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On the existence of the wave operator in
relativistic quantum scattering theory1)

by L. P. Horwitz and A. Softer

Department of Physics and Astronomy, Tel Aviv University, Ramat Aviv, Israel

(18. I. 1980, rev. 13. III. 1980)

Abstract. We discuss scattering theory in a covariant relativistic quantum mechanics. The
equation of evolution, with respect to an invariant parameter t, is of Schrödinger form, and potential
scattering theory is formally similar to that of non-relativistic potential scattering. Although an
invariant potential V(x2) cannot be in L2(R4) we prove that fx||Ve~'K°T<p|| dr exists for V bounded and
decreasing fast enough as |x2|—» <*> for every <p in a set dense in L2(R4), and hence the corresponding
(relativistic) wave operator exists.

The dynamical variables needed to describe a spin zero particle are (x, t, p, E)
[1]. They have Heisenberg equations of the form

j-TXlxii)=iVK,xlx] (1)

where K is the generator of motion in i, an evolution parameter (historical time)
needed to order the events along the path taken by the particle in space-time, and

x^ and K are viewed as self-adjoint operators in the Hilbert space L2(R4). The
corresponding Schrödinger equation is [2]

' —=Kl^' (2)
ÔT

where t/>TeL2(R4). We shall assume that

K=jKo+V(x2) (3)

with the Stueckelberg free evolution operator

v PuP* _P2-P2o
K°~2M~ 2M

and the invariant potential V(x2) is a function of x2 x2 - x02 only (ft c 1). In
the presence of an external electromagnetic field, 2MK would have the form
(p'i-eA'i(x))(p(,-eA(i(x)). In this paper, we shall restrict ourselves to the
potential model (3).

') This research was supported in part by the U.S.-Israel Binational Science Foundation,
Jerusalem, Israel.
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The Heisenberg relations (1), with the evolution operator (2), imply that
Qy.pi-ig'"')

dx* P"

tlT dX,,

The central motion of a scattering wave packet is described by the expectation
value of (4). If the motion, as a function of i, brings x* to a region for which V
and its derivatives are small, (p*1) becomes approximately constant. Further
evolution of (f) is therefore proportional (since dt/di E/M) to t. Since t-*±°°
implies t —» ±oo (for E > 0) if these limits coincide with regions where the potential
vanishes, the usual asymptotic condition on scattering, involving limits in t, can be
replaced by limits in t.

This qualitative equivalence is closely analogous to the heuristic observation
that the asymptotic condition in t in the non-relativistic theory is qualitatively
equivalent to an asymptotic condition on the form of the wave function at large
distances.

We shall require that

He-^y^-e-^H^O (6)

for t —» +œ. Hence,

-/><*>=n_* (7)

where, if the limits exist,

il±= lim eiKTe~iK°T (8)

are the wave operators for relativistic scattering theory. We shall formulate the
scattering problem in the following, and then prove that the wave operators exist
for conditions on V which are essentially the same as the well-known sufficient
conditions for the non-relativistic scattering problem.

To formulate the scattering problem [3] [4], let us assume that asymptotically,

the average motion of the wave packet is that of a free particle, i.e., for the
ith wave packet in the incoming beam,

<Xi(T)> (xi(0)) + f-T

0.(t)> <4(0)>.+!j.t
M

The probability for a particle to be scattered into a small volume d4p of
momentum space after a collision is given by

co(d4p^-cPi) d4p\^^ip)\2 (10)

The incoming beam has average momentum p1**, and the wave packets are
initially (at i 0) at a given large distance (in the beam direction) from the target.
Summing over directions transverse to the beam and displacements in time [5], we
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find the number of particles scattering into d4p to be

dTninccoid4p <- <ppT) (11)Kcid4p) YJcoid4p^cf,i)= d2p
t

where

^pT=e-,(p.p-TE)^(p)

and ninc is the number of packets per unit area and time. This integral can
effectively 'cover' a potential V(x2) of the type considered if it falls off sufficiently
fast as a function of x^x^, since such functions decrease rapidly in all directions in
space-time except in a diminishingly small region near the light cone (the overlap
of a wave packet with this tail of the potential decreases in the L2(R4) norm).
Assuming ninc to be constant in a large enough region, the differential cross-
section (p -Jp1) is

-^- (da dE «- d.) J d2PJ dT^ dpp2 |^+T)sca"(p, E)|2. (12)

Defining a 'T matrix' in the usual way [6] from the S matrix associated with the
wave operator (8), one obtains [3] [4] [7]

der r>

,idn,dE^d>) i2ir)5M2^-\Tip^p*)\2, (13)dCLdEy ' ^ v ' \p*

where p -Jp*p^* + E2 ip^p^ is conserved). We remark that da has the dimensions

of area x time (for example, the electromagnetic scattering of a charged
particle on a heavy charged target yields, in lowest approximation, the usual
Rutherford scattering cross-section times what may be interpreted as an interaction

time [4]).
We now turn to the proof of the existence of the wave operator.
A sufficient condition for the existence of the wave operator (8) is that

|Ve~iK°Ttap||dT<oo (14)
T

for some finite T and for <p any element of some dense set in the Hilbert space.
We start with

Theorem 1. The operator p^p^, defined as a multiplication operator in momentum

space, is essentially self-adjoint on espace functions contained in L2(R4).

Proof. Given the set of SP space functions with support in some open domain
of R4, consider the algebra of multiplication operators 0M(R4) which leaves SP

invariant. This algebra consists of those SP« functions which, together with all their
derivatives, are polynomially bounded on all of R4. SP is then an ideal of 0M.

Consider the linear functional I on SP only defined by li<p) J <p d4p for all
cpeSP. Then, l(a<p1 + <p2) ali(p1)+li<p2)', K<P*<p)=*0, and the equality holds if and
only if cp 0. If we define the scalar product on SP by

(taP,ta^)! .(<p*^)VtaP,tafr€^, (15)

the completion of SP under this product is L2iCl), where Q, is the support of SP.
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For each element a of 0M, define the operator A on SP<^ L2 by Aç j(aç) e
SP<=L2, where <p is /'(<p) and /' is the identity map of SP<= 0M onto SP<^L2. Then,
A is densely defined on L2, leaving SP invariant. If a is real, then A is symmetric.
One may verify, moreover, that if aeOM,_then a*a, (l + a*a)_1 and eiaa (for
every real a) are also in 0M. Suppose i/» is in SP^zL2. We shall show that
(f>±eSPcOM exist, for which (A±.)<p±= t/.. In fact, if tj/ (A±i)(p, then i^
(a±i)cp± or

(a* "f i)t/. (a* "f j)(a ± i)<p± (a*a + l)cp±

and hence

<p± ia*a + l)-1ia**i)ip.
Since i/. belongs to the ideal SP of 0M, it follows that <p± are in SP, and hence cp±

are in SP<=-L2. Taking a to be a real polynomial function of the p* e R4, this result
implies that the corresponding operator is essentially self-adjoint. ¦

(16)

Proof, e ,K°T is defined by Theorem 1 and Stone's theorem; the result follows
by application of the Fourier transform

Lemma l.2

/.-•K„T \/ \ e^i(l-')!/4>(y) d4y(c <p)(x) 2(4ttit)
re x2 x ¦ x x2-x02 in the Minkowski metric.

e'e*<pip) d4p. M (17)

J- itv2IAr\ nl ¦*

Theorem 2.

(e-iK°»(x) -^-j-e'W^,
L2 (2it) V2t

i.e., in the L2 sense, as t—»o°.

Proo/. The proof is almost the same as in the three-dimensional case [8],
where now the three dimensional Fourier transform is replaced by the four
dimensional Minkowski Fourier transform. We reproduce the proof here since we
will utilize some of the intermediate steps later. For i fixed the map

VT:<P-7^eix2/4Tv(rf) (19)
(2.T)2 T\2IT

is unitary. It is therefore sufficient to demonstrate the result for (peSP, for
example. We assume that <p e SP in the remainder of the proof. Since

ei(x-y)2/4T_ ix2/4r -ix-y/2r iy2/4T

we obtain

ie~iK^)ix)-iVTç)ix) -^2e^^GTl^y (20)

2) We take 2JV1 1 in the following.
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where the function GT(y) is defined as

GT(y)_(eiy2/4T-l)tap(y).

Then, for «p e _^(|| • || is the L2(R4) norm),

1

(21)

||e-'K°TtaP - VTcp||
(2t)2 G*2i HI<XlH|Gj^J|yMy).2<i4y-*0

as i —> oo.

At this stage, it is possible to estimate the effect of the tails of the wave
function off the classical trajectories using stationary phase approximation [9]
[10].3 In the following, we use direct calculation.

Theorem 3. J£||Ve"~iK°T<p|| di (T finite) exists for V bounded and decreasing
fast enough as x2 —> °° on a dense set in {cp e L2(R4) | <p e L2(R4)}, where L2(R4) is
the Hilbert space of square integrable functions with support in the positive cone.

Proof. Consider the set of states cp with support of <p in the forward cone and
with p23=e>0 (no zero-mass states in cp). Now, calling e~'K°Tcp cpT, we have

|| VcpT|| || V(<pT - VTcp) + VTcp||«II V(<pT - VTcp)|| +1| WTcp||

Consider the last term of (22):

(22)

|VVTcp||2
1

(V(x2))2 d4x
(2r)4 J

|(V(4T2y2))2|tap(y)|2d4y

max (V(4T2y2))2= max (V(x2))2.
2^ta^tataH ta-2>=Gta.2cy^seeX) ' i'*4ii

Next, we consider the first term of (22):

V(cpT - VTcp)(x) r2e^'4V1(x) + f2ix))

where

(23)

/iW Àv(x2)
4T

/2W=Av(x2)

^4y<p(y)(eiy2/4T-i-^)e-,yx/2T

d4ycpiy)l-fe-*-*l2\
4i

and we now choose <p such that y2cp(y)eL2. Hence

llv^-v^HilAii+HM
Consider the second term of (25):

(24)

(25)

1

d4x(V(x2))2
(2t)4

d4z(V(4zV))2

d4yq>iy)e

d4y<piy)e~

- ix - y/2

4t

4t
3) We wish to thank B. Simon for pointing out this possibility to us.
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Suppose now that the support of

1

«Kz) d4ye-z'Vtap(y)
(27T)2 J

is outside of the set z2<e. Then,

„,,_ J2ir)4
' 16t:

(277)

¦max(V(4z2T2))2

2 max(V(4zV))2
16t" z-»e

For the first term of (25),

1

d4z \djiz)\2

d4y |y2<p(y)|2 (26)

IIMI2 d4x(V(x2))2
(2t)4 J

d4z(V(4T2z2))2

d4ye-u-y/2T(eiy2/4T-l--^)cp(y)

max(V(x2))2
xsR4

d4z

d4ye-Uy^eiy^r_l_tJ_\(p{y)

d4ye-izy(e^/4T-l-^)<p(y)

(27T)4max(V(x2))2 d4y iy2/4x_ 1-
4t

<p(y) (27)

We now break the integral up into two regions, the first for |y2/4r|<l and the
second for |y2/4-r|"^ 1. Using the bound |eix -l-ix|=Sx2/(l-x/2) for |x|<2, we
obtain for the first part

,2\
d4y

|y2/4x|<l
(e—l-|-)<p(y)|2^-* jd4y(y2)4k(y)|2 ^ (28)

for cp such that (y2)2cp(y)elfr Using the bound |eix- l-ixj=£ l-t-Vl + x2s-3 |x|2
for |jc| _3= 1, we obtain for the second part

[ d4y (eiy2/4T-l- iy <p(y)
(4t)4 J

d4y(y2)4k(y)|2 4. (29)

for cp such that (y2)2cp(y)eL2. Hence, ||/,|| is bounded by 0(1/t2) if (y2)2cp(y)eL2
and V(x2) is bounded. Gathering these results, we see that the requirements of
the theorem are met if cp(y), y2cp(y). and (y2)2cp(y) are in L2, <p and (y2cp) have
support in the positive cone and vanish on an e-neighbourhood of the boundary,
and if V(x2) is bounded and

max |V(4T2y2)|
y!se>0

is integrable on (T, oo) in t for some finite T. For V of the form |x2|", a > 0, for
|x2| large, integrability requires that o.3*§+5, for some S>0. ¦

Corollary. The wave operator exists for V(x2) bounded and decreasing fast
enough x2 —» ±°°.
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This result can be seen by replacing y2 by |y2| in the appropriate places (to
apply the proof to the space of wave functions with support in momentum space
inside the space-like region;4) in this more general case, V(x2) must vanish for
x2 —> -oo as well.

For the method using stationary phase approximations, one should choose
the open set containing the support of the Fourier transform of the wave function
to be away from the light cone. One can then apply Lemma A.l of Ref. [9].
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