
Some nonstandard quantum electrodynamics

Autor(en): Fittler, Robert

Objekttyp: Article

Zeitschrift: Helvetica Physica Acta

Band (Jahr): 57 (1984)

Heft 5

Persistenter Link: https://doi.org/10.5169/seals-115517

PDF erstellt am: 25.05.2024

Nutzungsbedingungen
Die ETH-Bibliothek ist Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an
den Inhalten der Zeitschriften. Die Rechte liegen in der Regel bei den Herausgebern.
Die auf der Plattform e-periodica veröffentlichten Dokumente stehen für nicht-kommerzielle Zwecke in
Lehre und Forschung sowie für die private Nutzung frei zur Verfügung. Einzelne Dateien oder
Ausdrucke aus diesem Angebot können zusammen mit diesen Nutzungsbedingungen und den
korrekten Herkunftsbezeichnungen weitergegeben werden.
Das Veröffentlichen von Bildern in Print- und Online-Publikationen ist nur mit vorheriger Genehmigung
der Rechteinhaber erlaubt. Die systematische Speicherung von Teilen des elektronischen Angebots
auf anderen Servern bedarf ebenfalls des schriftlichen Einverständnisses der Rechteinhaber.

Haftungsausschluss
Alle Angaben erfolgen ohne Gewähr für Vollständigkeit oder Richtigkeit. Es wird keine Haftung
übernommen für Schäden durch die Verwendung von Informationen aus diesem Online-Angebot oder
durch das Fehlen von Informationen. Dies gilt auch für Inhalte Dritter, die über dieses Angebot
zugänglich sind.

Ein Dienst der ETH-Bibliothek
ETH Zürich, Rämistrasse 101, 8092 Zürich, Schweiz, www.library.ethz.ch

http://www.e-periodica.ch

https://doi.org/10.5169/seals-115517


Helvetica Physica Acta, Vol. 57 (1984) 579-609 0018-0238/84/050579-3131.50 + 0.20/0

© Birkhäuser Verlag Basel, 1984

Some nonstandard quantum electrodynamics

By Robert Fittier, Freie Universität Berlin Fachbereich
Mathematik, D-1000 Berlin 33

(1. XII. 1983; rev. 12. VI. 1984)

Summary. Quantum electrodynamics in 3 +1 dimensions is modified by means of non standard
analysis in practical approximation to the classical development yielding a consistently defined
mathematical theory, avoiding in particular the usual divergence problems. Detailed computations of
vacuum polarization, including the Uehling term, display our methods explicitly.

0. Introduction

Quantum electrodynamics has been beset with the divergence problems from
its very beginnings. Up to now no mathematical solution of these problems has
been found, despite the fact that good numerical results have been given by using
infinite renormalizations. In our mathematical theory we relax the principles of
translation invariance, relativistic invariance, unbounded particle numbers and
gauge invariance by applying a space cutoff, ultraviolet cutoff, particle number
cutoff and using a nonvanishing photon mass, respectively. In distinction to the
work done in constructive and axiomatic quantum field theory we do not remove
the cutoffs in the end (cf. [1] part 6, [2]). In order to keep the damage low we
apply nonstandard analysis, in particular we use an infinite space cutoff, an infinite
particle number cutoff, and an infinitesimal photon mass. This allows us to closely
follow some developments of standard quantum electrodynamics (in '3+1 dimensions')

without running into the usual troubles. The heart of the problem lies in
the initial values (value for time t 0) of the free fields. That's where we apply
cutoffs once and for all. The resulting initial cutoff fields have to be used not only
for the interaction Hamiltonian (cf. 5.2) but also for the free Hamiltonians (cf.
2.15, 3.5, 4.8) and the other field functions (e.g. observables). Our modified
Hamiltonians (free and interacting, resp.) in turn determine the modified time
dependent fields, through Heisenberg's equation (cf. 2.20, 3.7, 4.11 and 5.4).

The use of A. Robinson's Nonstandard Analysis (cf. [3]) is not new in physics
(cf. [4], [5], [6], [7], [8], [9], [10], [11], [12] and [22]). Since it does not seem
necessary to give a full introduction into the subject, we give only a brief account
(chapter I) of it in order to fix the main concepts. Furthermore we introduce the
'normapproximations' of certain distributions, in particular (the nonstandard)
function k(p — q) approximating 83(p — q), arising from a space cutoff by Fourier-
transformation (cf. 1.8, 1.10 and 1.11).

In chapter 2 we first introduce the standard formalism for the Klein-Gordon
field (cf. 2.1 through 2.4) of restmass m. The nonstandard modifications start with
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the introduction of nonstandard extensions M(1)^M(0)^M of the basic standard
model M for analysis (cf. 2.5, 1.1 and 1.13). In view of the photon field (cf.
chapter 2) we fix the restmass m > 0 to belong to M(0) and to be infinitesimal with
respect to the standard model M. The corresponding Fockspace then will be cut
off at some nonstandard particle number w belonging to M0 (cf. 2.6), yielding a
corresponding cutoff-modification of the annihilation and creation operators
a(+)(f). The resulting a^if) thus become bounded operators on the cutoff
Fockspace F*". By choosing tu to be a nonstandard natural number every state of
the original Fockspace F can be approximated infinitesimally closely in Fw (norm
topology).

In order to approximate the operator valued distributions a'J^p) by operator
valued functions we introduce a space cutoff Q in M(1), which is infinite with
respect to M(0) (cf. 2.8). Then we introduce an UV cutoff P>0 which turns the
annihilation and creation operators into uniformly bounded operator valued
functions b< + )(p) (cf. 2.11 and 2.12). First and second order perturbation theory
together suggest that P be standard (or at least finite). Some possible values are
listed in 6.24.

The commutator [b(p), b+(q)] approximates 2cop83(p — q) infinitesimally (cf.
2.10 and 2.13). The modified initial Klein-Gordon field x(0, x) as well as the free
Hamiltonian HfG is defined by means of the cutoff annihilation and creation
operators. The time dependent modified free Klein-Gordon field then has to be
the corresponding Heisenberg field y(t, x)= e"H,K"x(0, x)e~"H,K'', an operator valued

function in t, x over the particle number cutoff Fockspace F°* (cf. 2.20). The
rest of chapter 2 is devoted to infinitesimally closely approximating the contractions

of the modified free Klein-Gordon field.
It turns out that they agree almost completely with the usual contractions of

standard quantum field theory as long as one restricts oneself to consider only
those (O-quasistandard) particle states in F™-1 whose support is inside the cutoff P
(cf. 2.29). The latter could be called the physical states (cf. also 5.13b).

In chapter 3 we develop the free photon field as a massive vector boson field
with an infinitesimal restmass m. We start with the standard Stiickelberg-Coester
type formalism, which is based on the standard KG field. Then we replace the
latter by the modified KG field of chapter 2. Thus the approximations of the
contractions of chapter 2 carry over directly to the modified photon field.

In chapter 4 the standard Dirac field is modified along the lines of chapter 2
and 3. The developments so far are of interest only in view of interactions.
Without such there would be no reason to modify the standard initial free fields.

Chapter 5 introduces electromagnetic interactions by means of the interaction

Hamiltonian H,. Hr arises from the standard interaction Hamiltonian by
using the modified free fields instead of the standard free fields. Thus H, becomes
a bounded operator. One introduces the interaction picture in the usual way
without the existence difficulties in connection with Haag's theorem (cf. 5.5 and
5.6). The Dyson expansion (from time s to time t) turns out to be a well defined
infinite series which even converges (cf. 5.7 and 5.8). The theorem of Wick and
Feynman's rules work in the usual way (cf. 5.9 and 5.10). It turns out that the
modified first order theory of perturbation agrees very well with the standard one
(cf. 5.13).

Chapter 6 deals with scattering of an electron in a (slightly modified) Coulomb
field (cf. 6.1). The first order contribution ('Coulomb scattering', cf. 6.4) gives the
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expected result (cf. 6.6). Also the second order contribution ('vacuum polarization',

cf. 6.7) agrees completely with the standard result (cf. 6.21). This is shown
by explicit computations and approximations. We recover the standard results
without any divergences, the charge renormalization is finite and the Uehling
effect is secured (cf. 6.23). In 6.24 we list some possible values for the UV cutoff
and the corresponding charge renormalization. A further development of the
(renormalization-) theory should determine the UV cutoff as well as the other
cut-offs much more precisely. It seems anyway that a lot more questions have to
be raised than have been answered.

1. Tools from nonstandard analysis

1.1. The basic structure M

One usually does analysis inside a structure M which contains the set IR of
real numbers as subset, and possibly the Cartesian products RxR, RxlRxIR, etc.
Furthermore it is convenient to have iterated powersets ^"(U) as subsets of M the
n depending on the type of analysis in consideration. We do not want to be

explicit about M, just assuming it to be rich enough to carry what we need. For
later convenience we shall also assume that subsets of elements of M are again
elements of M. Examples are the 'superstructures' of [14], pg. 23 or any model of
Zermelo Fraenkel set theory (cf. [15], pg. 1).

In order to apply first order model theory we have to fix a first order
language L with interpretation in M. It is convenient to use the 'full language L^
over MP, having an individual constant for each element of M, a predicate constant
for each finitary relation over M and a functional constant for each function (with
finitely many variables) over M.

The interpretation of these 'constants' over Ml is the obvious one. Thus M
becomes an I^-structure. Notice that quantified variables (in the L^-formulas)
which always correspond to elements of M may actually cover subsets of IR and
more complicated things since -?(1R)!=M, etc.

1.2. A nonstandard model
M over M is (by definition) an LM-structure

such that

a) the embedding McM' preserves the validity of any L^-formula
b) there are elements s of M' belonging to the interpretation of IR in M' which

fulfill s>r for all elements r belonging to (the interpretation of) IR in M.
This means that there are nonstandard real numbers s beating all the
standard reals r in magnitude.

The existence of such models is an immediate consequence of the 'compactness
theorem' of first order model theory (cf. [3], pg. 21).

The elements of M' which belong to M are called standard elements.
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1.3. Internai and external sets

A subset N of some L^-structure $ is called internal if there is an element n
in S such that N {m \ men holds in $}. Then N can be represented by the
element n. Subsets that are not internal are called external. Our basic LM-
structure M is such that all subsets of elements are internal (cf. 1.1). This is not
any more the case for the nonstandard models # M'.

In order to apply (first order) theorems of M to subsets N of M' it is necessary
to know that the latter are internal, because only those are covered by the
variables in the theorems (through the resp. elements rt which represent them).
The subsets N one is particularly interested in are the 'definable' ones, i.e. those
which are introduced through their definitions.

1.4. Definable subsets

A subset N of some element m of an LM-structure S is called definable if
there exists an LM-formula <p(x) having one free variable x (and possibly
additional parameters from iT) such that N {lem \ cp(l) holds in S}.

1.5. Proposition. A subset N of any nonstandard model M' is internal if and
only if it is definable.

Proof. If N is internal there is n in M' such that N {!e« | I en holds in M'}
hence it is definable (by the formula: x e n). Conversely if N is definable such that
N {le m | (f>(.) holds in M'} where <p(x) is the formula i/c(x, ml5..., mr), the
my,... ,mr being all the parameters needed, then one knows that M fulfills the
formula Vx, • • • Vxr Vz By Vx(xe y Ot|/(x, xx,..., xr)Axe z), because in M every
subset of any element z is internal, cf. 1.3. The formula then holds in M' too,
since y is a model for all theorems of M. I.e. in M' we have a uniquely defined y0
such that Vx(x ey0<=><p(x)AX s m). Or y0 {xem | <p(x) holds in JS] N. qed.

1.6. Remark. Proposition 1.5 enables us to carry out nonstandard analysis
by applying the theorems of standard analysis to things that are defined in the
right way, namely according to 1.4.

1.7. Finite, infinite, infinitesimal and qnasistandard elements

Any (nonstandard) real in M' whose (interpretation of) absolute value is
bounded by some standard real (in M!) is called finite. Otherwise it is called
infinite.

Any nonstandard real r>0 (<0) which is sandwiched between every positive
(negative) standard real and 0 is called infinitesimal. In this case one writes r~0.
More generally, x~y means \x — y|~0. This definition should be applied to
complex x, y, too.

If some (nonstandard) complex number z fulfills z~w, where w is standard,
then we write st (x) w. Notice that w is uniquely defined.

For any internal /:IR"-»C in M' belonging to Lc(IR") the Hilbertspace of
square intégrable functions in M', with respect to dnx, we write / 0 if the
L2-norm fulfills ||/||~0. More generally, /~g if /-g~0. Later on we will use the
same notation /~g for /, g belonging to some other Hilbertspaces e.g.
Ll(U3,d3p/2wp) (cf. 2.1).
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In case fk, gk:IRn—»C have an additional parameter fce[Rm we shall write
/k35 gk to indicate that /~g :IRm x[R"-»C as functions whose variables include k.

Any feLc(Rn) is called quasiStandard if there exists a standard /,eLc(R") such
that /«/,.

1.8. Internal norm approximations of distributions

We consider 'function valued distributions' D :Lc(IR3)—*Lc([R3) where
(D(f))(p) J d3qD(p, q)f(q), e.g. D id, D(p, q) 83(p-q). An internal function
K(p, q) with the property

d3qK(p, q)f(q)-^ d3qD(p,q)f(q) for all quasiStandard feL ')

is called an internal norm approximation of D(p, q). Our next aim is to construct a

handy internal norm approximation k(p — q) of 83(p — q). For this we use some
means from the theory of

1.9. Fourier transformations

By abuse of notation we describe Fourier transformations by

fix)~~,—T572 d3peipxf(p) (x eU3 'configuration space')
(2-tr)-' J

fip)= ,r. N3/2 d3xe~ipxf(x) (pelR3 'momentum space')
(2it) J

'distinguishing' the transforms only by the names of the variables x, y, z and p, q, k
respectively. So far we assumed / (and its transform) to belong to y(M3), the
Schwartz space of C°° functions of rapid decrease. The two transformations are
inverse to each other and can be uniquely extended to the whole of Lc(IR3) (cf.
[16] pg. 10 or [17] pg. 153 'Plancherels theorem'). The extensions are still unitary
transformations.

The convolutions f*k for f(p), k(p) belonging to Lc(IR3) is defined according
to (f * k)(p) J f(q)k(p -q) d3q and has the Fourier transform (2TT,3l2f(x)k(x), in
case this product belongs to Ll(U3) (cf. [17] pg. 154/55).

.10. Space cutoff Q

Let fc ::IR3—»C be the function with

f 1

for M-sQ
fc(x) \(2tt)3'2

I 0 for |x|>Q

\X

where Q is some positive infinite real in M over M. It follows that for any f(x)
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belonging to LJ(U3),

(2TT)3,2f(x) ¦ k(x)V1r,__, ,,_, iti*) f0r \X\-SQ
0 for \x\>Q

belongs to Lc(U3), too.
Furthermore, for any standard f(x) in L2([R3) we have (2iT)3/2/fc ~/.
Proof. ||/ — (2"7r)3/2/fc|| j|x .q|/(x)|2 d3x is infinitesimal, because for any standard

f X) there exists some standard Q. X), such that e>)x .0 |/(x)|2d3x>
\:x,0\f(x)\2 d3x.

1.11. Theorem. The Fourier transform k(p) of the space cutoff function k(x)
(cf. 1.10) fulfills \f(q)k(p-q)d3q^f(p) for any quasiStandard f(q) from Lc(U3).
I.e. k(p-q) is a norm approximation of 83(p — q).

Proof. First let f(p) be a standard function from Lc(lR3). Then )f(q)k(p-
q)d3q=(f*k)(p) has the Fourier transform (2ir)3/7(x)fc(x) (cf. 1.0) fulfilling
(2ir)3/2/(x)fc(x)~/(x). Since Fourier transformation is unitary, we get (f * k)(p)

For a quasistandard f — fy + g where /', is atandard and g~0 we have

(/ * k)(p) ((/, + g) * k)(p) (/, * k)(p) + (g*k)(p)
ss(/, * k)(p) since (g * fc)(p) has the same norm as g(x)k(x)

which is bounded by the infinitesimal norm of g.

Sta/,(p) since fy is standard.

s/(p) by definition of /,. qed.

For later use we will insert here a theorem from nonstandard complex analysis.

1.12. Theorem. For any real infinitesimal e >0 we have

f+°° g 'I'll'*!! 'V„) g-'<",JX.l V,,l

— —
2 —dp0~TTÌ

Ita» p -p0 + m -te wp

where peM3. <or : Jm2 + p2. m X) <in<7 standard. p(t. v„. v„<=IR.

Proof. For real m >0 the formula lim, __,,,, i-, =0 holds for

e ""•>'• v-'
',- : ——r;—2—~ dp,, -

J-oc p -po + m -ie
7T(-

in standard complex analysis.
Thus for each standard <5>0 there is a standard f(<5)X) such that

Ve(0<e<e(S)=>|U<S) holds. In M'=>M let e>0 be infinitesimal. Then f<
e(8) for each standard S X). Hence |/f|<-5 for each standard 5>(), i.e. \L\ is
infinitesimal (cf. also [18]). qed.

1.13. Iterated nonstandard models

The nonstandard models M'iM' can be used again for extensions M)"3M'
subject to conditions 1.2a) und b) (with respect to the same first order language
My).
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In the sequel we will use fixed iterated nonstandard models M(d pM(0) pM in
order to modify standard quantum field theory (belonging to Ml).

We will distinguish between
a) standard and O-standard elements belonging to M and M(0) respectively
b) finite and 0-finite elements with respect to Mqj-^M and (V0(1)--1Ml(o)

c) infinitesimal (r~0) and O-infinitesimal (r^O) with resp. to M(1)3M and
M(1)=>M(o).

d) / 0 and /^0 with resp. to M(1)=>M and M(1)=>M(0).
e) /^0 and /fO with resp. to M(1)=>M and M(1)3lMl(o).
f) quasistandard / and O-quasistandard f with respect to M(1)=>M and

fVD(U=>M(o).
g) st x and 0-st x with resp. to M(1)=>M and M(„-^M(o) (cf. 1.7).

2. The Klein-Gordon field

First we consider the standard formulation (cf. [2]).

2.1. Standard Fockspace

The Fock space F is built up in the usual way by means of the 'one particle
space' Fi • Fi is the Hilbert space Lc(lR3, d3p/2cop) where wp
vmz + p2 + pl + p2 (m >0 'restmass'). The 'n-particle space' F„ is the symmetrical

tensorproduct F„: F1(8) F,<8)- • ¦'SlFy of n factors ft. For n =0, the compon-
S ssent F0 is set to be F„: C (complex numbers).

Set F : © F„, the topological completion of © F„. The annihilation and
n 0 n 0

creation operators a and a+ are usually defined as operator valued distributions
over F e.g.

(a+(/)A)(p
1 U1

1 Pn+l)=7TT 2. fiPÙMPl, ¦ ¦ -,)&. ¦ --Pn + l)
vn +1 | 1

2.2. Remark. The restrictions a(f) t F„ and a^(f) \fn-y both are bounded
operators for each n> 1 (and they are adjoint to each other). But a(f) and a+(f)
are unbounded for any /^ 0.

2.3. Commutators

The definitions of a,a+ yield the commutator relations, [a(f), a(g)]
[a+(f), a+(g)] 0 and [a(f), a+(g)] (/, g), (/, g) denoting the scalar product in the
Hilbert space L£([R3, dp3/2cop).

2.4. Standard IClein-Gordon field

The standard Klein-Gordon field <p(t, x), teU, xeU3 is given by

tt)3<216(t.x): -—^ lP(e-'K-»)a(p) + ei(%-px)a+(p))
(2tt) Jri 2cop
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which, for any fixed time t, is an operator valued distribution over the Fock Sfpace
F. Its initial value (t 0) reads

<M0,x) Tr-^ \~(a(p) + a\-p))e>°\
(2tt) J 2wp

The corresponding Hamiltonian Hq° is defined to be

H?G=f^o,pa+(p)a(p).
J 2wp

2.5. Modifications

The standard Klein-Gordon field <£, belonging to the basic structure M, will
be viewed as belonging to the nonstandard models M(0) and M(1) of M g M(0) ç M( u
(cf. 1.13). We will fix now an infinitesimal restmass m >0, belonging to M(0plll.
The further modifications of d> concern the Fock space as well as the annihilation
and creation operators:

2.6. Particle number cutoff

Let w be an infinite 0-standard natural number. We want to replace the

Fockspace F (belonging to M.(0)cMI(1)) by F<°:=©Fn (which belongs to
n + l

M(0)Cta:|yia), too). Thus we have to replace

a(f) by aa>(f): a(f)\¥a':F"'^P"
and

/a+(f) fF*""1 0\
a+(f) by <C(/).= U'' J:F'" F'U-1©FU)^F"'.

Then a„., a^ become operator valued distributions over Fw.

2.7. Remark. a,„(f) and at(f) are bounded operators which are adjoint to
each other, for any jfeL^^U3, d3p/2wp) from M(1) (cf. 2.3).

2.8. Space cutoff

Let k :fR3i)—*(R3d be the 1-internalnorm approximation (in momentum space)
of the Dirac 6-function evolving from a 0-infinite space cutoff Qefy(1, (in
configuration space) according to 1.10 and 1.11 (cf. also 1.13). We set

ai:l(p) := 2cop f^ fc(p-q)aL+)(q):F"-F".
J 2ai„

It follows immediately:

2.9. Remark. ak,w(p) and aku>(p) are bounded operators which are adjoint to
each other (cf. 2.7) and belong to M(1).
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2.10. Commutators

The following relations hold

a) [ak,J(p), ak>a.(q)] [ak (p), alJq)] 0
b) [afc,„(p), atjq)] \ F^1 2wp2wq ¦ Km(p, q)

where Km(p, q): $ d3u(l/2cou)k(p — u)k(q — u) is a 1-internal norm approximation
of 83(p - q)/2ojq.

Proof, a) is obvious.

b) [akJp),aL(q)1\F-l 2ojp2coq f d3u^- k(p-u)k(q- u).

For any O-quasistandard fe Lc,(IR3, d3p) we find

| d3pKm(p, q)f(p) J d3u J <i3p/(p)fc(p - u) y~ k(q ~ u)

^\d3u fi») t - /(fl) _H-—fc(q-u) 7f -—qed.
2<ou 2a.,,

"«"={0

2.11. UV cutoff

Let h : IR3—»IFS be the characteristic function of the ball IKp around 0€lR3 with
large standard radius P (ultra violet cutoff). I.e.

1 for |p|<P
for \p\>P'

Possible explicit values of P will be discussed in 6.23 and 6.24. We set
a(hlSp)'- n(p)aklo(p)- For notational convenience we will write b(+)(p) instead of
atLip)-

2.12. Remark

a) p i-» b(+)(p) : F*" —»F40 is an operator valued function belonging to M(i>.
It is uniformly bounded.
b(p) is adjoint to b+(p) (cf. 2.9).

b) The standard and the modified annihilation operator resp. are very close
in the sense that a(+)(p)A^b(+)(p)A for any O-quasistandard AeF„, n <a>,
which has support in IKp.

2.13. The modified commutators

The following relations hold/because of 2.10

a) [b(p),b(q)l [b+(p),b+(q)l 0
b) [b(p),b+q)]\F-1 h(p)h(q)2cop2œqKm(p,q)

2.14. The initial cutoff Klein-Gordon field x(0, x)

Now we are going to replace a and a* in the initial value of the Klein-
Gordon field (cf. 2.4) by the modified annihilation and creation operators b(p)
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and b+(p) respectively. Thus, the initial cutoff Klein-Gordon field x(0, x:) is
defined to be the 1-internal uniformly bounded operator valued function

J_f £e.»
(2tt)3'2 JL3 2con

x^x(0,x): 7—W2 I ^-Leipx(b(p) + b+(-p)).

2.15. Modified free Hamiltonian

The modified free Hamiltonian HfG is constructed likewise from the standard

free Hamiltonian H0, by inserting the cutoff creation and annihilation
operators into H$G, yielding

HyG=^<Opb + (p)b(p)

2.16. Remark. H*G is a 1-internal bounded operator over the cutoff Fock
space F".

2.17. Remark. Since b(p) and b+(p) are adjoints it follows that HfG is

selfadjoint.

2.18. Definition. Let GcF""1 be the (external) subset consisting of all
O-quasistandard states of F""1 having the property that for all n<o)-l their
Fn-components have support in IKp (cf. 2.11). Furthermore let Gn : GnF„. One
sees immediately that G<=M(d is a subset of the domain of Ho°eM(1).

2.19. Theorem. Any state A e G fulfills HfGA =§= A' where

A'(Pi,..., p„):= X wp,A(Pi' • • • ' Pn)-
i l

Proof. For such a A we get

(HfGA)(Py ¦ • ¦ Pn)

(I a+(q) 1 ^2 hiP)2^Mp-ci)hip)2œp

x f r-^fc(p-r)a(r)A)(Pl ¦ ¦ ¦ pn)
J 2cor I

Z7- -r-h(p)2copk(p~pl)h(p)VrnA(p, py ¦ ¦ ¦ \\- ¦ ¦ pn)
l 1 VII J z

n

'o Z wpA(Pi • • • Pi • • • Pn)
1 1

(For more details cf. [23]). qed.

2.10. Modified Klein-Gordon field

The modified Klein-Gordon field x(t, x) is defined according to

X(t,x):=ei'"?oX(0,x)e-itHr
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where x(0, x) is the initial cutoff Klein-Gordon field of 2.14 and HfG the
modified free Hamiltonian of 2.15. (This definition is obviously consistent for the
value t 0).

Thus xiU x) is for each telRfj) an 1-internal uniformly bounded operator
valued function in x over the modified Fock space F".

In order to be able to compute contractions of x (cf. 2.26) we need the
following result.

2.21. Lemma. For any AeG„, n<w-l, and any g€G, the following terms
belong to G and fulfill

f fEgip)bM(p)A'g\ ^g(p)a<+>(p)A

Proof. Use 2.12b.

2.22. Theorem. For any 0-finite t and any AeG
a) e"H|Kf'A belongs to G and fulfills
b) e"H»';Awe"Hf"A.

The following is an immediate

2.23. Corollary. For any 0-finite t, any geLcflR3, d3p/2cop) which is
O-quasistandard and for any AeG the following formulas hold

a) eitH'°|0g(p)b(p)e-Hf°A-||^e-^g(p)b(p)A

b) e"^a\f^g(p)b+(-p)e-i'M''A{j ffV'%'g(p)b+(-p)A
J lcùp J 2&>p

Proof of 2.23 from 2.22 straightforward, using 2.21. For the proof of
Theorem 2.22 we use

2.24. Definition. U(f):=ei,H'K"e-"H'>';

2.25. Lemma. Ü(t)A =§*0 for AeG.

Proof. By applying 2.19.

Proof of 2.22

a) eilH'"AeG follows from b) since e"H°°AeG
b) We are going to show that

W(f): ||U(f)A-A||27rO for AeG and any 0-finite t,

which yields

c"HKoA_ci«KoA (e«.H«=e-i.Hr _ id)e'«rA=r 0.
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We have

I dW(t) I

—-~ \ \(U(t)A,(U(t)-id)A) + ((U(t)-id)A, U(t)A)
I dt I

-s 21| L/(r)A|| • \\(U(t) - id)A|| < 21|Ù(.)A|| • 21|A|| ^ 0.

W(t)7y0 (for t 0-finite) then follows from the mean value theorem of differential
calculus, qed.

2.26. Contractions

Contractions of operators are defined in the following way. Let A,(x0),
i l,2 be time dependent operators in the following sense A,(x0)
e'x»Hi"'A,e~'x"H'K'' where At is a (smeared) polynomial in b(p), b*(q). The contraction

A,(x0)A2(yo) is set to be A1(x0)A2(y0):= T(A,(x0)A2(y0)) - : A,(xn!A2(y0):
(cf. also [19] p. 83) where the 'time ordered product' equals

-rc a < \a i \. {A,(x0)A2(yo
T(A,(x0)A2(y0)):=|lA2(y0)A,(x0

for x0>y0
for x()<y0

and the 'normal product': A,(x0)A2(y0): arises from A,(xü)A2(y0) by transposing
'annihilation parts' e'x"H^7.(r)e~'x"HiK<' and e'v"H'K"b(s)e~'y"H,K<' with 'creation parts'
e'x«Hì'b+(u)e _X"H'KC' and e'ynHÎ"'b+(u)e~y"H,K' until the latter occur only as left side
factors of the former.

2.27. Definition. By abuse of notation we will write

x(Ux) -^-m\d3px(t,p)e"'x.

For r 0 this implies *(0, p) b(p) +b+(-p)/2cop (cf. 2.14). It follows easily

2.28. Lemma.

U.H».^E)€tu..„».e,...„r^fcfl)e „...ir-1 for Xo>yo
X(xo,p)xiyo,o)= 2W 2c, J

e " ' T,— e ,y"M' ,e'x"H' — e'x"H' for x0<y0
L 2coq 2cop _l

2.29. Theorem. For any 0-finite time values x„ i= y„, any O-quasistandard
/:IR3—>C and for any AeG we have

ioi> |x0—y0|

a) [ d3qf(q)x(x0, p)x(y0. q)Af f(-p) * ' "

- h(p)A
J 2o)p

b) [ d3pf(p)x(x0, p)x(y0, q)A»/(-q)
C

_'
"

- h(q)A
J 2wq

(c/. 1.7 and 1.13 for the meaning of ~p)
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Proof, a) For x0>y0 it follows

j d3qf(q)x(xu, p)x(y0, q)A

c*0HKa/Mp)e-.(Xo-yo)HK<. f dV(q) b+(~q)
ei(x"y")H'K'-

V2wp J 2a...

- e -'<xo-v„>Hr f d.V(q) b^-q) gl(Xii y,])Hr. Mp)\-,X(,„k,.a 2
J 2ojq 2wp /

«ew [ J_£^/(q)e-K(x„-v0)[ò(p) fo+(-q)]e-x„HrA
J 2ajp 2<o.f

-•«.„.x„-y-,. (cf. 2.12b and 2.23b)
/(-p)e J*

"
H(p)A (cf. 2.10b, 2.22a)

2ojp

For x„< y„ we compute the 'adjoint' (f d3qf(q)x(x0, p)X(y0, q))*A along the same
lines, b) is proved similarly, qed.

2.30. Definition. Let

a ta .g'(po + q0)g3(p + q)/r(p)
AF(p0, p, q,„ q): -t 5 ^- 5—:

p -Po+m -ie
where EelR,,, is O-infinitesimal, e>0.

2.31. Lemma. For any 0-finite times x0^y0, any O-quasistandard f:U3—»C,
and any AeG we have

r i 1

a) J A3qf(q)X(x0, p)x(y<,, <?)A

-î- f d3q dq0 dp„/(q)AF(Po, p, q0, «^-«Vo^A

b) J d V(p)^(x(„ P)*(y,„ q)A

f -1- f d3pdp0 dq0/(p)AF(p0, p, q0, q)e-î(poxo+"oV^A
27T J

Proo/ of b)

~ f d3p dp0 dq0/(q)AF(p(), p, q0, q)e-"(poxo^oV^
Z7T J

— / f g-'«.)1*,,-X„)

^— dqo'i(-q)— 2^ 2 • /(-<?)
2ir J q —q0+m —ie

g-io)alx0-y0|

-ofi-q)— h(q) (cf. 1.12)
2œq

which implies the desired result (cf. 2.29b). qed.
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3. The free photon field

We are going to start with the standard Stückelberg-Coester type formalism
along the lines of [20] pg. 136-137 for photons of 'small' mass m >0. The 'gauge'
k will be fixed at A. 1.

3.1. Definition. The Fock space B for the standard photon field will be the
symmetrical tensorproduct B^^^'Fcg/F®,.^ of the Fockspaces 'F=F, /

0 • • • 3 for the K.G. field of mass m (cf. 2.1) with the usual 'indefinite metric'.
Let 'a(p),'a+(q) be the canonical annihilation and creation operators resp.

over B (cf. [20]). Let e°(fc):= l/m(a>k, k)eU4, fcelR3 and let e'(fc), e2(k), e3(k) be
space like real vectors of (R4 which together form an orthonormal and complete
system of IR4 in the Lorentz metric. The standard free photon field is now defined
by

Ap(t,x): —^ [^ t e^(kKe-i(^-kx)xa(k) + ei^'-ta)^a+(k)}.
(2tt)j/2 J 2cok xTo

Its initial value is

Ap(0,x)=—^5 [^ t elkx{e*(k)*a(k) + ^(-k)*a+(-k)}.
'Ztt) J Zu>k x=0

The free photon Hamiltonian is given by

HSh: l,H0 + 'H + 2H0 + 3H0

where

U:=j d3p

2cOp-p
copa+(p)'a(p)

In order to modify the standard Ap(t, x) we view it as belonging to M(1), with the
mass m belonging to M(0)cfVI](1). Then we proceed as in chapter 2.

3.2. The cutoffs

We applv first the particle number cutoff (cf. 2.6) to each tensor factor °F. 'F.
ï, 3F of B, yielding

B4": l^0'F"®2F"O3F" (o.eN(0)).
S s s

Then we define Ka(^\p) according to 2.6, for A =0,1,2,3. The space cutoff is

applied to each *a(+)(p), according to 2.8, for A =0,1, 2, 3, yielding ai^Xp). The
UV cutoff yields Kb(+)(p) Kal£lJ.p), according to 2.11, for A =0,1, 2, 3.

3.3. Commutators

The following holds

[Kb(p),K'b (q)] [*fa+(p), vb+(q)] 0

PMp),xV(q)] rB"-1 -gKk.h(p)h(q)2u>p2a>qKm(p,q) (cf. 2.10, 2.13).
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The restriction f B"-1 in the second equation could obviously be weakened to
\ °F"-1 <g)s 1Fa'^i <8>s 2F'"~1 <8), 3F"_1.

3.4. Initial cutoff photon field

The initial cutoff photon field _B(0, x) over B4<" is now defined according to

Bpv0>*): 7^v372 (f^ I e'kx{ei(kyb(k) + ex(-kn+(-k)}
\Ltt) J Zcx)k K=0

which is a 1-internal uniformly bounded operator valued function in x (cf. 2.14).

3.5. Modified free photon Hamiltonian

Definition of the modified free photon Hamiltonian HÇh according to

Jjph «HKG + 1HKG + 2HKG + SjfKO

where

lHyG J^ copb+(p)lb(p) (1 0,1,2, 3) (cf. 3.2, 2.16).

3.6. Definition. Let DcB"~' be the (external) subset consisting of all 0-
quasistandard photon states A whose components A„(ini„2„_, n0 + n1 + n2 + n3-^
oi-l have support in K^i'XKp'XKpxK^ (cf. 2.11 for kP).

3.7

The modified free photon field Bp(t,x) is defined according to

Bp(t,x):=ei,Hr Bp(0,x)e~i<Hr

(cf. also 2.20).

3.8. Theorem. Any state A °A„o <g)s lA„. <8>s 2An2 <8>s3A„3eD fulfills

'HfA =§=-&,(£ *0'A
where lAni has the variables 'pi>..., 'p„,

Proof. Apply 2.19 to Definition 3.5.

3.9. Lemma. For any lAr,,elD„ <=Bni and any geG! (cf. 2.16) the following
terms belong to D and fulfill

1P~ 8(P)'b(+)(P)'A". * j£f g(p)'a(+)(p)' An,

Proof. Apply Lemma 2.21.
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3.10. Theorem. For any 0-finite time t and any AeD
a) ei,H?A and eitH^A belong to D
b) e"H«hA^ei,HrhA.

This follows immediately from 2.22. In the same way one generalizes the
remaining definitions and assertions of chapter 2. Then Lemma 2.31 carries over
to

3.11. Lemma. For any 0-finite times x0 and y0, any O-quasistandard /:JR3—*
C and any AeD we have

a) j d3qf(q)BPL(x0, p)Bv(y0, q)A

^ ±- f d3q dp0 dq0/(q)(-g(iJAF(p0, p, q0, q^-'^^-'A
Z7T J

b) |d3p/(p)B|x(x0,p)Bl,(y0,q)A

* hr I d3p dPo dq°/(pK " g-)Mp°' P' q°> q)e ^(P"X"+VoV")A

where AF is defined according to 2.30.

4. The free Dirac field

4.1. Standard Fockspace

The Fockspace A of the standard Dirac field is the iterated (partially
antisymmetrical) tensorproduct A (H <8>a H)<S>(H <8)a H) where H ©~=0Hf
is the completed direct sum of the n-fold antisymmetric tensorproducts of
H, I.c(U3, d3p/2(l.,), n„ JM2 + p2, where M is the fermion restmass.

4.2. Standard free Dirac field

The standard free Dirac field is defined for any telR as operatorvalued
distribution in x

^(f'x): (^P \m~ "ï i^i(n't~PX)i"siP))>iP) + eun',-px\vs(p)Vc+(p))

for r- l,2,3,4 where sa(p), sc+(p) are the usual electron annihilation

and positron creation operators (s=spin) resp. and us(p), vs(p) are the
canonical spinor functions (cf. [20] 2-37).
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4.3. Standard free Dirac Hamiltonian

The standard free Dirac Hamiltonian H\\x is

H" \m °p E isa+ipYa(p) + sc+(pYc(p))

4.4. The cutoffs

First we apply a particle number cutoff fìeN,0) (cf. 2.6) to each tensor factor
H of A and to its annihilation and creation 'operators'. This gives rise to the
modified Fockspace A4n and to ^^^p), ±la^(q), =tlcn(p), *lCn(q). Then we apply
a space cutoff k and a UV cutoff h according to 2.8 and 2.11 in each tensor factor
H", yielding

s5(+)(p): sa^n(p)

sd(+)(p). sc(h?n(p) (s=±l)inA4n

4.5. Remark

a) LR39p^sb(+)(p):A4n^A4n and q>-*sd(+)(q): A^^A4" are 1-internal
operator valued functions (i.e. belonging to Mid)). They are uniformly
bounded.

b) Furthermore sb(p) is adjoint to sb+(p) and sd(q) is adjoint to sd+(q).

4.6. Cutoff anticommutators

For s, t ± 1 the cutoff annihilation and creation operators fulfill the following
relations

[sb(p), sfo+(q)]+ f A""1 ['c(p), 'c+(q)]+ \ A""1 h(p)h(q)2np2iiqKM(p, q)

where

KM(p,q)=\ d3u^-k(p-u)k(q-u) (cf. 2.10b)

is a 1-internal normapproximation of S3(p-q)/2fiq. All 'other' anti-commutators
vanish (cf. 2.13).

4.7. Initial cutoff Dirac field

The initial cutoff Dirac field 0„(O, x) arises from tfju(0, x) by inserting the
respective cutoff annihilation and creation operators i.e.:

0.(0, x) =-^5 [^ I (e'px(us(p))tb(p) + e-ipx(Us(p))td+(p))
t.Zir) J Z\lp s=_,

7 1,2, 3, 4, converting it into a 1-internal uniformly bounded operator valued
function.
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4.8. Modified Dirac Hamiltonian

The modified Dirac Hamiltonian then becomes

Hi1=f^Tnp I Cb+(p)sb(p) + sd+(p)sd(p)) (cf. 4.11).

This is a 1-internal bounded selfadjoint operator over the cutoff Fockspace A4n
(cf. 4.5).

4.9. Definition. Let LcAn_1 be the (external) subset consisting of all 0-
quasistandard fermion states A whose components An..„2.„„„4 have support in
IKp'XlK^xIKp'XlKp- (ni + n2-l-n3 + n4<n-l).

4.10. Lemma. // AeL belongs to An it fulfills H{A~
Z. nPi(p„ ...,p„).

Proof. In the spirit of 2.19.

4.11. Modified free Dirac field

The modified free Dirac field 6(t, x) is defined according to
0v(t,x): e"H°'dt,(O,x)e~i'H'\ v l,...,4 where 0v(O,x) and Hf are defined
according to 4.7 and 4.8 respectively. For any te[R(1) the field 6(t, x) is a
1-internal uniformly bounded operator valued function in x over the cutoff
Fockspace A4n.

4.12. Lemma. For any AeLm n<L~l-l, and any geGi (cf. 4.9, 2.18) the

following terms belong to L and fulfill
i3„ r a*

|^S(p)-M<*>(p)AT j^g(p)-'c'*>(p)A (cf. 2.21).

4.13. Theorem. For any 0-finite time t and any AeL„, n<fì-l (cf. 4.9) we
have eUH«\-^eitH°'A. both terms belonging to 0 „. For the proof cf. 2.22 and its
proof.

4.1. Corollary. For any 0-finite time t, any g:[R3—»C which is 0-
quasistandard, and for any AeL we have

a) ei'HflJ^g(pr1b(p)€-i'H'A^|^e-^g(p)±1b(p)A

b) e"Hf J^ g(p)±1d(p)e-i'HflA^|^e-^'g(p)±1d(p)A

c) e^|^g(p)^r(-p)e-"»f'A^|^e^'g(pr1b+(-p)A

d) e"»f |^g(pr1d+(-p)e-i'Hf'A^|^e^'g(p)±,d+(-p)A

All eight terms belong to L.
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4.15. Contractions

Contractions of time dependent (Fermion-)operators are defined in the usual
way:

A,(x0)A2(y0): T(A,(x0)A2(y0)) -: A,(x0)A2(y0)

where

rrt a i a t w jAy(x0)A2(y0) if x0>y0
T(Ay(x0)A2(y0)) \

>--A2(y0)A1(x0) if y0>x0
and :A1(x0)A2(y„): arises from A,(x„)A2(y0) by transposing annihilation parts and
creation parts, each time introducing a factor -1, until creation parts do not
appear any more as factors on the right side of annihilation parts, (cf. 2.26 and
[19] p. 102).

4.16. Denotations

By abuse of notation we will write

ev(t,x) —J-^ J dVUt, p)e,px.

e.g.

V2M Ji
ota.(0,p) —- I {(us(p)Vb(p) + (Vsi-p)Vd+(-p)}

Zllp s -y

It follows readily

4.17. Lemma

6jx0, p)60(yo, q) ¦

[eu,W_ÛM g (us(p)Vb(p)e-ix>W,
L ^A'p s -l

e'y"H~sIi(«s.(-q))ßs'fc+(-q)e-'y"H']

- [e'y"Hf

for x0>y0

'-£r ï (vAq))/d(q)e-*»"'<,

~ ÏM-p)Vd+(-p)e'x^]
for x0<y0

4.18. Theorem. For any 0-finite time values x0 j= y0, any (1-internal) f : IR3 —» C
whi;/i is O-quasistandard and for any AeL the following holds

a) J d3q/(q)0a(xo,p)0ß(yo,q)Af h(p)f(-p)6 ^ - (M, Q^^A
forx0>y0

2ÜP

e injx0-y0l
b) J dV(q)0a(xo,p)00(xo, q)Af h(p)/(-p)

C

2fì" - + "MUA
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for x0<y0

c) | d3pf(p)Òa(x0, p)00(y„, q)A s h(q)f(-q)^^ (- "Q^T^A
/or x0>y„

d) | d3p/(p)0a(xo,p)0ß(y(„q)Af h(q)f(-q)~^(M-(l^rr„ßA

/or x„<y0, where jr«rr: £ rv-y„.

Proof. For x0 > yo we have

j d3qf(q) 6a(x0, P)00(y(„ q) 2Me'x.>H'[£^^ 'b(p).

e,<y„-x„,Hv. [d3q/(q)X(U^""q))ß-b+(-q)e "».-"swl e ,X"H'A
J ^! 2ilq Jtaf

f2M-e'x"HH d3q I (Ms(P))0,(^.(-q))e
J s,s' -I -^iipZliq

xf(q)[sb(p),sb+(-q)]+e'x"Hc,A since x„>y0

g2MV 2M ~^Ö ^-P)h(P)A (cf- [20] 2-40)

All other cases work similarly.

4.19. Modified Feynman propagator

Definition of the modified Feynman propagator SF according to

Sf..,.(po> p, q0, q): -iô'(Po+qo)ô3(p+q)^—ftttt22- &(p)
p - p„ + M — ie

where e>0 is a fixed O-infinitesimal number from IR,,,.

4.20. Lemma. For any 0-finite time values x0 ^ y0, for any O-quasistandard
f:M3—>C and any AeL the formulas

(I) jd3q0t>(xo,p)03(y(>,q)/(q)A

* hr I d3q dP° ^of^e^^^SpJpo, p, q0> q)A

(II) J d3p/(p)0a(x(),p)00(yo,q)A

* lh I d',pdpo ^"^P)e"i(P"X"+q"V",SF.lB(Po, P, q0, q)A

hold.
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Proof. For x0 > y0 we have

^- f d3q dp0 dq0/(q)c-r(pox-+qoV0)SF (p0) p, q0, q)A
Z7T J

i I 9 v- \ f e~'p,>(Xiry<,)
--T-f(-p)Wp)\M+iyoT—+ L -WPx "j T7T72—-dpoA27T \ ôx0 „" /aßJ p-po + M-ie

lr-^-f(-p)h(p)(M+iy0^-+ t yvp) 2^ '„'»" -A (cf. 1.12)
2 TT \ 3X0 „ 1 /a0xe 2Hp

I d3qf(q)0a(xo, p)0B(yo,q)A since x0>y0.

All other instances are proved similarly.

5. Interactions

5.1. Fockspace

The Fockspace of the interacting fields is the tensorproduct A4"®B4<" of the
particle number cutoff Fockspaces A411, B4<" for fermions (electrons-positrons) and
photons respectively (cf. 4.4 and 3.2). A special role will be played by the external
subspace L<g)B, where L<=A4fl and Dcß4" are 0-quasi standard fermion and
photon states respectively with restricted support (cf. 4.9, 3.6 and 5.13b).

5.2. Interaction term
Electromagnetic interactions are introduced by an additional summand -H, in

the total Hamiltonian H Hy+ H^h + H,. We assume H, to be of the form

H, -e J :0(O, x)7(i0(O, x)(Btl(0, x) + EJ0, x)): d3

where the 'external field operator' E(0, x) is a 1-internal uniformly bounded
operator on B4lu (—e charge of the electron).

5.3. Examples

a) The case where there is no exterior field corresponds to JS(i(0, x) 0.
b) The case of the Coulomb field corresponds to £„.(0, x) C^O, x) of 6.3.

5.4. The interacting fields

0"p(f, x) and B"p(f, x) in the Heisenberg picture are defined according to

6™(t, x):=ei,(H?+Hr+H-iev(0, x)e-"<H.'+".*+",> etc.
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5.5. Interaction picture

The interaction picture is introduced by the composed transformation
4 " Heisenberg picture

f'+H*+H,)

-SB4" Schrödinger picture

eit(H«'+Hj*)

A4ntagB4<u Interaction picture

as usual, yielding the equation of motion (d/dt)cplp(t)= - iH)p(t)d)lp(t) for the
state vector <î>IP(t).

5.6. Remark

a) The existence of e±l,^HV+H^ ancj c±..<Hf+Hf*+H.. reSp js guaranteed since
the exponents are (internal, nonstandard) bounded operators (cf. also the
Dyson expansion 5.7).

b) The standard difficulties with the existence of the interaction picture of a
translation invariant theory in connection with Haags theorem (cf. [21],
chapter 6) are circumvented because of the nonstandard 'space cutoff'
hidden in the Hamiltonian through the modified annihilation and creation
operators (cf. 2.8, 3.5, 4.4).

5.7. The Dyson expansion

The transformation

U(t, s) := Id+ £ (-i)" f ['•••["' H'A'i) • • • «F(U df., • • ¦ dt2 dty
n — 1 ^s *$ "'s

converges in the uniform operator topology and fulfills the equation of motion

^-U(t, s) =-iH?(t)U(t,s)
dt

for any strongly continuous (internal) map t<-^H\r(t) of K(1) into the (bounded)
operators A4n<giB4'0->A4n<g)B4a'.

Proof, cf. [16] Theorem X.69 pg. 282.

5.8. Theorem. The Dyson expansion can be rewritten in the form

U(t, s) ld+t(^r\' ¦¦¦[ T(H;p(t,) • • • HnO) dtn--- dty.
n i n\ Js Js

The proof can be found in most of the textbooks (e.g. cf. [19] pg. 155).

5.9. Wick's theorem

The Theorem of Wick on T-products, normal products and contractions in
standard quantum electrodynamics (cf. [19] pg. 161) carries over to our modified
version unchanged.



Vol. 57, 1984 Some nonstandard quantum electrodynamics 601

5.10. Feynman's rules

Feynman's rules carry over in the sense that one has to use our modified free
fields and contractions in configuration space instead of the usual free fields and
contractions, respectively.

5.11. First order perturbation theory

First order perturbation theory deals with the summand

Uy(t,s):=-i\ H,(x0)dx0 of U(t, s) (cf. 5.8)
•'s

In order to compare our modified Uy(t, s) with the usual

Sy(t, s):=iej dx0| :tfi(x0, x)yp,dJ(x0, x)A^(x0, x): d3x

assuming £^=0, we need

5.12. Theorem. Lef t, s be 0-finite, then (cp, Uy(t, s)A)-q (cp, Sy(t, s)A) for any
cp, AeL&B having support in KP/2 (cf. 2.11).

Proof. It suffices to prove

y<f>,
I dx0 J ^(xq, x)y(X0±(xo, x)B*(x0, x) d3xAj

òr y}>,
I dx0 J ^±(x0, x)yixtlf±(x0, x)A*(x0, x) d3xAj

for any normal order of the fermion fields. For example

($, j dx j <r(x0, x)T(i0-(xo, x)B+(x0, x) d3xAj

~ I I Wy I d3n d3neii"^~ii',~n«ix°° (2tt)3'2Js dxoJdPd^C

x(B~(0, p + q)4>, 0"(O, p)yix6(0, a)A)

For p, qelKP/2 we have the approximation (cf. also 2.12b)

° (dp* r dx° i d3Pd>iK+-"" "" )x°
(2tt?

x(A-(0,p + q)d>, -//"(O, p)y>~(0, q)A)

(\p, j dx0 I d/~(x0, x)y(it/."(x0. x)A+(x0, x) d3xAj

The other instances are proved similarly, qed.
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5.13. Remark

a) Assuming that the cutoff value P be rather large (cf. 6.24) Theorem .5.12
guarantees that the first order perturbation theory of our modified Q.E.D.
agrees with the standard one up into highly relativistic regions.

b) The role which is always played by the external sets D and L suggests that
L<S>0 be called the set of physical states.

6. Coulomb scattering and vacuum polarization

6.1. The modified Coulomb field

The Coulomb field is usually given by the vectorpotential

Ze 1

(27r)3'2q2'
co(q) ,-._x3/2~2> ci(q)= c2(q) cs(q) 0, q eIR3,

in the momentum representation. In connection with our nonvanishing, infinitesimal

photon mass m e M(0) and our UV cutoff, we suggest the modified form

Ze h(q)
C0(q): 7rZ~Z^-^r(^=^m2 + q2),Cy(q) C2(q) C3(q) 0

yZTT) COq

which is everywhere defined, as well as its Fourier transformed C„(x), xsIR3.

6.2. The exterior field operator

We view C0(q) as operating multiplicatively on the Fockspace B4*" of photon.
We then define the 'time dependent' operator C0(f, q): e"H'"C0(q)e-"H''''
obviously is independent of t, C0(t, q) CQ(q).

6.3. The interaction Hamiltonian Ht

H[ is defined according to

H, := -e J :0(O, x)7li0(O, x)(BJ0, x) + Cli(0, x)): d3x

where

Q(0, x) : —-^575-1 e'qxQ.(q) d3q
(2tt)

6.4. Coulomb scattering

Coulomb scattering during the time interval [— t, +t] is given by the sum-
mand

.(-t,t):=+ie\ dx0j d3x :0(xo, x)yj(x0, x)C)X(x):
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of the S-matrix, corresponding to the Feynman graph

For the remainder of this chapter we assume t to be a 0-finite time value.

6.5. Theorem. For any two one-electron states cp, AeL(8>D Coulomb scattering

yields

(<M(-U)A)-o +

where

lfl2 J dx0

x | d3p d3q eix(fV <V(* Ö+(0, - p)7o0"(0, q)C0(p - q)A)

0"(O, w): -^X u,(wWw), etc. (cf. 4.17)
Zilw tata.!

Proof. Since <£, A are one-electron states it follows that

(cp, s( - t, f)A) (cp, —^ J dx0 J d3p d3q eix-Hf'0+(O, - p)e~ix»H?

x 7oeix«Hf'0-(O, q)e-ix"Hf"C0(p -q)A)

o (<*>, 7^f2 j dx0 J d3p d3qeix»n»0+(O, -p)

xYoe-'x"n..0lO,q)Co(p-q)A
(since <kAel<8>D, cf. 4.14). qed.

We get immediately

6.6. Corollary. For any two one-electron states </>,AeL®D Coulomb scattering

gives rise to

(d>, sA):=lim0-st(4>, s(-t, t)A)

7^=O-st(fd3qd3qS1(np-nq)(^,0+(O,-p)7oÖ-(0,q)C0(p-q)A)i
V ATT \J I

6.7. Vacuum polarization

Vacuum polarization results from the summand

cr(-1, r): (ie) | d20J dy0| dx0Jd3zd3yd3x

:0(zo, z)ym6(z0, z)Bm(z0, z)B„(y0, y)

x 0(yo. y)7nÖ(y0, y)Ö(x0, x)(yr)0(x(„ x)Q(x):



604 Robert Fittkr H. P. A.

of the S-matrix, corresponding to the Feynman graph

Exactly as in the standard case one gets

6.8. Lemma

cr(-t,t)=- iV J dz0 dy0 dx0 j d3z d3y d3x

i 1

x :0(z0, z)ym0(xo, z)Bm(z0, z)Bn(y0, y)

xTr(0(xo,x)0(yo, y)yf,0(yO; y)0(x„> x)yr)Cr(x):

A straightforward evaluation leads to

6.9. Theorem. For any two one-electron states cp, AeL<8>D, vacuum polarization
yields

(<p, o-(-t, t)A)-Q e3(cj>, dx0 dy0 dz0 d3pd3qd3wdu0dw0dk0

X gmrigi2o(n„-n,,-"o)eiVo(uo+wo-,co)eix„(-w„+''o>
2tt mn

~
1 «+/„ x

1 A-,n h(p-q)0+(0,-p)ym—-5Jie-(0,q)-

X(2tt

(2tt)3'2" v"' v' ^(2tt)312" yv'H/ (p-q)2-u2 + m2-ie

1 M+y^rW M+kjj^p^q-^w A
^Trlw2-w2+ M2-i6h(wh"(p-q + w)2-k2 + M2-ie7oh(P^ + W))

X(2^Co(p-q)A)

6.10. Corollary. For any two one-electrons states cp, AeL-S>D vacuum polarization

yields

(d>, aA) : lim (cp, cr(-1, t)A)
t—rOO

e3 ^Jp 0-st {j d3p d3q8\Üp -ilQ)-(d>, 0+(O, -p)ym0"(O, q)

g,""h(P~^„2_.-„ njilp-fl,, p-q)Co(p-q)A)}
(p-q)2-(ftp-nq)2+m2-ie
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where

U^Uo, u):= I dw0d3wTr(- M+jtiAffW
\w2-wl + M2-ie

x h(w)y- 2 — 2 2 h(u + w)yv
(u + w) -(u0+ w0) +M -ie I

Standard methods yield

6.11. Lemma

niil,(n0, u) dv dw,) d3w

Tr {(M + vv^jn-w%rw—TJir)^^ (M + w0 +

(-(w2-w2) + (v2-v)(ul-u2) + M2-ie)2
x h(w + (1 - v)u)h(w - vu)

as well as

6.12. Lemma

Tr {(M + w0- vu0, w - vu)y^(M + w0 + (l-u)u0» w + (l-v)u)yv)}
4^,(M2-(w0, w)2 + (2v - 1)(w(), w)K, u)-(t;2- v)(u0, u2)

+ 2w*w" + 2(v2-v)u»uv + (l-2v)
x(w*u" + wvu")} where u* := g^vuv etc.

6.13. Corollary

n^(u0. u) 4 dv dw() d3w/i(w-uM)h(w + (l-u)u)

gPL„{M2-(w0, w)2-r(2u-l)(wo, w)(u0, u)-(v2-v)(u0, u)2}
+2w*wl' + 2(u2-u)u|Xn" + (l-2u)(w'JV' + w''u|J-)

(-(w(„w)2 + (t)2-tj)(u0,u)2 + M2-ie)2

6.14. Remark. The following integrals, occurring in ïl^v, fulfill
,+oc j

a) dw0
J—cc (w2-wl + (v2-v)(ul-u2) + M2-ie)2

Tri 1

2 (Vw2 + (v2 - v)(ul -u2) + M2-ie)3

w„
b) L dW"(w2-w2 + (tj2-i,)(M2-M2) + M2-ie)2

°

v f+0° vvj

L °(w2-w2 + (1,2-u)(u2-u2) + M2-ie)2
IT.

2 Vw2 + (u2 - u)(u2 -u2) + M2- ie
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where y/w2 + (v2 — v)(u2,- u2) + M2—ie is the root with negative imaginary part.

Proof. By applying the residues calculus.

6.15. Theorem. For any two one-electron states cf>, AeL<3)D vacuum polarization

yields:

(cp, crA) : lim 0-st (cp, a( -1, t)A)

^0-st{jd3pd3qS^np-Oq)(<M+(0. -p)7o<n0,q)
(2 TT)

X m n
hiP $1 2 ¦

¦ n.,o(np -nq, p - q)C0(p -q)A)
(ilp-iiq, p-q) +m -ie

Proof. In view of 6.10 it suffices to show that 8'(np -nq)II,l0(np -ft,., p-q)
0 for n^O which follows from Corollary 6.13 since each summand in the

enumerator which does not have (iìp— fìq) as a factor contributes 0 according to
6.14b). qed.

6.16. Remark. The expression l\X)(flp — flq, p — q) in Theorem 6.15 can be
replaced by n(X)(0, p — q), because of the occurrence of SH-Qp— flq).

6.17. Lemma

2(v2-v)u2-(2v-l)wu
.u,..., (w2-w2 + (ü-ü2)n2 + M2-i8)2

where G(v, u)^U3 is the support of the function w>-^h(w — vu)h(w + (l — t)u).

Proof

rUO, u)ir4 f dv \ dw0 f d3w-
J0 J+oc Jg(v.u) VV

noo(0,u) 4 f dv f dw0 f d
Jo J •'g(i). u)

¦Vf2 + (u2-i))u2 + Wo+wf + w2 + w3-(2ti-l)wM
(w2-w2 + (i'-r2)i/2 + M2 -ir)2

(cf. Corollary 6.13 for u„ 0). It suffices to know that

f w2 + w(2) + (i)-u2)u2 + M2
I "w(l /¦ 2 2 l 1\ 2 » il • \2 <> ^

J (w -w0 + (v-v)u +M -is)
which follows from 6.14a,c. qed.

6.18. Theorem. For \u\<M<P/2 we have the approximation

4 f dv f d3w \ dw0

2(u2-u)u2
'

((w2- w2,) + (v- v2)u2 + M2-ief -8A2{I(ln^-l)--^]bl M / 30M2J
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with an error smaller than

,,n ,/ u4 M 2M2\

Proof. By a long chain of elementary approximations (for details cf. [23]).

6.19. Theorem. For \u\<M<P we have the approximation

4 du dw()
(2u-l)ww 4ir2i.

— u(w2-w^ + (u-u2)w2 + M2-ie)
with an error smaller than

I2M/ tt2M „^ „ M2\

Proof. By a long chain of elementary approximations involving the explicit
shape of G(v, u). For details cf. [23].

6.20. Corollary. For \u\<M<P/2 we have the approximation

n00(0, u)= -87r2iu2|- (in —.A
00 13 V M 6/ 30M2J

with an error smaller than

5"v(,vF+>+0(M-p»)
where 0(M, P) is a linear combination of M/P, M/P2, with coefficients <10.

Proof. Apply 6.19 and 6.20 to 6.17.

6.21. Theorem. For any two one-electron states cp, AeL (ED with support in
Kr/2, r<M<P/2, vacuum polarization yields

(d>, aA) --^- 0-St { [ d3p d3q8\np-nq)(<p, 0+(O, - p)7oô"(0, q)
\ Ztt IJ

[a/ P2 5\ a(p-q)2]x — n—:+n4— —-^
13tt \ M2 3/ 15ttM2 J

x C0(p-q)A)j (where «: ^-J

witri an error smaller than

1 I r4 MI r M \
(—4 + -(9+Q(M,P))j\(cp,sA)\

Proof. By a straightforward application of 6.20, 6.15 and 6.6. From 6.21 we
get
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6.22. Theorem. For any two one-electron states cp, AeL®D with support in
Kr/2, r<M<P/2 Coulomb scattering together with vacuum polarization yield

(d>,(s + o-)A)

=7^ä°-st{) d3pd3q8l(.n,-CK,)(4>,9+(0, -p)7O0~(O,q)

with an error smaller than

r-*_

12tt2 \M4d^(^+f(9+Q(M'p)))l(^sA)l

6.23. Charge renormalization and Uehling effect

The approximate result 6.22 for (cp, (s + o-)A) can also be obtained by
computing (<j>, s A) alone (cf. 6.6) using a 'corrected' form D0(q) instead of our
Coulomb field C0(q), namely

(q) Ze
q2+m2(2TT)3'2

As long as

I a / P2 5\ a ¦ q2 \ h
D0(q):=(l--(ln^+ .n4--) + T^)-2-,

': —(ln^+ ln4--Vo
3tt V M2 3/

is small (cf. 6.24) one can interpret VI — C as a renormalization factor for the
charge e. The term a • q2/15irM2 gives rise to the socalled Uehling effect, a

displacement of s-levels in hydrogenlike atoms (cf. [20], pg. 327).

6.24. Charge renormalization and UV cutoff

The following choices for the UV cutoff P yield

a)P M-1030 C ^-(ln—;+ln4--Vo.l05 VI-C 0.953tt\ M2 3/

b)P M-102° C =0.070 VI-C=* 0.96

c)P M-1010 C =0.035 Vl-C=0.98
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