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Group-theoretical aspects of the Wigner-Weyl isomorphism

by A. Grossmann

Centre de Physique Théorique, CNRS Marseille

and P. Huguenin

Université de Neuchâtel, Institut de Physique

(21. XII. 77)

Abstract. We consider the group Em of symmetries with respect to points ('inversions') and
displacements of phase space. A Wigner-Weyl system is defined as a projective representation of this group;
it is a proper extension of a Weyl system. We derive the basic properties ofWigner-Weyl systems and show :

(i) Their use clarifies the role of symplectiç Fourier transform in the Weyl correspondence,
(ii) The quasiprobability density of Wigner can be written in an intrinsic, symplectically covariant

way as a matrix element of Wigner operators.

1. Introduction

In the study of the Wigner quasiprobability density [1^1] there appears naturally
a certain family of operators labelled by points in phase space. One of us has shown
[5] that these operators are best associated to symmetries (i.e. inversions with respect
to points) of phase space. On the other hand, the same family of 'displaced parity
operators' proved useful in the study of Weyl systems [6].

Here we bring together the two points of view. We consider the group F<2) of
symmetries and displacements of phase space, and define a Wigner-Weyl system as a
projective representation of this group. The operator corresponding to a symmetry
is called a Wigner operator. The product of two Wigner operators corresponds to a
displacement ; it is a Weyl operator. For this and other reasons, we claim that Wigner
operators are the more natural building blocks for quantum mechanics.

After defining Wigner-Weyl systems, we look at questions of uniqueness
(Section 4), at symplectic Fourier transforms (Section 5), relationships with the
Wigner quasiprobability function (Section 6) and applications to quantization
(Section 7).

2. Phase space (notations)

Let E be the vector space E R2n of (2n)-tuples of real numbers. An element
a e F will be written as a pair of «-tuples: a {qa,pa}- Given a positive number h,
define on F the symplectic (i.e. bilinear, antisymmetric, nondegenerate) form
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a(a, b) \ (qapb - paqb) pdq;

it is the action along the triangular path A(0, a, b), in units of h/A. The (Lebesgue)
volume element in E will be normalized as follows :

d2"a
d*a wr dnqd*p

where d*p d"p/(izh)n.

Writing a {qa, 0} + {0, pa}, we obtain a decomposition of E into two maximal

isotropic subspaces. More generally, let F be a linear and such that :

F2 1, a(Fa,Fb) a(b,a)

(an involutive antimetry of E; [7]). Consider the two complementary subspaces
V± Kl ± F)E, and decompose ae E:

a Ìa + «.

with Ça 1(1 + F)a, and na ^(1 - F)a. One verifies then that o(Ça, Çb)

o(na, nb) 0, for all a e F, b e F.

With an appropriate choice of coordinates, we can write the volume element

d*a d%ad*na, where d*na d"nj(nh)n.

If we choose F time reversal (F{q,p) [q, —/>}), then V+ is coordinate space
and V_ momentum space.

The reader will notice that the specific choice E R2" is not important. What
we are using is :

(i) an even-dimensional real vector space with a symplectic inner product, and
(ii) appropriate normalizations of the invariant volume element in E and in its

isotropic subspaces.

On suitable spaces of (generalized) functions on E, we can consider the left and
right symplectic Fourier transform defined, respectively, by

(FJ)(a)

iFJ)ia)

f(b)é°(b-a)d*b

ë°(a-hfib)d*b

which are simply related to each other:

FJ=Fj=iFjY
Fj=iFjy Fxy

where /(a) =/(-a).
With the above conventions on volume elements, they are both involutory :

F2 1, F2 1.
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3. The Group F(2)

Consider in E the transformation of symmetry (i.e. parity) around a point a. It
is the map that sends any b e E into

Tlab 2a - b.

The product of two such transformations is a displacement x : define

*aib) -a + b.

Endowed with their natural product, the symmetries around points and
displacements form a group F(2) which has two connected components, each homeo-
morphic to E. Denote by F(+) the subgroup of displacements and by F(_) the coset
of symmetries. It is convenient to introduce the group Z2 consisting of the numbers
+1 and - 1, and to write the elements of F(2) as pairs:

{+1, a} T2fl (notice the factor of 2)

{— 1, a} \Aa (the factor 2 is absent).

Then the (non-abelian) group law in F(2) can be written as

{e, a} {m, b) {en, b + no] (a, b e E, e,n e Z2).

We see that F(2) is a semi-direct product of E and of Z2. The identity in F(2) is

e { + ,0} {e, a}{e, -ea}.
Any displacement is a product of two symmetries; so e.g.

{ + ,a} { + -a}"1 {-,0}{-,a}.
The inner automorphisms of F(2) are given by

{n,bYl{e,a\{n,b} {e, na + (1 - e)b).

4. Wigner-Weyl systems

We define a Wigner-Weyl system as a unitary irreducible projective representation

of F(2), with multiplier e~'«<•<•• ib)1), in other words, a Wigner-Weyl system is a

strongly continuous correspondence {e, a} —> W(e; a) from F(2) to unitary operators
in a separable Hilbert space JP, such that :

W(e; a)W(n; b) e-w«.*) jyfa. D + m) ie,n e Z2; a,b e E). (1)

If we denote by W*in, b) the adjoint of Wir\, b), this can also be written as

Wie; a)W*in;b) éa(a-b) Wien; nia - b)). (2)

We assume irreducibility, i.e. non-existence of non-trivial closed subspaces of Jf
stable under all operators Wie; a).

The restriction of a Wigner-Weyl system to F(+) is a Weyl system, familiar from
the study of canonical commutation relations. The uniqueness theorem of von
Neumann and Stone [8] states that there exists, given E and a, exactly one irreducible

') Theorem 9.4 of [10] (together with known facts on multipliers of Z2 and E) shows that this is not
an arbitrary choice.
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Weyl system up to unitary equivalence. The study of Wigner-Weyl systems can be
based on this theorem, together with the generalization, to the non-compact case, of
a theorem by Clifford [9]. All the necessary results, in much greater generality than
what is required here, can be found in a paper by Mackey [10]. They can be specialized

as follows.
The restriction of an (irreducible) Wigner-Weyl system to F<+) is an irreducible

Weyl system.
Given E, a, there exist, up to unitary equivalence, exactly two (irreducible)

Wigner-Weyl systems. If Wie; a) is a Wigner-Weyl system, then eWie; a) is another
such system, not equivalent to Wie ; a). Later in this paper, we shall give a criterion
for choosing the overall sign of W(— ; a), given W(+ ; a).

Products of two Wigner-Weyl operators are given by the defining equation (1).
Products of three Wigner operators W( — ; a) are particularly interesting :

W(- ; a)W(- ; b)W(- ; c) e"*a-"-c) W(-; a - b + c)

where the exponent is proportional to the action integral over the triangle A(a, b, c)
with vertices a, b, c.

cp(a, b, c) a(a - c,b - c) - a(a, c) - a(c, b) - a(b, a)

p dq.

The function cp has the following obvious properties :

(p(a, b, c) cp(b, c, a) — —q>(a, c, b) -q>(c, b, a) —q>(b, fl, c)

cp(a + x, b + x, c + x) X~2cp(Xa, Xb, Xc) <p(La, Lb, Lc)

where X is a nonzero real number, and where F is a symplectic transformation of
E: L e Sp (2«), i.e. a(La, Lb) a(a, b).

The notation cp(a, b, c) is related through cp(a, b, c) -j(a, b, c) to the symbol
(a, b, c) introduced in [4].

The product of any three Wigner-Weyl operators can be expressed, though less

elegantly, with the help of the function cp :

W(e; a)W(n; b)W(Ç; c) eM-i«,»,-M W(enÇ; c + Ç(b + na)). (3)

The inner automorphisms are, again, simpler :

W*(n; b)W(e; a)W(n; b) e;,'(1 + e)«a-b) W(e; na + (1 - e)b).

The set of Weyl operator W(+ ; is stable under inner automorphisms.
Every Wigner-Weyl operator is, by definition, unitary. The Wigner operators

W( — ; e) have the additional properties of being self-adjoint and involutive

W(- ; a)* W(- ; a) W(- ; a)2 1. (4)

Consequently, the spectrum of any Wigner operator consists of the numbers
+ 1 and — 1. It is easy to find the corresponding eigenspaces [6].
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5. Symplectic Fourier transform of Wigner-Weyl systems

Theorem, (i) Let W(e; a) be any (irreducible) Wigner-Weyl system. Fhen the

subfamilies W( + ; a) and W( — ; a) are, up to a sign, the right symplectic Fourier
transforms of each other:

W(e; a) + Ja(a,b) Wr_W(-e;b)d*b. (5)

(ii) If W( + ; a) is any irreducible Weyl system and if we define W( — ; a) through
(5) (with e — 1), then W(+ ; a) and W(— ; a) form a Wigner-Weyl system.

Remarks. (1) Equation (5) will give the promised criterion for choosing the
overall sign of W(— ; a).

(2) If W(+ ; a) is any irreducible Weyl system acting in the Hilbert space 3*e,

then every matrix element co^a) (cp, W(+ ; a)\j/) (<p,ij/ e 34? is square integrable
over E). This can be shown directly or deduced from general results [11, p. 349]; it
gives meaning to the Fourier transform (5). Furthermore, there exists a dense
domain 2> c pe such that the matrix elements co^ (cp, i// e 3>) are all absolutely
integrable; this will justify the operator calculations below.

Proof. Let W(e; a) be an (irreducible) Wigner-Weyl system. Consider the two
operators

Aw W(e;a)d*a ee Z2

The square of both of them is the identity :

04(£>)(c)\2 _ W(e;d)W(e;b)d*ad*b

e-io(a,eb) W(+ t + £a) d*a d*b

e-i„(a,eb-) r^(+ ,^d*a d*b, W(+ ; Q) 1.

A crucial distinction between Ai+) and A(~] appears when we look at their
commutation properties with the operators W(e; b). A trivial computation shows
that

A(-)W(e;b) W(e;b)Al~) (eeZ2,beE)
while Ai + satisfies

A(+)W(e;b) W(e; -b)A{ +

by Schur's lemma, A(~] is either +1 or -1 (the identity) while A(+) is the parity
operator, determined up to a sign. Having chosen the sign of W(— ; 0) so that

1 W(-;b)d*b (6)
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we obtain

W(e; a) W(e; a)W(- ; b) d*b eia{a'h) W(-e; b) d*b (7)

which is the required relationship.
The uniqueness theorem of von Neumann and Stone gives now :

Let Wx(e;a) and W2(e;a) be two (irreducible) Wigner-Weyl systems, both
satisfying (7). Then they are unitarily equivalent.

From now on we shall assume that (7) holds.

6. Wigner-Weyl systems over phase space with a real polarization ; Wigner function

Let E Ei + En be any decomposition of F into maximal isotropic subspaces
(a real polarization) as discussed in Section 2. It is sometimes convenient to realize
the abstract irreducible Wigner-Weyl system in a Hilbert space adapted to that
decomposition (the '^-representation'). The construction of such a space is a straightforward

example of induced representation ([12]; see also [13]). It runs as follows:

Let HT consist of (measurable) complex-valued functions on E that satisfy

(i) the covariance condition along En :

0(a + nb) eiain,"a>0(a)

for all nbe En, a e E.
(ii) the condition of square integrability on E/En

\<&ia)\2d"Ç < oo.

The last condition is meaningful because, by (i), |0(a)|2 depends only on Ça and not
on na. With the corresponding definition of inner product, HT becomes a Hilbert
space.

The Wigner-Weyl operators in HT are defined by

iWie; a)Q>)ib) e-2iaia-b) 0>(e(Z> - 2a)).

If we identify every $effr with its restriction to F«, i.e. if we define on F« the
functions iA(£a) $(<!;„), then HT is identified with F2(F4) and the Weyl operators
take the familiar form

(W(+ ; {.)*)«*) Hit - 2Ça)

(W(+; nM(Zb) e(8ilh)*°ib MSb) e4^'*"' *({»).

In order to use Dirac notation concerning generalized eigenfunctions, we embed
L2(Ef) into a suitable larger space (say the space S'(E}) of tempered distributions).
The dyadics |^a><4| can then be defined either as maps from S(Ei) to S'(Eç), or
as unbounded quadratic forms, or else as operators in a partial inner product
space [14].

Let now Jvf be an arbitrary irreducible representation space for Weyl-Wigner
operators over E. The uniqueness theorem discussed in Section 4 enables us to
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transport unambiguously the above definitions from HT to Jf, with the help of the
intertwining operator which exists, and is determined up to a phase factor. The phase
factor drops out from the definition of operators ||a> (Çb\.

A straightforward calculation gives then

Theorem. Let Wie ; a) be an iirreducible) Wigner-Weyl system acting in a Hilbert
space #e. Let E E^ + En be a decomposition of E into maximal isotropic sub-

spaces. Fhen the dyadics |^a><<^(,| can be expressed with the help of Wigner operators
as follows:

IO <U J e«""«--«'» w(- ;^^ + *e) d*nc.

In particular

\0^a\ ]Wi--Aa + na)d*na.

Conversely, the Wigner operator Wi — ; a) can be written with the help ofdyadics as

Wi- ; a) j|{. - £„> d't„ e*<""«<£. + Q. (8)

Remarks. (1) Similar relationships hold for Weyl operators (which are products
of Wigner operators and parity). They are, however, less symmetric, since Weyl
operators are not selfadjoint.

(2) It is sometimes convenient to consider the operators 2"W(— ; a), normalized

so as to have generalized trace equal to 1. (See Section 7 [2], [15].) Then, by (8),

2"W(-;b) &-R>^ae(i/2M"»-w<4 + K,2 S a|-

The expectation value of the operator (8) in a pure state, written in the ^-representation,
is the famous expression of Wigner quasiprobability density :

2\ip\W(-; b)\ip} WZ,, - lU e*»2*«'-™ «K^ + iO d%.

7. Quantization and its inverse (Weyl-Wigner correspondence)

We now turn to the relationships between operators in Hilbert space and the
corresponding classical functions. The results of this section have been known for a
long time [16, 17, 22, 23], but they take now a particularly transparent form.

In order to avoid technicalities, we shall first state the result for a very restricted
class of operators. (This procedure is, roughly speaking, equivalent to restricting the
discussion of Fourier transforms to absolutely integrable functions.)

Theorem. Let JP be a Hilbert space carrying an irreducible Wigner-Weyl system
W(e; a). IfH is any operator of trace class on 3P, define on F(2) the function

h(e;a) 2" tr (W*(e; a)H).
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Fhen
(A) Fhe functions h(+ ;a) and h(— ; a) on E are left symplectic Fourier

transforms of each other:

h( — e; a) h(e; b) é°(b-a) d*b (eeZ2,aeE).

(B) Fhe correspondence H'—> h is inverted as follows:

H hi+;a)Wi+;a)d*a hi— ; a)Wi~ ; a) d*a,

i.e. H can be reconstructed either with the help ofhi + ¦) or with the help ofhi — ¦).
(C) Ifa function h on F<2) satisfies

hi+;a)Wi+;a)d*a hi-;a)Wi-;a)d*a

then hi+ ; ¦) and hi— ; ¦) are left symplectic Fourier transforms of each other.
(D) Fhe trace ofH is given by

tr H 2~" hi- ;a)d*a 2_"/z( + ; 0).

(E) Fhe correspondence between H and h is unitary in the following sense. IfHx
and H2 are as above, and if we denote by iHx, H2)HS their Hilbert-Schmidt scalar
product tr iHxH2) then we have

2\iHx, H2))HS [nxi- ; a)h2i- ;a)d*a

\hx(+ ; a)h2(+ ; a) d*a.

(F) Fhe function h* corresponding to the operator H* (adjoint ofH) is

h*(e; a) E(e; —ea)

where the bar denotes complex conjugation. In particular, h*(— ; a) h(— ; a).
(G) IfK= HXH2 (operatorproduct) then

k(- ; a) ei<*a,b,c) i(_ iy,2(_ ; c) d*b d*C

(where (p is the function introduced in Section 4) and

k(+;a) hx(+ ; b)h2(+ ;a-b) eia(a-b) d*b.

(9)

(10)

(H) If H is of trace class on 3f', h(±, ¦) are bounded, continuous and square
integrable functions on E.

Remarks. (1) Formula (9) defines the 'twisted product' [18-21]. The commutator

with respect to this product is the Moyal bracket [22]. Formula (10) defines
'twisted convolution'.
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(2) With the help of (D), (F), and (G), we can obtain alternative expressions for
the Hilbert-Schmidt scalar product of operators. Denote the r.h.s. of (9) by
(h[-) o h2-\a), and the r.h.s. of (10) by (h\+) * h2+))(a).

((/f1,i/2))Hs Tr(if1/f2)

T (h[-)°hY))(a)d*a

2-n(h[+r * h2+))(0)-

It is possible to extend the correspondence between H and h()( • to wider classes
of operators and (generalized) functions (say by duality, or continuity). We shall not
do it here, but shall give some examples :

a(a0, X)

H h{-\a) h( + )(a)

1 W(+ ; 0) 1 (nh)nô(a)

W(+;a0) „ia(ao, a) (nh)"ô(a - a0)

- ï (a "^ *•>)... a(a0 a) inhyia0V)ôia)

û W(-;0) (nh)nd(a) 1

W(-;a0) (nh)"ô(a — a0) „i"(aa, a)

Here a0- V denotes the derivative in the direction a0.
For the sake of simplicity, consider now a system of one degree of freedom, and

define the Fourier transform by

ê(p) g(q) P2"^" dq.

Let |0> be the ground state of the harmonic oscillator of mass m and frequency cu.

We have then :

H /!(-»(fl) h{ + )(a)

9(Q) 9(P) à(q)eÌP)

9(P) gip) S(p)ê(q)

lO^ ^Ol 2 ö_<m<°292+p2/m<i>2)/* 2 ö_(mt<>2«2+p2/mo>2)/*

The examples g(Q) and g(P) show again that the correspondence between H and
h(~\a) is simpler than the correspondence between H and h(~\a) is simpler than the
correspondence between H and h(+)(a).
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