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On the unique continuation property
for Schrödinger hamiltonians

V. Georgescu12)
Department of Theoretical Physics, University of Geneva, 1211 Geneva 4, Switzerland

(19. XII. 1979)

Abstract. We prove a unique continuation theorem for differential operators in R" of the form
-A + £"_! WjDy + V, where the functions V, Wj,..., XVn are locally unbounded. For example, we can
allow Wj e L^1 and VeLf^ if n 2, 3, VeLg?-1"3 inn »4. We can also treat N-body Schrödinger
operators with two particle potentials in Lfoc(R3) for p > 1.

1. Introduction

With the great progress made in the spectral analysis of one-body
Schrödinger hamiltonians the last years we are left with, essentially, only one
obscure point: the question of (strictly) positive eigenvalues for locally unbounded
potentials (see [1], Remark after Theorem 3.1). More precisely, one would like to
show that the equation (—A+V)u \u does not have a nontrivial solution
u e L2(R") if A > 0 and V is a real function in the SR class (see [1]), or to give a

counterexample to this proposition. The result is known to be true if V is locally
bounded in the complement of a compact set of measure zero with connected
complement and satisfies a condition of decrease at infinity (see [12], Theorem
XIII.58 for example). The proof of this assertion involves two steps: first one
shows that u must be zero in a neighbourhood of infinity and then one proves that
the differential operator -A+ V-À has the (weak) unique continuation property
(see below), so that u must be identically zero. Both stages use the local
boundedness of V. The purpose of this paper is to relax the condition VeL^c in
the second stage, i.e. to prove the unique continuation property for a class of
differential operators with locally unbounded coefficients.

Let fl<=Rn be open and connected; we denote by FP(fl) the usual Sobolev
spaces and by Hj^fl) their local counterparts (s can be any real number). We
adopt Hörmander's [7] notations and conventions; in particular, Ds —idj, ô,=
d/dXj, j 1,..., n. Let P P(x, D) Z|a|*m aa(x)Da be a differential operator on
fl, a„ being complex valued functions on fl such that P*$F is well defined for any
*¦ e HSe(fì) (in the sense of distributions) and P"V e Lfoc(fl). We say that P has the
unique continuation property in fl if : ^ e H,oC(fl), PW 0 and ¥ | U 0 for some
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open, non-empty l/<=fl, imply ^ 0. Let:

Hsc(fl) {VeHs(R") | supp ^ is a compact subset of fl} (1)

We say that P has the weak unique continuation property in fl if: f eHJ"(fì),
pip 0=^>^=0. Remark that 'unique continuation' is a local property (i.e. it is
enough to prove it in the neighbourhood of each point) while 'weak unique
continuation' is not.

Several authors have proved that various classes of differential operators
have the unique continuation property: see the references given in Hörmander [7]
Chapter 8. For counterexamples see Plis [10], [11] and Hörmander [8]. The most
general results are those obtained by Aronszajn-Krzywicki-Szarski [4] and
Hörmander [7] Theorem 8.9.1 (in this theorem, if Pm is elliptic, it is sufficient that
the coefficients of Pm be Lipschitz). For second-order elliptic operators in ns=3
dimensions, Plis' counterexample [11] shows that these results are optimal from
the point of view of regularity of the higher order coefficients aa, \a\ l. For
n 2, there are much more general results due to Bers and Nirenberg [5]. The
lower order coefficients aa, \a\ 0, 1, are required to be bounded but, as we shall
show, Hörmander's estimates (see Appendix 1) allow even locally unbounded aa
(\a\=s 1). The conditions are not optimal however (for any n 3= 3), which motivated
us to try to improve Hörmander's estimates. This is done in Section 2: we show
that Hörmander's inequalities can be improved only 'in certain directions' and
that our final estimates are optimal (from the point of view of the method used in
this paper). In Section 3 the unique continuation theorems which follow from the
estimates of Section 2 are presented. For n 3 they are quite satisfactory, but not
for n3=4. We think that they can not be improved by the method of this paper
(since the estimates in Section 2 are optimal). We consider only the case

n

P -A+Z WPi + V,
i=i

which is the operator appearing in non-relativistic quantum mechanics, but
exactly the same method works in general.

W. O. Amrein and A. M. Berthier found a general method of proving weak
unique continuation property, based on the spectral properties of differential
operators with periodic coefficients (see [2] and [12] page 355). However, it seems
that the results obtained until now by this method are weaker than ours (in higher
dimensions; in fact, it requires VeL"072 if n 3=5, but only Vefoc, p> n/2, if n 2,
3, 4; cf. [3]).

Remark. After the completion of this paper (a first version was presented in
a seminar at the Central Institute of Physics, Bucharest, in the summer of 1978)
we have learned from W. Amrein of a preprint by M. Schechter and B. Simon
treating the same problem and leading to unique continuation under local
conditions on V similar to those in [3] cited above. Their method is different from
ours, being based on inequalities containing Lp-norms of the function. Our
inequalities involve only L2-norms, but of the function and some of its derivatives
of fractional order. Our method has the advantage that it works for elliptic
operators of any order (even with variable coefficients in the principal part),
perturbed by operators of lower order with locally unbounded coefficients.

The proof of the unique continuation property given in this paper is based on
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Carleman's remark that the problem can be reduced to that of proving an
inequality. We shall present his idea as a lemma, extracted, together with its
proof, from the proof of Theorem 8.9.1 in Hörmander [7]:

Lemma 1. Let L/cR" be open and let P:H£c(U)->Lfoc(U) be a linear, local
operator (i.e. supp Pu <= supp u for any u). Let ef> : fJ^R be a continuous function
such that there exists a function e : (T, °°) -h> (fj, oo) with e (t) —» 0 for t -» oo and an
integer j e [0, m — 1] with the property: for any v e Hff(U) and any t> T:

l \\e^D"v\\LHu)^e(T)\\e^Pv\y(u) (2)
l«l*i

Let mgH1oC(L/) be such that \Pu\<kzZ\a\&,-\Dau\ (a.e. in U) for some constant
k < oc. If x0eU and u is zero in the intersection of a neighbourhood of x0 with a
neighbourhood of the set {x e U \ ef>(x) 3= ef>(x0), x f- x0} then u is zero in a neighbourhood

of x0.

Proof. Let ea I/\ supp u, it is an open subset of U such that x0e <ö n U and
u | ea 0. Let U0 be a neighbourhood of x0 in U such that u is zero in the
intersection of U0 with a neighbourhood of {xe U\ cf>(x)^ef>(x0), x^x0}. It
follows that if xeU0, <f>(x)^tj)(x0) and x^x0, then xew. We choose an open
neighbourhood V of x0 such that Vc[/0 and 6eC%(U0) with 0| V= 1; we
denote v 6u eH?(U). Then:

\\e^Pv\\LHu)^\\e^Pv\\LHv) + \\e^Pv\\

^k X He^D^ll^v) + ||eT*Pü|UlAV)

since v u on V. Hence:

(l-fce(T)) I \\e^Dav\\LHu)^e(r)\\e^Pv\\LHuxv)

If x<£ V and x e supp Pu, then xeU\w (since P is local) and x^x0, so ef)(x)<
ef)(x0). But U\ V) fl supp Pv is compact and cf> is continuous, thus there exists
e>0 with the property <p(x)< tf>(x0)- e if x (U\V) nsupp Pv. Let UE

{x e U | d>(x) > ef>(x0) - e}:

(l-ke(r))e^^-^l\\D"v\yiUt)
\sx\=Sj

^(l-ke(r)) I \\e^Dav\\LHu^e(r)\\e^Pv\lHu^v)

«8(T)e^(^-)||PU||L2(u)
But PveLfoc(U) and has compact support (P being local), therefore ||Pu||l2<i/)<0C-
We make t-^oc and get ||u||l2(u«) 0. Since UE is a neighbourhood of x0, we
obtain the result. Q.E.D.

2. The estimates

The purpose of this section is to improve the estimates given in Theorem 2,
Appendix 1, in the case P A. The ideal would be to have these estimates with
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m —5 5 replaced by 2. But this is impossible, as Theorem 1, Appendix 1, shows.
However, the following lemma indicates that one could be able to obtain better
estimates 'in one (and only one) direction'. In this section U will be an open,
bounded subset of R", n 3= 2, and eh : U^R a function in C°°(U) (see Appendix 1)
such that grad c^(x)^0 for any xe If.

Lemma 2. Let Q be a first (resp second) order differential operator in U with
continuous, bounded functions as coefficients. If there is p>\(resp p> —3) such
that for some constants c, t0eR and any ueC^(U), tS=t0:

T*||Q(eT*H)||*£c||eT* Au|| (3)

then there is A : U-^C (resp A; : U.—*C, j — 1,..., n) such that Q £"=1 A(x) öj<£(x)
Dj + zero-order term (resp Q X"k i ^j(x) dkef>(x)DjDk + lower order terms).
Moreover, if p > 1 (resp p > 0) fhen À 0 (resp kl¦ 0, / 1,..., n).

Proof. We follow Hörmander's proof of the Theorem 8.1.1. from [7], thus we
will not give all the details. Let xQeU; we can suppose x0 0 and </>(0) 0.

Denote N grad d>(0)^0, take any £eR" with |£| \N\ and £N 0 (scalar
product in R") and choose co e CAR") such that &>(0) 0 and grad eo(0) Ç+iN.
It follows that cp(x)-lm eo(x) quadratic form in x + 0(|x|3) for x—>0, in particular

limT^„ t((^(t"1,2x) - Im w(r1/2x)) exists, uniformly in x if x runs over a

compact set. Suppose ipeCY(Rn) and T is big enough, then take u(x)
eiT™(xV(V^x) in (3). Since D,eÎT<u eiva(Ds, + tô,o), if Q %a]&2 aJx)Da, we
obtain:

I aa(D + Tgrad(w-^))>(V7-)
|a|«2

r(d> — Im co) t (D, + x ôyw)2^(Ar

Now, make the change of variable x r~1/2y and then let t^°o. Taking into
account that (grad to(0))2 (£- iN)2 0, it follows that we must have
£"=1 fly(0)^ 0 (resp X|c 1=2 flQ(0)^" =0), if Q is of the first (resp second) order
(see Hörmander, loc. cit., for details). In the first case, clearly we get a(0)
(fli(0),..., an(0)) A(0)N. Let us consider the second case, with a slightly
changed notation: Q —E£k i ajkDjDk +lower order terms. We have obtained
Z"k i aìkiQ)èr£k =0 f°r any ?êR" orthogonal to N. We can suppose ajk akj.
Clearly ££k 1 (Re ajk(0))^k 0, £,%_, (Im a/k(0))^k 0. Let A (Re a/k(0)) be
considered as a selfadjoint operator in R". Then (Ç, At]) 0 for £, 17 e R" such that
<£N) <t},N) 0. It follows easily that there is ?eRn such that Reaik(0)
ljNk + lkN,. Similarly for Im ajk(0), and we finally get a,k(0) l(Ay(0)Nk +Ak(0)N;)
for some (A,(0), A„(0))eCn. But then:

I ayk(0)D;Dk= I A,.(0)NkD,Dk
j,k l i,k l

The fact that we can not have p > 1 (resp. ^ > 0) unless a;(0) 0 (resp fl,k(0) 0)
is also easily shown. Q.E.D.

Our next purpose is to show that one can effectively obtain the best possible
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estimates permitted by Lemma 2 and Theorem 1 from Appendix 1. It will be
convenient to express these estimates in terms of the operator:

P
2\|gradd>| |grad<M/ 2 fa l|grad <f>\U> +U>

|grad ef>\) W

considered as a (symmetric) operator in L2(U) with H].(U) as domain.

Theorem 1. Let U <= R", n > 2, be a bounded, open set and ef> e C°( Ü) a real
function such that grad eh(x)^0 for any xeU. Then the following assertions are
equivalent:

1) For any x e U, È, e R" such that £ • grad (x) 0 (scalar product in R") and
||| |grad ef>(x)\ we have:

n

I diök<Mx)(^ + id)<Mx))(4-iok<Mx))>0 (5)
i,k=l

2) There are constants c <oc, t0 e R such that for any real s e [0, 2], u e H2(U)
and t^t0:

Yl2-S ||e*u||H, + ||p2(e*u)|| + T||p(e*u)|| + t HpD^iOHc He* Au|| (6)

Proof. Each differential operator P with coefficients in C°(L7) will be considered

as an operator in L2(U) with C£(U) as domain; the restriction of its adjoint
(in the Hilbert space sense) to CÔ(U) will be denoted P* and Re P ^(P + P*). If
Q is another such operator, then P^Q means ((P-Q)v, u)5=0 if veC%(U).

Let (£>j be the operator of multiplication by djd> in L2(LT) and A, Dt. + n<bj.
Clearly e^D, A,eT*. If A2 X,"=1 A2, then 4) of Theorem 2, Appendix 1, gives:

t3/2-*||o||h^c||A2o|| (7)

for some constant c and any s e [0,2], t^t0, »eQ(U). From now on we shall
denote by the same letter C all the constants. We show now that if P0, Pl2_- • •, P*
are differential operators of orders 0, 1,..., 4 with coefficients in C°(U), then
there is a constant C such that for any t3=t0:

t T3~KRePk^cA2*A2 (8)
k=0

It is enough to consider Pk=fDa with |a|= fc. Let ß, yeN" such that |ß|, |y|«£2,
a ß + y. Then if ue C£(U):

Y'k \(fDav, o)| T3~k |(D*o, Dp(/o))|^t3/2-w limoli • T3/2-|ßl ||Dß(/o)||

«c ||A2o|| • c \\A2v\\^c(v, A2*A2v)

(where we have used Leibniz formula) which proves (8).
We shall use vectors whose components are operators, with the usual rules

for multiplication, etc. For example: D (Dx, ...,Dn), * (*i, • - ¦, $„), $>D

ZYi^Pr etc- Then A2 (D + ìt<£)2 D2-t2#2 + ìt(<I>D + D<I>). Let a
OD + D<I>, it is a symmetric operator in L2(U) with C%(U) as domain. Since
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A2=D2- t2*2 + ha, A2* D2- t2*2 - ha, we get:

A2*A2 (D2-T2*2)2 + T2a2 + ri[D2, a]-r3i[*2, a]
5* (D2 - t2<D2)2 + T2a2 - cA2*A2

where we have used (8) and the fact that [D2, a] (resp [<I>2, a]) is a second (resp
zero) order operator. Thus:

<A2*A2&(D2-T2<D2)2 + T2a23T2a2 <9>

Let b *D and L2 £/<k (D,*k - Dk*y)2. One can easily obtain the following

relations:

D-e\f2D b*b + L2

D ¦ *2 ¦ D |*| • D2 • |*| +1*| div grad |*|
which imply:

D2 |*|-1b*fe|*|-1 + |*|-,L2|*| '-l^-'Al*! (10)

The interest of this decomposition is that the first term contains only derivatives in
the direction of grad ef>, while the second contains only derivatives in directions
orthogonal to grad ch ; the third term is unimportant, being of zero order. From
(10) we get (with the notation [A, B]+ AB + BA):

(D2- Yep2)2 [(|*r L2 |*A - t2*2)+1*!"1 b*b I*!"1 -1*!"1 A |*|]2
(I*!"1 L2 l^-'-T^^ + d*!-1 b*b |*|-1)2 + (|*|-1 A |*|)2
+ [|*|-1L2|*|-'-T2*2, |*|_1 b*b |*|_1]+

-[|*|_1 L2|*| '-t2*2, 1*1-^1*1]+
-[|*A b*b\®\~\ I*!"1 A|*|]+

Using (8), we obtain that the last two terms are 3= - cA2*A2. On the other hand:

T2[*2, |*|^ b*b | *|-']+ t2(|*| b*b |*|-A I*)"1 b*b |*|)
Y(2b*b + (terms of order «1))

=£2T2b*b + cA2*A2
3T2a2 + T2 (terms of order «1)
+ cA2*A2^cA2*A2

where we have used (8) again and the second inequality from (9). Accordingly:

(D2-T2*2)2^(|*|-1L2|*|-,-T2*2)2 + (|*|-1b*ò|*|-1)2
-Kl*!-1 A |*|)2 + [|*r1 L2 |*|-\ |*|-] b*b |*|-]]+ -cA2*A2

We use this inequality and (9) in order to get:

cA2*A2^(|*r' b*b |*|-')2 + [|*|-] L2 |*|A \®\~lb*b |*|-']+ (11)

But:

(I*!"¦' b*b |*|- ')2 b*b |*|-4 b*b + (terms of order «3) 3 A(b*b)2- cA2*A2
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where A =inf |*|^4>0 is a strictly positive constant. And:

tl*!"1 l2 |*|-\ I*]-1 b*b |*|-x]+ 21*]-1 b* |*rx L2 |*|-x b i*)-1
+ (terms of order =£3)

>2 |*|^ fo* |*|_1 L2 I*!"1 fo |*|_1- cA2*A2

Then, from (11):

cA2*A2^(fo*fo)2 + |*|-1 fo* |*|-x L2 |*|-x fo |*|-1&(fo*fo)2 (12)

since L23=0. Applying (10) again we obtain

l$|-x b* l*!"1 L2 |*|~x fo |*|-> i*!"1 b*D2b l*!"1 - |*|-x fo* l*!"1 fo*fo

• |*|_1 fo l^-AI*!"1 b* |*|-x A 1*1 fo |*|"x
fo* i*!"1 d2 |*|-x fo

- fo*fo |*|"4 b*fo +(terms of order «3)
b*D ¦ |*|"2 • Db-b*b |*|"4 fo*fo

+ (terms of order «3)
2* Jlb*D2b - p(b*b)2 - cA2*A2

where p =sup |*|~4>0. Using (12) (two times) we finally get:

cA2*A2»(b*b)2 + b*D2b (13)

Notice that a 2 |*| p + (terms of zero order), thus:

Ya2 4t2p |*|2 p + T2(terms of order *£l) S* 4,lA/2t2p2- cA2*A2 (14)

because of (8). Also, since b |*| p + (terms of zero order):

(fo*b)2 + fo*D2fo p2 |*|4 p2 + D-p2-D + (terms of order «3)
^p~1p4 + D-p2-D-cA2*A2 (15)

From (9), (14), (13) and (15) we get:

cA2*A2 ^p4 + D-p2-D + Yp2 (16)

This is equivalent to: for any veC^(U) and any t3=t0:

\\p2v\\2+t\\pD,v\\2 + r2\\pv\\2^c\\A2v\\
i i

Taking o e^u, u e CÔ(U), we obtain the part of the inequality (6) which is not
given by Hörmander inequalities (Theorem 2, Appendix 1). Q.E.D.

Remark. By Lemma 2 and Theorem 1 from Appendix 1 show that the
inequality (6) cannot be improved from the point of view of the powers of t and
of the differential operators which appear in the left-hand side.

We shall use this theorem only in the case of radial functions eh d>(|x|). It is
clear that in this case p becomes the radial momentum (x (xx,..., xn), Xs

operator of multiplication by x,):

1 Ì x ^ ^ x\ d n-l\ .„„,
2 \ x \x\/ \dr 2r I
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Corollary. Let l/cR", n3=2, be a bounded, open set, such that O^Ü. Let
a inf {|x| | x e U}, b sup {|x| | x e U} and let ef> : [a, fo]^»R foe a function of class
C°° such that ef>'(r)^0, Vre[a, fo]. Then the following statements are equivalent:

D

4>"(r)+^-^>0 if re[a,b] (18)
r

2) There are constants c<^, t0 eR such fftaf /or any s e [0, 2], u e H2(U) and

t3t0:
t3/2-s ||e*U||H, + ||p2(eT*u)||+ £ ||pDJ(e*u)||+T||p(e*u)||Ssc||e*Au|| (19)

;=i
where p is the radial momentum (17) and we haue denoted by ef> the function
U3x^ch(\x\) also.

Proof. We have only to see what condition (5) looks like in this case. Since
grad <M|x|) $'(l*l)(x/W) the conditions on | are £ • x 0 and |£| |d>'(|x|)|. Then:

d, dkef,(\x\) ep"i\x\) j^ + 4>'(|x|) (fe-j^
and the left member of (5) is:

Jt,(x grad eft)2 ef>' (x grad (f>)2
4> r-[5 +,-; ^+igrad<^2-^ —g|x| |x| \x\

ef>"(4>')2 + f-.2((f>')2-f-AeP')2
\x\ \x\

U" + ^W')2 Q.E.D.
\ x '

3. The main results

This section contains two unique continuation theorems: the first is based
only on Hörmander's inequalities and gives an 'almost good' result for N-body
Schrödinger operators (cf. Corollary 2 to Theorem 2). The second theorem, which
is based on inequality (6), improves this result in the case of one body hamiltonians.

Theorem 2. Let flcR" (n &2) be open and connected and let V, W,,..., W„
be some complex, measurable functions on fl such that:

For each U<sfl (i.e. U open, with compact closure U, and Ü<=fl)
multiplication by V (resp WJ, ; 1,..., n) is a bounded operator from (20)
H3/2(C) (resp. HX/2(L/)) into L2(U) with norm convergent to zero when
the diameter of U goes to zero.

Then, if iPeHfoc(ÇÏ), (-A + XJL, WjDj + V)dJ 0 on fl and t//(x) 0 on an open,
non-empty subset of fl, it follows that t// 0.
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Proof. Let P -A+£;=1 Wp + V, such that P:Hfoc(0)^L?oc(il) is linear
and local. Let ep be any function satisfying all the conditions of Theorem 1. We
denote by N(U) (resp N^U), j 1,..., n) the norm of the operator of multiplication

by V (resp W,) defined on H3CI2(U) (resp H\I2(U)) and with values in L2(U).
Then, if veH2(U):

n

||cT*Po||>||eT* Ao||- X lle^WjDj.oll-He""Vu||
j=i

Hk* Ai)||- t N^lDWe^DpW&n-NdDWe^vWHS«
j i

n

3=||eT* Ao||- X N,(L/)(||eT*o||H3/2 + cT||eT*o||„.«)
i i

-N(l/)||eT<,,o||H3«^ l-c(Ì NjdJJ + NfU)) ¦ II^wIIh»
L \J=i /J

where we have used (6) for s \, §. Accordingly, if L/ is small enough we obtain:

||eT*i>|| + ||eT* grad o||=sct-1/2 ||eT*Po|| (21)

for any t2=t0, veHl(U) (see Theorem 2, Appendix 1).
From now on the proof of the unique continuation property is standard; we

give the details for completeness. It is enough to prove that if îfi is zero in some
open ball B (eft, then i// is zero in a neighbourhood of B (ft being connected). Let
x0 be a point on the boundary of B. Take another ball B0 such that B0<=B,
x0eB0 and radius (B0)< radius (B). Take the center of B0 as origin of the
coordinates in Rn. Let ef>:(0, oo)—»R be a C", decreasing function such that
ef>'(r) ± 0 and ef>"(r) + [ep'(r)/r]>0, Vr>0 (for example ef>(r) r~ß, ß >0). Let U be
a small, open neighbourhood of x0, such that (21) is valid (we have the corollary
of Theorem 1). Since ip is zero in B, which is a neighbourhood of the set
AAi-Ko) {x | ep(x)^(p(x0), x^x0}, Lemma 1 implies that tp is zero in a
neighbourhood of x0. Q.E.D.

Conditions which assure the validity of (20) are given by Schechter [13]. For
example:

Corollary 1. Let V, Wx,..., Wn eL,2oc be such that for any (small) compact
K<=Q the expressions (j 1,..., n):

sup
yeK J

sup
yeK

|V(x)|2<4">(x-y)dx;
(22)

\Wi(x)\2eo\n)(x-y)dx

are finite and go to zero when the diameter of K goes to zero (where cDxn)(x) |x|* n

for any ns=2, and eaf\x) 1 ifn 2; =|ln|x|| i/n 3; |x|3~" i/n-3=4). Then all
the conditions of Theorem 2 are verified.

Proof. We use Theorem 7.3 of Schechter [13], more precisely the inequality
(7.14). If Umü, and U=K, then the norm of the operator V| U:Hll2(U)-+
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L2(U) is smaller then the norm of the operator VXk :H3/2(R")^L2(Rn) (*K is
the characteristic function of K). The norm of this last operator is dominated by
CN3(Vxk) (Schechter's notations) where C is a constant depending on n only.
But (B(y;l) {xeRn|x-y|<l}):

N3(VxK)=sup
yeR"

|V(x)|2o4n)(x-y)dx
KnB(y; 1)

Thus, if KE ={x\ there is zeK such that |x-z|<e}, we get

H3(VXK)^sup V(x)\2w3n)(x-y)dx
yeK, JK,

+ sup \V(x)\2oj3n)(x-y)dx
y£K, JxnB(y; 1)

In the integrand of the second term eo3n)(x — y)=sC(e), where ei-»C(e) is a
decreasing function near zero; therefore the second term is bounded by
C(e) ||V||L2(K). The first term is smaller then 317 (choose some tj >0) if diameter
(KE)=s2e + diameter (K)<5(tj). Fix e>0 such that ê<35(ti) and then take
diameter (K) < 8(t]) - 2e and such that C(e) \\V\yiK}<^r\. It then follows that
N(V^)^i|. The case of W, is treated similarly. Q.E.D.

Using Sobolev inequalities we see that (22) are verified if Wj e Lf0"(ft) (any
n3=2) and: VeLf0"/3(ft) for n3=4. In the case n 2, 3, one must use Holder
inequalities, which give VeLfoc(d) for n 2 and VeL?oc(ft), for some q>2, if
n 3. We see that Hörmander's inequalities do not give a good result in any
dimension, the result for n 3 being however, 'almost good' (the potentials
VeL2oc(R3) constitute a standard class in the quantum mechanical scattering
theory). In the following we shall improve the preceding results. Notice, however,
the following consequence of Corollary 1 (use Lemma 7.7 of [13] in the same way
as in the proof of Lemma 7.4, [13]):

Corollary 2. Let Vj,- e L?oc(R3) for some q>2, i, j 1,..., N, and let:

H=-Ìa:+ l Vfâ-x,)
i l lsKjsN

where Af is the laplacian with respect to the ith variable x; e R3 in the cartesian
product R3N=R3x • • ¦ xR3. Then: t//eHfoc(R3N), Hip 0 and t//(x) 0 on an
open, non-empty subset of R3N, imply i// 0.

The following theorem improves, in a certain direction, the result of Theorem
2:

Theorem 3. Let ftcR" (n3=2) foe open and connected, let VeL,qoc(ft) for
some q^2 with qs=(2n-l)/3 and Wt,..., Wn eLforx(ft)- If if»eHj^ft),
(-A + £"=1 WPj + V)if) 0 (as a distribution on ft) and i//(x) 0 on an open,
non-empty subset of ft, fhen i// 0 on ft.

Proof. From the regularity theorem for elliptic equations it follows that
ip e Hfoc(tl). Then, as in the proof of Theorem 2, we see that it is enough to prove
the inequality (21) for U of the form U= Ua,b={xeRn |a<|x|<b}, where 0<
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a < b < o° and b - a is as small as we want, and for d> having the properties stated in
the corollary of Theorem 1. Let p be defined by (17), fix some 0< a0< b0<oc and
denote UaoM by U0.

It follows from the lemma proved in Appendix 2 that if

111 / 2n-l\
7 +

q 2' <J&max^2,—— j, « 2,3,4,...

then there is a constant c<oo such that for any i)eQU0):

Nli/(u0)^c(l|t,|H3«+I ||pD,o||) (23)

Taking U= U^b, a0<a<b<b0, we get for any u e Cq(LO:

||eT*VuH||V||L,(u) ||eT*M||L.(l;o)^c ||V|L,(u)(||eT*U||H3«

+ I \\pD,(eT*u)\\ « c || V|Uu) lkT*Au|| (24)

where we have used (19) with s=|, the constant c being independent of U
(cl70), t(>t0) and u(eQ(L0).

Applying again the Lemma from Appendix 2 we see that, if
1 1 1

r 2n-l~2'
then there is a constant c<oo such that for any oe C£(U0):

lkl|L'(i7„)«c(||o||H.« + ||po||) (25)

Thus, if U is as before and u e C£(U):

lle^W^ull^ll Wpi(eT*u)\\ + cr ||V^eT*w||

«IKI|l-j(u) (||D;(eT*M)||LWo) + CT \\e^u\\LWo))

^c||^||L^.(u)(||D;(eT*M)||„.ra + ||pDy(eT*u)||

+ T||e^u|U + T||p(eT*M)||)

55 c libili,2—l(u) 0 ||eT*u||H./2-r-||eT*M||H3/2

+ T||p(eT*M)|| + ||pD;(eT*M)||)«c||^||^-j(U)||eT*Au|| (26)

where (19) was used again and the constant C is independent of U', t, u as before.
Using (24) and (26) we obtain (P is the same as in the proof, of Theorem 2):

n

||eT*PU||3:||eT*Au||-X lle^WjDj-uHk^Vull
j i

^(l-c t l|W;||L-.(u)-c||V||L,(u))||e^Au||
\ i /

for any weC^(fJ) and t3=t0. Accordingly, if fo-a is small enough, we get (21),
which finishes the proof. Q.E.D.

Remark. It is easily seen that in the above proof there is no need to put a
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restriction on the size of U if q>(2n-l)/3 in the case of V and

1 1 1

- + >-
r 2n —1 2

in the case of Ws. In particular, for n 3 one obtains the following nice inequality:

Corollary. Assume that all the assertions of the corollary to Theorem 1 are
verified and n 3. Let VeL2(U) and Wx, W2, W3eLr(L7) for some r>5. Then
there are constants c, T0eR such that for any s e [0,2], t3=t0, ueH2(U):

t3'2-* ||e->u||H, + ||p2(e^)|| + ||p • grad (e"»u)||

+ T ||p(eT*u)||«c ||eT*(-A+ Wgrad+ V)u||.

4. Appendix 1: Hörmander's inequalities

In this appendix we shall state some of Hörmander's results. The first
theorem is a slightly strengthened form of Theorem 8.1.1 from [7] and, in fact,
follows from the same proof. The second is essentially Theorem 8.3.1 from [7].
Let ftcR" («s= 1) be an open, bounded set and P Z|«|sm a0l(x)DO! a differential
operator of order m such that aaeL~(ft) for any |oj=£m and aa e Cx(ft) if
|«| m (Cfc(ft), fc eN or fc oo; is the set of functions on ft which can be extended
to functions in Ck(R")). Let Pm(x, ^) I]ahm aa(x)£,a, xeft, £eC"; we use the
notation

P\^(x, Ç) ^- Pm (x, |) ; PmJ (x, f j- Pm (x, £)
Hi dx,

Theorem 1. Suppose that for some function ep : ft—»R of class C2, some integer
/e[0, m] and some real number p there are constants c, r0eR such that for any
u e CoXft) and any t & t0 :

l«l=i«!
* X ^-||eT*D"w||2«c||eT*Pu||2

Then p.^m—j. If, moreover, there are xeft and £eRn such that grad ep(x) =£0
and Pm(x, Ç+i grad ep(x)) 0, then p-^m — j—^. Suppose now that the inequality is

true for p m—j—\. Then, if xeft, £eR", <reR\{0} are such that Pm(x, £) 0,
where Ç= Ç + icr grad ep(x), we have:

\C\»\<t\*»-*-»**2c\ I P^P%(x,öp¥(x7c)
L,,k i o^j e)Xk

+-t lm(Pmrk(x,C)P\V(xTÏ))\
eJs, s Jk l

Theorem 2. Assume P„j_(x0, D) elliptic,_ for any x0eft, i.e. x0eft, £eR_",
Pm (xo, £) 0 => £ 0. Let ep : ft^ R, d> e C°(ft), such that grad d>(x) ^ 0 /or xeft.
Then the following statements are equivalent:

1) For any xeft, £eRn, aeR\{0} such that Pm(x, £) 0, £ £-Ha
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grad ep(x), we have:

£ Y^T- pm (*, OK\x, 0+- t Im Pm>k(x, OP(mk,(x, £) > 0
/,k=i e)XsdXk a k 1

2) There is an integer j e [0, m] such that for some constants c, r0eR and any
weQil), t3=t0:

Tm"'-1/2 I ||eT*Dau||s;c||eT*Pu||
l«h/

3) There are constants e, t0 e R such that for any t 3= t0 and u e C^(ft) :

X Tm'|o,hl/2||eT<f>Dau||«;c||eT,*Pu||

4) There are constants c<°o, r0eR such that for any real se[0, m], any
u<=H™(£l) and t3=t0:

||eT<(>u||H!=scri+a/2)-m ||eT*Pu||

We must prove only 3=^4. Recall that for ueL2(R") Ff°(R") and seR:

(i+\e\y\û(è)\2dt

where û is the Fourier transform of u; ||u|| ||u||H°. The space H*(ft) is defined in
the introduction. Clearly:

ll,,II <lli,IW' Hull1"-*/'

for any u e H^(ft) and 0 « s « t, which shows that it is enough to prove the
inequality from 4 for s 0 and s m. In order to do this, we use the inequality
from 3 and Leibniz formula:

T"l"lD'*(eT*u)= T, "• T-l«.l£>«-ße^ .T)ßu

T-Me**£>au + X 0(i-Hßl)eT*Dßu

Remark. It would be interesting to find a characterization of type 1) for
functions ep which give rise to inequalities of type 4) but with Ts-<m~1/2) replaced
by ts~", a<m-\. An example of such a function for P=-A, is d>(x) ±ln|x|
(cT*(x) |x|±x). It does not verify 1) but it verifies 4) with ts~3'2 replaced by ts_1.

5. Appendix 2: an inequality of Sobolev type

The inequality which we shall prove here is similar to the inequalities which
appear in the theory of anisotropic Sobolev spaces [6]. Let 0<a<fo<oc and
U {x e R" | a < \x\ < b}. We denote by S the surface of the unit sphere in R" and
deo its usual volume element. We introduce polar coordinates p |x| and eo x/|x|,
therefore x>-»(p, a») is a diffeomorphism of U onto IxS, I=(a, fo)<=R. L2(Ix S)
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will be the space constructed with the product measure dp®deo of the usual
Lebesgue measure dp on I and the above measure deo on S. Then the operator
T:L2(U)-^L2(Ix S), (Tf)(p, eo) pln-1),2f(peo) is unitary and TpT1 -i(d/dp) (p
is defined by (17)). The operator TL2T~\ L2 Ii<k(D,Xk-DkX,)2, acts only on
the variable eo, being the usual spherical laplacian. We shall identify p=TpT~A
and L2=TL2T~X. Moreover, we denote by the same letter p the self-adjoint
extension of p (which has been considered until now as defined only on CY)
defined by periodic boundary conditions (one can also work with y/p*p instead of
p, or with the square root of the Friedrichs extension of p2). More generally, if K
is any Hilbert space, then p is identified with the operator p<8>l in L2(I;K)
L2(I)(g>K. Similarly for L2: it will be considered as a self-adjoint operator in
L2(S) (i.e. we identify TL2T"Avith 1®L2 in L2(/x S) L2(I)®L2(S)) and we
shall use its square root A \lL2.

If K is any (separable) Hilbert space, the spaces U(î; K) are well defined,
l=Srsïœ. Let L2(I;K) be the domain of |p|s (s3=0) provided with the graph
norm. Then Sobolev inequalities tell us that L2(I; K)<^Lr(I; K) continuously if
1/r3=|- s, with strict inequality if s 3 (re [1,00] always).

Let K L2(S) and K, be the domain of A' (t 3= 0) provided with the graph
norm. Applying again Sobolev inequalities we get K,<=Lr(s) continuously if
l/r3=ì-r', with strict inequality if t'= \ (t'=t/(n-l); re[l,<*>]).

Let 0«So<S!<oc, o^t0<t1<cc, we want to say something about the
Lr-properties of functions in L2So(I; Kt)r\L2Sl(I; Kte). We shall use freely the
results of interpolation theory as given, for example, in Lions-Magenes [9]. If X,
Y are Hilbert spaces with XcY continuously and densely, then:

L20(I; X) DL2 (J; Y) e Ll(I; [X, Y](si^)/(Sl^o))

continuously, for any p e [s0, sj. In particular:

LSo(I; Kh) fl LSl(I; K,J <=L^(I; K[(si^)/(Si_So)],i+[((i_So)/(Si_So)](o) (27)

continuously if p e [s0, sj.
On the other hand, if l/q + l\r \ and q^max (1/s, lit'), with strict inequality

when the right hand side is 2, then the Sobolev inequalities stated above give:

IMIl-'(IxS) II IM|l/(S) NL'(I) ^ C II IMIk, Wl'(I) C IMIl'CT; K,) ^ C IIUIIl,2(I; K.)

such that L2(I; K,)czLr (Ix S) continuously. Using (27) we obtain for any pe
[s0, «i]:

L20(I; Kh) n Ll(I; KJ <= LA[IxS) (28)

if l/q + l/r | and

^max(I(üZüf,+ÜZio(,
Vp \Si-So Sx~s0

with strict inequality when the right member is 2. Now we shall vary p such as
to obtain a minimum value in the right member. If:

g(p) min (p, ^—£ t\ + ^—- f0)
\ Sx s0 Sx s0 /
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this is equivalent with finding max!oS(1!

sih~ so'o

„ g(p). Let:

fi-t0 >0, ß=-
Sx s0

then g(jLi) min (p, -ap. + ß). Since -as0 + ß t\, if ti^So then maxSoS:KS:Sl g(pS)

g(so)='i- Similarly: -asj + ß t'0, therefore if Sx^t'0 then maxg g(s1)
Sx- If (ó<Si and ti<s0, max g is obtained at the point of intersection of the two
lines p,—>p, and p^-ap + ß. This point has coordinate:

P-m
si'i sYo

- g(M-int) max g(p)
so^M-^Sltt fo + Sl S0

In conclusion, the conditions on q under which (28) is true, are:

n-1 I .„n-11) tx^(n-l)s^q-.
U

strict inequality if
U

2

2) (n-l)sx^t0^>q

3) (n-l)s0<f! and t0<(n

1 / 1
— I strict inequality if — 2
Sx \ Sx

Dsi
1

¦+-
n-1

1
tx h

tx t0/ tx t0

(strict inequality if the right hand side is 2)

1 — fn + -
So

(29)

Now, we go back to Rn, using the remarks made at the beginning of this
section. We state only a weaker result than that which follows from (28), (29).
Clearly ||Tü||L2(i.Ki)=£c ||o||mL0 for any veC^(U). And, for any Hilbert space K
and^any s 3=0, there exists A>0 such that || |pro||L2a.K)3=A ||o||L2(I.K) for any
o e L2(I; K) closure of CÔ(I; K) in L2(I;K). These two remarks give the
following:

Lemma. If U and p are as in the beginning of this section and 0 =s s0 < st < oc,

0^10<ti<oc; and if q is chosen such that (29) is verified, then there exists a
constant c <oc such that for any v e C^(U), with l/r+ 11 q _i.

IMIi/on^c || IpMI^od + c II |p|Slo||„.0,(LT)

We obtain (23) if s0 0, Sj 1, f0 1, fj | and (25) if s0 0, sx 1, t0 0,
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