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Solution of an apparent inconsistency in
the concept of mean free path

by Andreas Frohlich

Instituto de Fisica *Gleb Wataghin’, Universidade Estadual de Campinas, Campinas, S.P., Brasil

(17. X. 1977, revised 5. 1. 1978)

Abstract. The standard procedure starts by defining 7, the mean free flight time of molecules between
collisions; but then, after some probability considerations, the mean free flight time appears to be 2z.
This paper develops a more careful application of probability to the question and shows that the two mean
values belong to different sample spaces.

Introduction

Some books [1-3] mention a paradoxical result in the theory of mean free path
of molecules of a dilute gas. The mean time between collisions, , is first defined as
the time of a section of the molecule’s life divided by the number of collisions that
the molecule underwent in this section. Then one makes the assumption and good
approximation that at any instant A4, regardless of the molecule’s past, Az/z is the
probability that it will collide in the next At; this is equivalent to Poisson’s law [4],
which says that from 4 onwards the molecule survives without collision for a time ¢
with probability e "%, and with the same probability the last previous collision lies
at least a time ¢ back ; the expectation values for the time from A4 to the next and last
collisions are thus t each, which makes 2t between successive collisions. Especially
Sommerfeld [1] considers this to be a serious conceptual difficulty and also treats
the analogous problem of throwing dice, which is treated in the second part of this
paper. The first part develops a calculation for the original problem but without
the assumption of Poisson’s law.

Calculation for collisions in gases and analogous problems (continuous variables)

Representing the probability distributions which yield mean time intervals of ©
and 2t by W(S) and W(A) respectively, we may illustrate the life of a particle on a
time line where S represent times at which collisions occur and A4 is an arbitrary
instant of time.

S S A S
I + - } — time

The time interval between consecutive S’s shall be referred to as an “interval’.
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W(S) corresponds to the following experiment: Cut up the time-line into its
intervals and pack each one into a separate box. Then draw a box at random. The
' probability that the length of the interval contained in this box lies between T and
T + ATshallbecalled p(T) AT. Thus |° dT p(T) = 1. p(T) AT also is the probability
that from an arbitrary S on, it takes between 7'and T + AT until to the next S. The
mean interval length in W(S) is then

T = '[wdTTp(T).
0

W(A) is the distribution obtained by observing the molecule from an arbitrary
instant A onwards, i.e. choosing an 4 at random on the time-line. A new function
k() 1s then defined so that once an A is chosen, k(r) At is the probability that the first
S after A4 lies between ¢ and ¢t + Ar after A. k(¢) At is also the probability that the
last S before A lies between ¢ and ¢ + Ar before A.

There is one more function associated with W(A), it shall be called L(¢) and
means the probability that the time ¢ following 4 doesn’t contain any S, i.e. the next
S lies more than ¢ ahead. Obviously

L(t) = fw dt’ k(t").

The bridge between W(S) and W(A4) is the following: The probability that
the arbitrary point A4 falls into an interval of length between T and T + AT is
[7p(T) AT7]/z. One arrives at this result by considering the fraction of the time-axis
that is taken up by the intervals of lengths between 7 and T + AT} it must be
proportional to Tp(T) AT. The said fraction is by definition of probability the
probability that A lies in a said interval. 7 is the normalization constant, such that
{¢° [Tp(T) dT]/r = 1. From [Tp(T) AT]/x, one finds the probability that 4 lies in
a certain section of length Ar within an interval of length between 7 and T + AT
(e.g. in a At around the middle of the interval): It is

At Tp(T)AT _ p(T) AT At
T T B i

Examples are:

1. The probability that the time from A to the last S is between ¢, and ¢, + A,
and the time from A to the next S between ¢, and ¢, + At, is [p(¢, + t,) At; Az, ]/7.
From this, all the other distributions of W (A4) can be calculated by integration.

2. To obtain &(¢) in terms of p(T’) we argue that the probability that A lies in an
interval of length between T and T + AT and also lies between rand ¢t + Ar(z < T)
before the end of this interval, is t~'p(T) AT At. Integration over all possible T’s
(t < T) yields

k() At = 771 J dT p(T) At.
t
Thus k(¢) is now expressed in terms of p(T).
In W(A), there are two mean values of importance: One is 7= j3° dt t k(t), the
expectation value of the time from A4 to the next S. It is also the expectation value
of the time from A to the last S. The other is 7, the mean interval length in W(A).
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One can write

— © Tp(T)dT — ®
T = J Tp—(—)—a oralso T = '[j. (4, + 1)t 'p(t, + t,) dt, dt,.

0 T 0
t, and ¢, are, as before, the times from A4 to the last S and the next S. Obviously
T =1t + t, for any certain 4. And, with the bar always meaning ‘average of the
distribution W(4)’, T = (¢, + t,). But (¢, + t,) = 7, + 7,, and each one of them
equals 7. Thus T = 27, which can also be arrived at by partial integration of T =
~' [§ aT T?p(T), using p(T) = — tk(T) and k(1) =2

Each one of these three quantities, 7, 7 and 1, have been regarded as mean free
flight times in the literature, but they may all be different. Only T = 27 always holds.
In the case of Poisson’s law, one has L(¢) = e ", k(t) = t Y e ", p(T) = v~ " T,
with t = (¥ dT Tp(T), as before. And thus 7=1, T = 21 It may be due to the
sameness of the functional forms of the three functlons L, k and p, that their
conceptual difference has not been considered sufficiently.

Throwing dice and generalizations (discrete variables)

Throwing dice gives an analogous example [1], with the difference that the
continuous variables are now replaced by the natural numbers, 1, 2, 3,. ... The die,
with its six faces, is thrown an unlimited number of times, a throw and its result
being denoted by 4. One face is marked, the 4’s where it appears are also called S’s.

interval, length 3

A ——
A A A A A

o o ln

o § o eeee -» consecutive throws
A A

The probability for an 4 to be an S is £. Thus, at any 4, be it an S or not,
the probability that to the next S, it takes n more throws, is I(n) = {(2)"" ', where
n=1273,.... By ‘length of an interval’ shall be meant the number of inter-
spaces between throws that it contains. Then one can say: ‘The W (S)-probability
for an interval to have length # is [(r)’. And in W (S), the average length of an interval,
denoted by v, becomes v = > ¥ nl(n) = 6. v is analogous to 7. The analog to 7
shall be called 7 and is the expectation value of the number of throws from an
arbitrary 4 on until to the next S. Thus 7 = Y " nl(n) = 6. The number of throws
(or interspaces between throws) from the arbitrary 4 backwards to the last S also
follows the distribution /(n). However, this time one cannot just add the two #’s in
.order to get the mean interval length in W (4 ). Namely, in the case that the arbitrary
A is an § and it is n, to the last S and #, to the next S, the number (#, + n,) is not
the length of an interval, but the length of two intervals. Thus in the case that A4 is
and S, the mean interval length is 4(r, + n,) = 3(#, + 71,) = (7 + ) = 7. This case
has probability £, since + of the A’s are S’s. In the example with continuous variables,
the set of A’s that were S’s was of measure zero. To the 2 of 4’s that are not S’s, the
mean interval length of W (A) is calculated as follows: An interval of length # contains
(n — 1) A’sthat are not S’s, let’s call them B’s. Thus the probability that an arbitrary
B is contained in an interval of length »n is [(n — 1)/(n)]/(v — 1). And so, in this
case, the mean interval length comes out to be 3" u[(n — 1)I(n)]/(v — 1), which is
12. Adding the two results now with their respective weights of £ and 2 gives the mean
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interval length in W(A), called N. N = 11. Thus N # 2na. N can also be calculated
in a different way, which is simpler but doesn’t exhibit the reason for N # 2n
explicitly: In W(A4), the intervals of length »n have the relative weight [np(n)]/v.
Averaging the interval lengths n gives N. Thus N = 3 n[np(n)/v]. Again N = 11.

Generalizing this example of throwing dice, one can formulate a calculus
analogous to the one about ¢ and T, for problems with variables that take on the
values 1, 2, 3, . ... Just a few parts shall be mentioned here, without deductions. The
analog to p(T) AT shall be denoted by p(n) and means, among other things, the
following: At an arbitrary S, the probability that the next interval is of length n is
p(n). The same is true with ‘next’ replaced by ‘last’ (or ‘next but one’, etc.). By ‘length
of an interval’ is meant the number of interspaces between consecutive 4’s that are
contained in the interval. Then there is the analog to 7, v = }.{° np(n). v is the mean
interval length in W(S), and v~ the fraction of 4’s that are S’s. Then there is a
function k(m) = v=! X2 ,, p(n), which means two useful things: (1) The probability
that from an arbitrary 4 (be it an S or not) to the next (or last) S there are m inter-
spaces. (2) The probability that between an arbitrary interspace and the next (last)
S there are (m — 1) interspaces. The quantity > {° mk(m) shall be denoted by m.
Finally, there is NV, the mean interval length in W (A). Thus N = .3 n[np(n)/v], and
one finds N = 2m — 1.
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