys)/p(xtx), will depend onp(xtx) so that

R(t | tx)p(tx) R(t | s)R(s | tx)p(tx), s < tx < t, Vp(tx), (2.3a)

but

R(t | tx) # R(t | s)R(s \tx), s < tx < t. (2.3b)

Hence, the time ordering in the linear transition function operator R(t \tx),t>tx,
which coincides with the linear conditional probability R(t \ tx), t > tx, plays an
important role. The semigroup R can be generated from the infinitesimal propagator

R(t + dt\t) t + T(t) dt, dt > 0, (2.4a)

3) We always deal with non-terminating processes, where the parameter t is not a random variable but
varies in te [t0, +co).
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where (see also equation (2.7a))

(2.4b)r(t) lR(r\t) -ftRir\t)
is the generator of the semi-group acting on a Banach space n of bounded functions
[8-9]. A process for which the derivatives of R(t \ s) with respect to the times t and s
exist will be called stochastically differentiable. From the semi-group property we
obtain the 'forward equation' [5-9]

dM^=r(t)R(t\s), t>s, (2.5)

which involves differentiation with respect to the later time t. In a similar way we get
from

R(t | s) R(t | s + ds)R(s + ds \ s), ds > 0, (2.6)

the 'backward equation' [5-9]
dR(t I s)

ds -R(t\s)r(s), t>s, (2.7a)

involving differentiation with respect to the former time s. In terms of the transpose
operator R+

R+(xt | ys) R(yt \ xs), (2.8)

the backward equation reads

dR+(,'
I S)

-T+(s)R+(t \s), t> s. (2.7b)
ds

The formal solution of the forward and backward equation can be written

R(t | tx) & exp T(.v) ds, t> tx, (2.9)

where 5" is the time-ordering operator. From a physical point of view, the interest in
the forward and backward equation lies in the fact that they yield equations of
motions for the single-event probabilities and for conditional expectations. Applying
both sides of equation (2.5) to p(s) we obtain the 'master equation'

dp(t)-~ nt)p(t)- (2.10)

This equation shows that the in general non-symmetric generator F(t) determines the
dynamics of a Markov process in the same sense as the Hamiltonian determines the
dynamics of a (Markovian) Hamiltonian system. With the solution ofequation (2.10)
and the Markov property for the conditional probabilities

*(VrK-i'»-i.---.Xi'i) Rix-Y* | x„_xtn_x), (2.11a)

where

(2.12)
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we have for the multivariate probability p(n)(xxtx,.. x„t„) the useful result

n

pM(xxtx,...,xntn) û R(xiti\xi_xti_x)p(xxtx). (2.13)

Moreover, equation (2.13) yields the 'inverse' Markovian property

R(xxtx \x2t2,...,xnt„) R(xxtx \x2t2). (2.11b)

The conditional expectation </(0 | y(s)} of a bounded state function/(x, t) is
defined as the mean taken over the subset of sample functions passing through state
y at time s.

</(0|y(*)> f(xt)R(xt I ys) dx,

or using operator notation

(f(t)\s} R+(t\s)f(t), t>s.
Hence, we obtain with equation (2.8)

d<f(t) | *>

ds -r+(s)<f(t)\sy, t>s.

(2.14)

(2.15)

(2.16)

The conditional averages are therefore solutions of the backward equation. With
respect to the time t, they satisfy the averaged forward equation augmented by a term
resulting from the explicit time-dependence off(t)

jt </(0 I *> <r+(t)f(t) | *> + (^ t > s. (2.17)

All the equations (2.10-2.17) are important in the derivation of master equations in
the theory of stochastic differential equations.

The properties of the in general non-symmetric operator F(t) defined on space n
of bounded measurable functions are different depending on whether the sample
functions are continuous (continuous processes) or discontinuous. For discontinuous
Markov processes it is convenient to represent the stochastic kernel T(x, y ; i) in terms
of two other functions

r(x,y;0 W(x,y;t) - ò(x - y)F(y, t),

where

(2.18)

F(y,0= W(x,y;t)dx>0, (2.19)

yielding the stochastic property (preservation of normalization of probabilities)

r(x,y;0dx 0. (2.20)

The function W(x, y ; t) is the transition probability per unit time in which the process
takes on a value in (x, x + dx) when it starts at state y. V(y, t) is the transition
probability per unit time in which the process takes on a value different from y when
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it starts at the value y. The mathematical conditions that there exists a unique solution
for an honest conditional probability

R(xt | ys) dx 1, for all t, s; t > s, (2.21)

which satisfies both the forward and backward equation, are discussed for time-
homogeneous processes elsewhere [10] (conservative stochastic processes). Using
equation (2.18) the master equation can be written in its usual form [1, 5]

dp(xt)
{W(x, y ; t)p(yt) - W(y, x ; t)p(xt)} dy. (2.22)

dt

Using the Kramers-Moyal expansion [11-12], where

r(x,y;0 r(z,y;t)ô(z - x )dz

Êi<5(n,(y-x) (z- y)T(z,y;t)dz

n

Ì^An(y,t)o<"\
i n.

y - x);

(2.23)

(2.24)

the master equation can be converted into a differential operator of infinite order ifall
the moments An in equation (2.24) exist. As a consequence of the truncation Lemma
by Pawula [13], a stochastic kernel T(x, y;t), which consist's of a finite number of
^-functions and their derivatives contains only the distributions <5(1)(x — y) and
(5(2)(x - y). The master equation obtained is of the following structure :

d-^ - V a(x, t)p(xt) + VV : D(x, t)p(x, t). (2.25)

This master equation is the Fokker-Planck-equation with a(xt) the drift vector and
D(xt) the diffusion matrix. A continuous Markov process, i.e. all the sample functions
are almost all continuous functions, satisfies the Hinein conditions [8-9] : V e > 0

R(xt | ys) dx o(t - s), (2.26)
x-y|>c

(x - y)R(xt | ys) dx (t - s)a(y, s) + o(t - s), (2.27)
J|x-y|<£

(x - y)2R(xt | ys) dx (t - s)b(y, s)b+(y, s) + o(t - s), (2.28)
J|x- y|<e
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such that

b(xr)b+(xO 2-D(xt).4) (2.29)

Here, b+ is the transposed matrix of b. Using some mild mathematical properties on
the coefficients in equations (2.27-2.29) [6, 8, 9], the master equation for these
processes becomes the Fokker-Planck equation, equation (2.25). A continuous Markov
process with the master equation of the form as equation (2.25) is equivalently
described by the Ito stochastic differential equation [14-17]

dx(t) a(x(r), t) dt + b(x(t), t) dw(t), (2.30)

where w(r) is a vector of independent Wiener processes with

<w,.(0> 0 <Hf(7)> t, (2.31)

<Wi(t2)wt(tx)} tx + (t2 - tx)®(tx - t2), V/. (2.32)

®ih — ^2) denotes the step function.
Hence, we obtain the following description for continuous Markov processes :

The condition in equation (2.26) amounts to the fact that in a small time interval the
state of the process is almost sure to remain in the immediate neighbourhood of its
initial state. The main part of a displacement is described by the regular drift a(x£) in
equation (2.27) and on this one superimposes the continuous random components
characterizing the fluctuations with respect to the regular motion. By use of the
definition of the Ito stochastic integral, equation (2.30) can be integrated to obtain
the sample paths of the process

*(0 x(0 + a(x(0, t) dt + b(x(s), s) dw(s). (2.33)
J to

Ito

The Ito stochastic integral is defined by taking X 1 in the generalized Stratonovitch
stochastic integral (GSI) :

1 b(x(s), s) dv/(s) L.i.m. Lim £b(Ax(f,-)
At->0<- i

GSI
+ (1 - X)x(tt + A/);r,)[w(?: + A/) - w(/,)]. (2.34)

Historically Stratonovitch used X \ [18]. With a Taylor expansion about x(tt)
and the properties of the Wiener process in equations (2.31-2.32) the relationship

4) An easily verified condition implying Hinein conditions is that of Kolmogorov: there exists a ô > 0
such that

|x - y\2 + iR(xt\ys)dx o(t - s).

Indeed, for k 0, 1, 2 we have

nUjV-yrjJ [x - y\"R(xt | ys) dx < -^^ | |x - y|2 + a*(x/ \ys)dx o{t - s).

|x - y| > £
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between the integrals can be calculated, yielding

b(x(s),s)dw(s) L.i.m. Lim £ {b(xfo);r() + fü Z fS^V*-
GSI

x [(A - \)wn(ti) + (1 - A)w„(ff + Ar)] + •

x [wit, + At) - w(/,)]

b(x(s);j)rfw(5) + (1 - X) T(x(s);s) ds, (2.35)

Ito

where

P(x(s), *) I £ ebij(fs)'s) bkJ(x(s), s). (2.36)
j k °Xk

Hence, the Ito stochastic differential equation, equation (2.30), with the correspondingly

Fokker-Planck equation, equation (2.25), is equivalently described by the GSI
stochastic differential equation :

dx(t) a(x(0, 0 dt - (I - X)F(x(t), t) dt + b(x(t), t) dw(t). (2.37)

For X # 1 and x-dependent diffusion coefficients this description gives rise to a
'spurious' drift term corresponding to the noise coupled to the random functions b,,
on the right-hand side of equation (2.34). This fact clarifies the 'differences' in the
formulation of stochastic properties in recent physical works with continuous
Markov processes [1, 3, 19].

3. Spectral properties and asymptotic behaviour of probabilities

In the following we restrict the discussion, if not stated otherwise, to time-

homogeneous Markov processes. All time-homogeneous Markov processes have the

property that they do not improve the initial information. The time-independent
generator T represents a dissipative operator [20], i.e. we have for the real part

Re (/, Tf) Re f(x)T(x,y)f(y)Pst(y)dxdy<0, VfeDQT). (3.1)

According to the Phillips-Lumer theorem [20, 21], the stochastic generator T
generates a contraction semi-group R(t), t > 0 in n :

\\R(t)f\i < 11/11. (3.2)

The spectrum {Xv} of the dissipative generator may consist in general of both a
discrete and a continuous part with Re Xv < 0. For a time-homogeneous Markov
process with a finite discrete state space, T is an ordinary stochastic matrix with the
following interesting properties :
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(1) All the eigenvalues of T are real or complex. Complex eigenvalues occur in
pairs and the corresponding eigenvectors may be chosen complex conjugates
of each other [6, 7, 22].5)

(2) The sum of the elements of any eigenvector corresponding to a non-zero
eigenvalues is zero, and the sum of the elements of an eigenvector with a zero
eigenvalue may be chosen to be 1 [7, 22]. If F is double stochastic [7]

£ry-xr0 o. (33)

a stationary solution exists which is uniform : pst(i) l/N, Vi.
(3) For a v0-fold latent root zero the rank ofT is N - v0, indicating the existence

of v0 linear independent eigenvectors with eigenvalue zero [23]. 7v" denotes
the dimension of T or the number of states.

(4) For a birth and death process with N states and strictly positive transition
rates all the eigenvalues are real and they are not degenerate [24]. Moreover,
the eigenvalues of the stochastic matrix formed with the N — 1 residual
states, r(JV_1), separate those of T T(m, i.e. [24]

0 Af» A«""1' > Af» > Af"1» >¦¦¦> X™x> A«*."!1» > Af»
(3.3)

Further, a minimal region for the relaxation spectra in the complex plane can be
constructed using for the matrix T little known general theorems; which are due to
Gerschgorin [25, 26] :

(5) Every eigenvalue of the matrix T (Note that corresponding results may be
obtained by working with the transpose, r+, instead of T.) lies in at least
one of the circular discs with centres r;i and radii r, £/* Tj,. Notably,
all the eigenvalues lie within the circle with centre at max,- {Tu} and radius
R max;{ — Tu}- (See Fig. 1.) Hence we obtain explicitly:

(6) According to the preservation of normalization, equation (2.20), at least one
eigenvalue is zero and the real part of a non-zero eigenvalue must be negative
definite. So pure imaginary eigenvalues forT are impossible and the possibility
of recurring probability solutions is therefore ruled out! Hence, the dynamics
of a time-homogeneous system with a finite number of states can never be
governed by a unitary one-parameter semi-group of transformations
(Hamiltonian motion).

The second theorem of Gerschgorin yields even more detailed information

concerning the distribution of the eigenvalues among the discs which
can be constructed from T or its transpose T+ :

(7) If s of the circular discs of the theorem in (5) form a connected domain which
is isolated from other discs, then there are precisely s eigenvalues of T within
this connected domain.

(8) Detailed information about possible eigenvalues {Av} of an irreducible
stochastic matrix T which may lie on the border of maximum circle with
radius R and centre — R (see (5)) is obtained by studying the spectra of the
non-negative matrix A T + Rt. Then, using the fact that R" (X + R)"
if A has n eigenvalues equal in modulus to R (Perron-Frobenius theorem
[27]), the possible n eigenvalues on the border of the circle with radius R are

5) Note that the statement in [22] ; that |Re A„| > |lm Xv\ holds only for N <, 3.
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cyclic with values at

Xe\ -R + Rexp
2nik

0,1,2,...,«- U-

This case occurs, e.g. in a cyclic system with constant transition rates,
r2t r32 • • • TXN y > 0; where:

(2tiìIY
K= -y + 7 exp N

k 0,...,N - 1. (3.5)

The eigenvector components,pk(l), are given by:

Pk(l) 1 exp l(2nik)l/tr\, (3.6)

The results given here enable the study of the relaxation times in stochastic processes
without solving the actual master equations. Particularly, one can estimate the longtime

behaviour of certain correlation functions and the relaxation of mean values.
As a simple example for these theorems, we give in Figure 1 the minimal region in the
complex plane for the eigenvalues of the stochastic matrix T of the 3-state process

(3.7)
/-* 0 t

2

r 2 -3 0

\ * 3 - 1

2

The eigenvalues of T are

K o, A1/2 --3 ± i (3.8)

Im X

y N

X

max fFiä}

\ /^

ReX

Figure 1

The shaded area gives the minimal region in the complex plane for the relaxation spectra of the 3-state

process with generator T given in equation (3.7). The crosses denote the exact values for the relaxation
constants and the dashed-dotted disc with radius R max^F^} determines the region in the complex
plane independent of any special form of the dissipative generator T.
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The spectral properties of the stochastic generator T also influence the ergodic
properties of the process. One usually deals with two kinds ofergodic theorems: there
are those which are time versions of laws such as the law of large numbers [6,8,14,28]
and also those stating the existence of a limiting probability function independent of
the way of preparation [19, 29]. As a consequence of the time evolution equation

p(t) R(t)p(o), (3.8)

all expectations and correlations will in general depend on the initial probability/>(o).
It is of interest to know the conditions under which the statistical properties of the
system become asymptotically independent of preparation effects. We shall call a
process ergodic, if

Lim R(xt | yo) pas(x), Vy e I (3.9)

exists and R(+ oo) represents a singular operator on n mapping the probabilities/;^)
onto a unique asymptotic probability /?as e n independent ofp(o). Note that we may
have in general the following situations :

—an ergodic probability distribution which is unique.
—no limiting probability, i.e. the system disperses to infinity as time increases

0>as 0).
—several asymptotic probabilities whose number becomes infinite according to

the linearity of the master equation.

The asymptotic properties of a discrete time-homogeneous Markov process with
a finite number of states can be investigated as follows : the state space S can be
portioned into classes {C} by use of the equivalence relation ~ :

i ~ j: if R(it | jo) R(i,j;t) > 0 and R(j, i;t) > 0 for some t > 0.
(3.10)

The symmetry and reflexivity relation are trivial and the transitivity relation follows
from the Kolmogorov equation

R(i,j, t + t) £ Rii, k;x)R(k,j;t) x > 0, t > 0. (3Al)
k

and the semi-positivity of the conditional probabilities. Equation (3.10) must hold
only for some fixed time t > 0, because R(i,j:t) is either identically zero or always
positive in (0, + co) [30]. We call a class C, ergodic, C"9, if in a given class every state
is ergodic, i.e. Lim(_ œ R(i, i;t) pt > 0. This definition makes sense because in a
given class C, every state is ergodic or none are. We already know that there exists an
infinite set of stationary asymptotic probabilities if more than one ergodic class
exists. But we will show that this infinite number ofdifferent asymptotic probabilities
can be characterized in terms of a linear combination of a finite number of special
asymptotic probabilities {p£} (extremal probabilities)

Lim R(t)p(0) =Pas $>„/*,. (3.12)
f-» + OO ß

The generator F can always be brought into a Jordan canonical form [27]

r H1JH. (3.13)
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Because the rank of T is N — v„, where v0 denotes the algebraic degeneracy of the
eigenvalue A0 0 we obtain for the asymptotic probability, />as, using well-known
properties of the Jordan matrices [27] :

Pas H-^no- o)hP(0). (3.14)

The statistical properties are not affected if the N states are renumbered so that F
becomes the following reducible matrix T'

0 -Bx

rVo -BVo\ (3.15)

B

Here the stochastic submatrices Tt, i 1,..., v0, with m, states represent the v0

disjunct ergodic classes and the residue of the q states in B

q N- £ m(, (3.16)

corresponds to all the states in the nonergodic classes. Each ergodic class has a positive
definite ergodic probability p'J» with

m,

r.Pi? 0, £ p<»(k) 1, i 1,..., v0. (3.17)

The special set of linear independent probabilities {p%t} in equation (3.12) is then
given by the 'extremal probabilities' {p*t}

ÌPst(i)>0, ifieC"9,
/*,(0 '

(3.18)
i-O, otherwise.

Let H be decomposed in rows of left eigenvectors, h;, and H-1 into columns of right
eigenvectors, g}, of T' so that

h;g,- ôtj; (3.19)

then we get with equation (3.14) for the asymptotic probability the useful decomposition

Pas I u>„p£ (3.20)

with

0<cu„= hj(0) <1; I>„=1. (3.21)

The eigenvectors 11^,^= 1,.. v0 correspond to left eigenvectors ofT' with eigenvalue
A^ 0. The form of equation (3.20) can be interpreted as follows. The term co^ consists

of part of the initial probability p(0) of preparation which corresponds to the
ergodic class C"° plus the part of p(0) which becomes scattered from the q nonergodic
states into the ergodic class C"9. (Note that from equation (3.19): /t„(i) 1, if
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i e C;rg and hß(i) 0, if i e {Z - C?9 - B}, p 1,..., vj. If v0 1, pas is the
unique ergodic probability with cox 1, Further, different initial probabilities with
the same weighting factors {a»,,} for the ergodic classes {C"9} approach each other
in function of time.

4. Symmetries of stochastic processes

There are two kinds of symmetries for stochastic processes, the consequences of
which are worthwhile to study in greater detail. They are symmetry transformations
in the state space E as well as symmetry conditions for the joint probability of a
stationary Markov process by interchanging the time arguments (generalized detailed
balance). Let us consider a transformation S: x Sx in state space Z, e.g. a kind of
a general coordinate transformation. All relations expressing physical properties
(e.g., the probability flux or a thermodynamic potential) should be manifestly
independent of the coordinates used. Covariant formulations of physical properties
of continuous Markov processes have recently been given [31]. But stochastic
equations, as the master equation, will change in general under such transformations.
We consider a transformation S in state space which conserves state space volume,
so that the Jacobian J(x, x) ||<3x/<5x|| equals unity. Further we assume that the
inverse transformation of S also exists.6) The transformation induces then a
transformation in function space n by a linear operator Os (transformation operator)
according to

p(xt) [_Osp(t)lx=p(S-1xt). (AA)

It must be emphasized that the operator acts upon the state space variables x
and not on the argument ofp(xt). Thus we mean 0RlOs 1p\ p(SR ~ *x) # p(R ~ 1Sx).
Such a transformation yields with respect to the generator of a time-homogeneous
Markov process the relation

f OsrOs-1 (4.2)

or

f(x,y) r(^1x,5-1y). (4.3)

We define a symmetry transformation S to a given stochastic generator as such
that the form of the generator is the same in the old and the new coordinate system.
Hence we obtain

rOs Osr, (4.4)

r(x,y) r(5-1x,1S-1y). (4.5)

If {S} is the set of all symmetry transformations of a stochastic generator T, the set
{Os}7) forms a group G, called the symmetry group G of the stochastic process. This
follows trivially from the fact that S~1 exists and ifr is invariant in x then obviously T
is invariant under x' S'1^ x.

6) In this case y Sx has no multiple roots, so that/5(y) p(x)/\ \\dy/dx\\ |. In general we would have
P(y) E"= i/>(x(i))/V(y<0, xm)|, where i 1. .n stands for the n real solutions of y (x) Sx.
7) Note that a representation for Os cannot be chosen in general to be unitary.
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For stationary Markov processes the symmetry group G yields some important
consequences. If we deal with an ergodic process, i.e. the stationary probability is

ergodic, we obtain

/>„<*) [OsA,L> VSeG. (4.6)

This follows from the fact that pas belongs to the eigenvector of the nondegenerate
eigenvalue A 0 of T and has to be nodeless. If we decompose the state space E into
ergodic classes {C"9} and rest region B, by using the principles in Section 3, the
following statement holds: the ergodic classes {C"9} (or regions) can be grouped
into stars {S^ of symmetry related classes which are transformed into each other
under the elements of the symmetry group G of x(t). Each extremal probability, p£,
in an ergodic class C"9 is invariant under the small group G^ transforming C"9 into
itself. The detailed proof for this theorem is given elsewhere [5]. If the stochastic
generator depends on external parameters X, we always may assume that a change of
X does not change the symmetry group. Therefore only the details of stochastic
properties can depend on the parameters X, but the global symmetry G is retained.
However the specific symmetries of the states in state space are not retained
(symmetry breaking instabilities) [1,3]. For example, in a laser system all states with zero
amplitude have a complete phase angle rotation invariance, the finite amplitude has a
fixed, though arbitrary, phase.

From equation (4.5) we get for finite times t, assuming a unique solution to the
forward and backward equation for the stationary conditional probability,

R(x, x | y, o) R(Sx, x \ Sy, o), VS e G. (4.7)

Hence, we have for the multivariate stationary probability of an ergodic process with
equations (2.13,4.6)

pM(xxtx,..., x„i„) p^(Sxxtx,.. .,Sxntn), \/SeG. (4.8)

Moreover, the stationary correlation of a set of state functions {<f>x(x),..., (p„(x)}
fulfills the symmetry relation

<(px(x(tx)).. .4>„(x„(0)> <$„ixiitx))- ¦ .&,(x„(0)>, VSe G, (4.9)

where

$(x(t)) (l>(Sx(t)). (AAO)

Sometimes, the stationary Markov processes obey a certain symmetry which
involves an interchanging of time-arguments in the joint-probabilities. Let P again
denote a volume preserving state space transformation which is not necessarily a

symmetry transformation. We define the generalized detailed balance symmetry by
the following requirement for the stationary joint-probability p(2) of the process
under consideration

pi2\xx;yo;X) p^(fyx; Fx(o); FX). (4.11)

X {Xx... Xm} is a set of external parameters such as a magnetic field or an electric
field. If F denotes the time-reversal operation S0, equation (4.11) is the usual detailed
balance symmetry [1, 3, 31-34]. The symmetry condition in equation (4.11) cannot
be expected to hold in general for open systems, but there exists a number of interesting

cases of non-equilibrium systems where such a symmetry condition holds acci-
dently [1, 3]. This may be due to the well chosen coarse-graining in state space and
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timejàelding a special structure of the generator T. Equation (4.11) is fulfilled further
for T PS, where S(or S'1) belongs to a symmetry transformation S eG of the
stationary ergodic Markov process. We then obtain

p(2)(xx;yo;X)= p(2)(Sxx;Syo ; SX)

p™(Fy,x;Fxo-SX)

p(2)(FSy, x;PSxo ; SX) etc., (4.12)

yielding a minimal region in the product space E x X from where the value for the
joint-probability p(2)(xt + x; yt) e iA(Z. x 1,) JA2 can be extended to the full space.

Integrating equation (4.11) over x we obtain a symmetry condition for psl(y, X)

psl(y,X)=pst(Ty,FX). (4.13)

In contrast to equation (4.6) this symmetry condition holds for any volume preserving
state space transformation P (not necessarily a symmetry transformation S) and
non-ergodic stationary Markov processes. For the stationary «-time joint probability
pi*) 6 fi* we obtain with use of the stationary condition :

p(2)(xxtx;x2t2;X) p{2\Fx2t1;Fxxt2;FX)

p(2)(Fxx - tx;Tx2 - t2;PX), (A. 14)

for the time set t x <• • ¦< t„ the important relation :

pin)(xxtx,...,xnt„;X) R(Fxn_x - tn_x\Fx„- t„;PX)

Pst(Fxn, PX)
/xv T^\" V.Xi'1- • -X„_ Xl„-X)

PstiTXn-U ™)

pM(Fx„ -tn,...,Fxx-tx,TX). (4.15)

Thereby we have made extensive use of the Markov property in equations (2.11-2.13).
For the stationary correlation of n state functions {<px... <pn) we have with equation
(4.15) the relationship

<(px(xtx)...(pn(xtn)yx {(pST-'x, -t„)...<px(T-lx, -tx)}TX. (4.16)

For the following we introduce the transformed generator T(X) with the kernel

T(x, y;X) P;Y/2(x;X)T(x, y;X)plY(y;X). (4.17)

With p(t) p~ ll2p(t), the operator T is the generator for the master equation

jtP(f,V T(X)p(t;X). (4.18)

Taking the derivative with respect to x on both sides of equation (4.11) and putting
x 0+ we obtain with equation (2.4), a second version of the generalized detailed
balance condition

T(x, y;X)pst(y;X) T(Fy, Fx;FX)pst(x, X). (4.19)

Hence, a necessary and sufficient operator condition for the generalized detailed
balance symmetry is then given by

^st(x, X) pst(Fx, TX), (4.20)
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T(X) T+(TX). (4.21)

In equation (4.21) T+(TX) denotes the transpose of the operator T with kernel
r+(7x, Ty;71) r(7y, Px;TX).

For a general time-homogeneous Markov process the dissipative generator T(X)
may have 'right' eigenfunctions ijiv(x, X) with eigenvalues Av and Re Av < 0

[T(X)ipv(Vlx Xv^v(x;X), (4.22)

and 'left' eigenfunctions $v(x, X)

[T + (X)$V(X)\ X*^(x;X). (4.23)

The notation (*) in equation (4.23) denotes the complex conjugation. Then the sets

{ij/v} and {$v} form a biorthogonal set [35]

4t*(x;X)il/v(x;X)dx SliV. (4.24)

Next we assume that the eigenfunctions {$„} and {i//v} form a complete biorthogonal
set

i #*(y;X)ipv(x;X)dv ô(x - y). (4.25)

For the propagator R(x) of the general time-homogeneous Markov process we
obtain with equations (2.9, 4.18, 4.25) the expression

R(xx | yo;X) P'' f I^*(y;3i)^(x;A.) exp Avt dv, x > 0. (4.26)

In presence of a generalized detailed balance symmetry the calculation of the left
eigenfunction {$„} becomes rather simplified. From equation (4.21) we have

\T(F-'X)^V(T-'X)-\T-^ XJY(T-lx, F-'X) [r+(^v.(r-^)]x, (4.27)

so that

rv(x,X) xl>v(T-1x,F-lX). (4.28)

If we decompose the generator T into a symmetric part Ts j[T + T+] and a skew-
symmetric part TA j[T — r+], the calculation of the left eigenfunction $v(xX)
of r+ becomes even more simplified in cases where Ts and TA commute. Let i//v
denote an eigenfunction of T, so that we have

rs^v (ReAv).Av, (4.29)

and

r4<K i(ImAv)1/V (4.30)

It follows then from equations (4.23) and (4.28), that

rl/v(T-1x;F-iX) iljt(x,X). (4.31)

For the propagator, R(x), we find by use of equation (4.28)

R(xx | yo, X) (Psti*' ?f)1/2 4 dvt/,v(T-ly, T lX)xl>v(x, X) exp Avt, t > 0,/ W ] £\* r W* J» * "/T'y V 9 "/ ~"T "V "' "'
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and for the stationary joint-probability p(2) the relation

y2»(x, T;y;O;>0 (pst(x, X)psi(y, X))^2± dv^^y, T~lX)xl,v(x, X) exp X.,x,
Jv

x > 0. (4.33)

For x < 0, we obtain, using the stationary condition (equation (4.14)) :

/7<2>(x, x-y-o-X) (Psl(x, X)Psl(y, X)Y'2t dvip^F^x, T^X^^y, X) exp Av|i|.
J» (4.34)

Further, if y F~ly, X F~1X2_i.e. we deal with a strong generalized detailed
balance condition, the generator T becomes self-adjoint such that 0 > Av e IR, and
the left eigenfunctions can be chosen to be tÂv(x, X) i]/v(x, X) e IR. As a consequence,
equations (4.33-4.34) forp(2) read in closed form

y2»(xr, yo;X) (pst(x,Vpst(yM112 I d^v(y, X)ij,v(x, X) exp Av|t|. (4.35)
Jv

All the relations discussed so far hold for general regular transformations F
obeying equation (4.11). The property of volume preserving was only introduced for
simplicity. It is easy to write all relations in terms of a general Jacobian | J(y, x)| # 1.

Also, it is self evident that in the special case of a strong detailed balance the symmetry
group G can be advantageously studied in terms of the symmetric generator T.

Finally, we consider operators T0 which fulfill equation (4.11) and further:

P2 H, (4.36)

y. IVj. (43?)
j

T0xi Y,rijXj- (4-38)
j

By choosing the variables x and the external parameters appropriately we can always
achieve a and r to be diagonal with eigenvalues e, +1 (see equation (4.36)). In
the following we speak of the parity, e;, for the variable xt under the transformation
T0. As an example, in Table 1 we study the transformation behaviour of physical
variables under the three different transformations F0 :

S0 : time reversal symmetry
R0 : inversion, or image symmetry
/0 : total inversion I0 S0R0.

Most relations discussed above then simplify considerably. For example, the
correlation function Su(t) of two random variables fulfills (equation (4.16)):

Sij(t) <Xj(0*;(0)> WjSjtiT). (4.39)

Note, if equation (4.11) is fulfilled for two transformations of the set {S0, R0,10},
equation (4.11) is fulfilled by use of equation (4.12) for all three transformations
{•S0, R0, /0}. In the case of the Fokker-Planck equation, equation (2.25), the operator
condition in equation (4.21):

At(xA) pst(x, i), (4.40)

TFP(x,X) =r+p (*,£), (4.41)
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Table 1

Transformation behaviour, et, ofphysical quantities with respect to time reversal S0, inversion R0 and total
inversion I0 S0R0.

where

x {exxx,...,s„x„}, (4.42)

can be written in a more adequate form by introducing the following quantities:

a,±(x, X) K«,(x, X) ± wQL, X)l (4.43)

so that

a?{x, X) ±eiaH*, I), (4.44)

and

S"(x, X) a"(x, X)Pst(x, X), (4.45)

S+(x, X) a+(x, X)Pst(x, X) - V .(D(x, X)Psl(x, X)). (AM)

Following the procedure of Risken, where T0 S0 is considered [33], we obtain for
any transformation T0 obeying equation (4.11) for the necessary and sufficient
conditions of detailed balance the so called potential conditions8) [1, 3, 31-34]

Dtj(X, X) EiEjDijix, i),
S+(x, X) 0.

\-S~(x,X) 0.

If the diffusion matrix D possesses an inverse, equation (4.48) requires

ô InPst(x, X) r nM/_ ,/r dDkl(x, X)

dx, ZA^(U)(z^-%+(a)).

(4.47)

(4.48)

(4.49)

(4.50)

8) A covariant formulation of these potential conditions has been discussed recently by Graham [31].
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from which/7st(x, X) is obtained by quadratures. Furthermore, if static fields {X} are
applied, such that at+(x, X) a,+ (x) + A,-, Vi, and they restore the generalized
detailed balance symmetry, we obtain in the case ofx-independent diffusion coefficients
for the stationary probability

/>st(x, *•) const pst(x, X 0) exp £ Df. ^jXj. (4.51)

Note that /?st(x, X 0) obtained from equation (4.50) is, in general, non-Gaussian.
The result of equation (4.51) allows the calculation of the static response to all orders.

Equation (4.50) shows that in the presence ofa general detailed balance condition
the stationary probability may be determined explicitly. The symmetry of the
generalized detailed balance yields in equations (4.43-4.45) additional information
not needed for the solution of the stationary probability. Hence, the study ofpotential
conditions which yield the minimal necessary and sufficient information needed for
the construction of the stationary probability is very desirable. Finally, we mention
that the results obtained in this paper can be generalized to the case of functional
master equations.
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