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Abstract. We consider a sequence of operators T„ arising from Hamiltonian systems and require
that T„-»T, where T corresponds to a fixed Hamiltonian system. Letting t„(A) and t(A) denote the
respective spectral functions, we give sufficient conditions that t„(A2)-t„(A,) —> t(A2)-t(A at
continuity points A, and A2 of t(A).

1. Introduction

'Spectral concentration' is a term arising from perturbation theory when the
spectrum <r(T0) of an operator T0 acting in a Hilbert space H is compared to the
spectrum o-(Te) of a perturbed operator Te, where e >0 is a small parameter and
T,, —» T0 (in a suitable sense) as e —» 0. In the classical cases of physical interest
aiT€) is qualitatively different from, but quantitatively near to, a(T0).

The expression itself originated with work of Titchmarsh ([22], [23], [24]);
also see [20, p. 60]) on the mathematical formulation of the Stark effect in
hydrogen. Here one considers the Sturm-Liouville eigenvalue problem

-y"+( \ ----sx]y Ay, 0<x<*>, (l.i)

where / is a positive integer, c is a constant, e > 0 and A is the spectral parameter.
In [23] the more general equation with ex replaced by eo-(x) is actually treated,
where a(x)—>« as x—»œ, and in its forerunner [22] the simpler equation
— y" + exy Ay, 0sSx<<», is studied. For e (1.1) is the Hamiltonian in one
dimension for a hydrogen atom ([7], [8]) and the perturbed case e>0 is the
corresponding Hamiltonian in a constant, weak electric field of strength e. The
unperturbed equation has continuous spectrum in [0, ») and a sequence of
isolated negative eigenvalues clustering at A=0 ([7], [15]). But for any positive e
the spectrum of (1.1) continuously fills the entire A-axis, with no imbedded
eigenvalues ([23], [15]). This apparent discrepancy throughout the negative
energy spectrum is most easily explained in terms of the spectral function pF(A)
for (1.1) (we give precise definitions of all relevant terms form spectral theory in
§2 below). For A<0 the unperturbed spectral function po(A)(e 0) is a nondec-
reasing step function with jumps at the eigenvalues. But while pE(A) is continuously

differentiable ([15]) on -co<x <», the "spectral density" function pÉ(A) has

sharp peaks near the unperturbed eigenvalues and is small elsewhere for A<0.
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Thus the main strength of the negative spectrum is concentrated near the
unperturbed eigenvalues; see [22], [23], [24], [20, §12.5 and Notes] and also [19]
for another example and further discussion.

Titchmarsh develops in [22] and [231 a theory which attributes the sharp
peaks in pF(A) to poles of the perturbed mf(A) function (defined in §3 below)
lying near the eigenvalues but just below the negative real axis in the complex
A-plane. These 'perturbed poles", also called "resonances" ([7]) and "pseudo-
eigenvalues" ([19]), transmit their strength to the spectral function through the
Titchmarsh-Kodaira formula ([3])

Pta.(À2)-p.>(Ai)= lim tt' lmmJfi + io)dß, (1.2)

which is valid at points of continuity A, and A2 of pE(A). The resonances have
exponentially small (as e —» 0) imaginary parts in the case of (1.1) ([7], [8]) and
are given approximately by Titchmarsh's classical real eigenvalue perturbation
formula in [22]. Less well-behaved perturbing potentials may produce resonances
which do not satisfy such relations ([7], [6]).

Another feature of the concentration phenomenon, also introduced by Titchmarsh

([24]), seeks to measure the extent of concentration of the spectrum on
small intervals about unperturbed eigenvalues. Suppose that T0 and Te are the
operators, having spectra a(T0) and a(Te), respectively, where a(T0) is discrete
and a(TF) is continuous. Let feH L2[0, °°) and let gf(A) be the transform of /;
see [3, chapter 7], [24] and Remark 5 in §6 below. Then one has the Parseval
formula

f |/(x)|2dx f |ge(A)|2dpE(A),
Jo J-x

and the theory asserts that there are open intervals A„ An(e), each A„ containing
the eigenvalue A„ and whose diameters |An(e)|—»0, as e —» 0, such that if
A (ir=,A„) then

[ |f(x)|2dx f |gF(A)|2dPe(A) + 0(l), e^O. (1.3)

It is then a question of how large the intervals A„ must be in order that (1.3)
should hold. One says, for example, that the spectrum is concentrated to order p
if the widths can be taken to be 2ep; see [4], [19], [24] and the Notes, pp. 64-68,
of [20] where there are numerous references.

The present paper takes a somewhat different approach to the subject.
Although a great deal is known about convergence of the spectral family EE(A) of
Te to the unperturbed family £0(A) of T0, when TF —» T„ in some appropriate way
(see [25, p. 286]), there does not appear to be a proof that the spectral jumps
[p,.U).]x; pe(A2)_Pe(^i) converge to the corresponding unperturbed expression
[po(A)]J^, as e —> 0, even for the scalar equation (1.1). The proof of such a

convergence theorem, in a systems context which includes (1.1), is the main
purpose of this paper.

The convergence of [pE(A)]£-; to [p()(A)]^ is a qualitative measure of concentration.

It implies, for example, that in the typical case where pE(A) is differentiable
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in a neighborhood of an isolated unperturbed eigenvalue A0, péU) must necessarily
be small except for a sharp peak very near A„.
It will be convenient to take as our basic equation the Hamiltonian system of

[5] (and also [1], [10], [11]), which includes scalar equations as one case, on an
interval [a, b), -^<a <b *&<*-. Our principal tool is a generalization (§4) of a deep
result of Atkinson in [2] which links p(A) to m(A) in an alternative way to (1.2).
Our main convergence result (Theorem 1) is stated in §2, following the introduction

of some notation and terminology, and is proved in §5.
A concluding section (§6) contains examples, a discussion of two singular

endpoint problems and a connection between the convergence theorem and a

type of convergence of spectral families.

2. Hamiltonian systems

This section contains background material on Hamiltonian systems and their
spectral theory, included here for completeness.

We consider the 2/c x 1 first order system ([5], [1])

Jy' [AA(x) + B(x)]y, a^x<bm*>, A complex, (2.1)

where J, A and B are 2/c x 2k complex matrices. A* A and B* B (conjugate

transpose), A 3=0 (nonnegative definite) and J=\. „J, I being the k x fc

identity. We regard (2.1) as regular at x a, singular at x fc and take the
coefficients to be locally intégrable so that the usual existence and uniqueness
properties hold. Let A be decomposable as

(Ayix) 0\

X o o>AW l o o> (2-2)

where Axix) is rXr and invertible, 1 =£r=s2/c, A Ay in case r 2k, and finally
let us assume the definiteness hypothesis ([1, p. 253])

f y*(x)A(x)y(x)dx>0, a<a<ß<fc, (2.3)

for all solutions y of (2.1) which do not vanish identically.
Scalar equations -ipu')' + qu \wu are special cases of (2.1), as can be seen

from the identity

The Dirac systems studied in [18] comprise another special case.
Associated with (2.1) is the linear space ([1]) LA[a, b) of equivalence classes

of measurable functions fix) defined on [a,b) such that J„/*(x)A(x)/(x) dx<*-,
and it is natural to introduce the inner product (/, g)A |„/*Ag for /, geLA[a, b).
There is induced the seminorm |[f||A (/, f)A2, which is a norm in the event that A

is invertible. Let Pr be the 2/c x2fc matrix I I, where I, is the identity matrix
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which has the size of A,(x) in (2.2), and for geLA[a, b) define gi Prg. Letting
PrL2A[a,b) {Prg\geL2A[a,b)}, we have \\f||i J*f\AJ. for all fePXA[a,b).
Since A, is invertible then ||-||A restricted to PJ^A[a,b) is a norm; hence
PXAa, fc) is a Hilbert space under the inner product (•, -)A.

The limit point-limit circle theory of (2.1) is well-known; see [21], [10] and
[13]. We know that the number of linearly independent solutions of (2.1) lying in
L2A[a, fc) is independent of A in each halfplane Im (A)>0 and Im (A)<0, and can
range from k to 2/c. If there are exactly k linearly independent solutions for
Im(A)/0 we say that (2.1) is of limit-point type at x fc. We take as a basic
hypothesis in this paper that

system (2.1) is of limit point type at x fc. (2.5)

This hypothesis implies, for example, that certain boundary value problems
associated with (2.1) have unique solutions. To discuss one particular type of
boundary problem it will be convenient to introduce the 2/c x 2/c matrices E„
given by

\a%

where the a, are k x k and satisfy rank [alt a2]= k, a,a* - a2a* ar|d
aya*y+a2a* I. A typical boundary condition placed on a vector y at x a is

[ax,a2]yia)=v,
where v is a k x 1 constant vector. In [10] and [12] the present authors proved
under assumption (2.5) that the problem Jy' (AA + B)y + Af, where feLA[a, fc),

Im (A) ^ 0 and [a,, a2]yia) v, has a unique solution y e L2A[a, fc). This result has

operator-theoretic consequences which we now proceed to describe (see [11],
[12]). Define an operator T with domain DiT)<=L2A[a,b) by saying yeD(T)
provided (i) yeL2A[a, fc) (ii), y is locally absolutely continuous, (iii)

[a„a2]y(a) 0, (iv) (Al
'

°)(Jy'- By)e PrL\[a, fc), (v) (° ^ )(Jy'-By)

0, and then defining T.DiT)^ PXA<-t,b) by the equation

(Ty)(x) (A,o(x) °)(Jy'(x)-B(x)y(x)). (2.6)

Then the existence and uniqueness result cited above may be rephrased by saying
that (T- APr):D(T) —» PJ^A[a, fc) is a one-to-one and onto map whenever
Im(A)^0. It also happens ([10], [11], [12]) that T-APr has a bounded inverse for
Im (A) ^ 0, and in fact

ll(T-APr)-7IL^|Im(A)r||/||A- (2-7)

The resolvent set (see [11], [12]) p(T) of T is defined as the set of all complex
A such that (T- APr)-1 -.PJ-aW, fc)-* E2A[a, fc) exists and is bounded; thus piT)
contains all nonreal numbers by (2.7). The spectrum <x(T) of T is the complement
of piT) in the set of complex numbers. The set of isolated points of aiT) is called
the point spectrum, and is denoted by PiT). The set o~{T)-P(T) is called the
essential spectrum and the subset PC(T)c: EiT) consisting of imbedded
eigenvalues is termed the point-continuous spectrum; see [11]. We call CiT)
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E(T) — PC(T) the continuous spectrum of T. We cannot appeal to the standard
definitions of the above terms because T is not in the strict sense a Hilbert space
operator.

The spectral function t(A) of the operator T is a 2/c x 2/c matrix function
defined on -=c<A <°o which is right-continuous, nondecreasing (in the nonnegative

definite sense) and normalized by t(0) 0; see [11] and [12]. It is constant on
that part of the resolvent intersecting the real axis, so that its points of increase
comprise a(T), there are jump discontinuities at both isolated and imbedded
eigenvalues, and t(A) is continuous on C(T). There is an analogue of the
Tichmarsh-Kodaira formula (1.2); we give this in §3. In the scalar case where
(2.1) reduces to (2.4) t22(A) is the usual scalar spectral function.

The convergence theorem we prove will be for spectral functions t„(A), n

1,2,3,..., corresponding to operators Tn given by (2.6). By means of the
imbedding (2.4) our result will include spectral functions for scalar equations.
Thus let there be given sequences {A„(x)^=1,{B„(x)}^., and (Ena}™=x such that
the systems

Jy' [AAJx) + ßn(x)]y, a«x<fc=£co, (2.1).,

satisfy the same hypotheses (2.2)-(2.6) as system (2.1). Let Tn and t„ denote the
corresponding operators and spectral functions. As regards the convergence of T„
to T, we assume specifically that A„ —> A and Bn —> B in the L'-norm on compact
subsets of [a, fc); i.e.,

lim [ l|An(x)-A(x)||dx lim f ||B„(x)-B(x)|| dx 0, (2.8)

where a=Sc<d<fc and where ||-|| denotes the matrix operator norm ||A(x)||
sup {||A(x)u|| | ||u|| 1}. Let Ena —> Ea. Then our principal result may be stated as
follows.

Theorem 1. Let A, and A2 be points of continuity of the spectral function
t(A). Then

lim(T„(A2)-Tn(A1)) T(A2)-T(A1). (2.9)

This is proved in §5. The method of proof will cover the case of a continuous
perturbation parameter e; i.e., Ae-* A and BF -* B, as e —» 0, in the sense of
(2.8). Hence we include operators of the type (1.1) restricted to 0<a=Sx<°°.
Two singular endpoint problems will be discussed in §6.

3. Preliminaries

Titchmarsh-Weyl functions for Hamiltonian systems may be defined in terms
of the initial value matrices Ea of §2. Following [10] and [12], let Y(x, A) be the
unique fundamental matrix solution of (2.1) which satisfies for all A the initial
condition Y (a, k) Ea, and let us partition Y(x, A) into k x k blocks by writing

/0(x,A) <D(x,A)\
Y(x, A)=IA a I. (3.1)

\0(x, A) 4>(x, A)/
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Then under hypothesis (2.5) the limit

Mi\) -\im<S>\x, A)0(x,A), Im(A)^0, (3.2)
x—>b

exists and defines aicxfe matrix analytic function of A in the two half A-planes.
We suppress in our notation the dependence of M(k) and Y(x, A) on the initial
value matrix Ea. For the scalar case arising via (2.4), M(A) reduces to the usual
scalar m(A) function as given, for example, in [3].

Thus there is associated with the operator (2.6) the uniquely defined
Titchmarsh-Weyl coefficient (3.2). The M(A) function carries complete information

on the spectrum <r(T) of T. To quote only part of the main result of [11] (see
also [12]) we can say that A e piT) if and only if M is analytic at A, A e PiT) if and
only if M has a simple pole at A and A e CiT) if and only if M is not analytic at A

and we have \im„^0 vMiX. + iv) Q; for the characterization of PCiT), see [12].
There is a Titchmarsh-Kodaira formula analogous to (1.2), but for this we

need to mention the 'characteristic function' F(A), introduced by F. V. Atkinson
in [1], for the operator T. This is a 2/c x 2/c matrix function which may be shown
([10], [11]) to equal

In (3.3) we have reversed the sign of F(A) from the way it appears in [10] and
[11]. In [11] we prove the following relations between F(A) and t(A):

lim X \ 2ImF(/x + i6)(ifx T(A2)-T(A1), (3.4)
8^04 JXi

(Im F= (F-F)*/2i) at points A, and A2 of continuity of t;

F(A)=f (—*— -—^]dT(,A-) + KyK+K2, Im(A)^0, (3.5)
J_œ \u, — A 1 + /x /

for constant Hermitian matrices KxS-0 and K2. Recall in (3.5) that dr(/x)s:0.
Let Y„(x, A) be the fundamental matrix solution of (2.1)„ which satisfies

initial values Ynia, k) Ena, for all A, where

Xa2,n aX,n'
E

and where the ain satisfy the same hypotheses as the a, in Ea. Let us denote by
M„(A) and F„(A) the corresponding Titchmarsh-Weyl coefficient and characteristic

function for the operator T„ arising via (2.6) from equation (2.1)„ and initial
values Ena. We are going to establish that .<Vf,.(A)—> M(A), n —» œ, uniformly on
compact subsets of Im (A) =j= 0 (so that the same is true for F„ —> F by (3.3)) and
the first step in doing so is the following.

Lemma 3.1. Let [c,d] be a compact subinterval of [a, fc) and let K be a
compact subset of the X-plane. Then Yn(x, A)—» Y(x, A), n —»œ, uniformly on
[cd] xX.
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Proof. We have for a =£ x =s d and A e K that

Y(x,A)-Y„(x,A) (E„-En,J + J '[ [(AA + B)Y-(AA„ + B„) Y„] dt
•'a

(Ea-EnJ + Ji[ (KAn + Bn)(Y-Yn)dt + J

x f [\(A-An) + (B-Bn)}Ydt.

It follows that

||Y(x,A)-Y„(x,A)||«||£„-E„,J|t I (|à|||A A„|| Hiß - BJ) |! Yi| df

r i

Jl+[a(

""a

e„+[ r,,(t)||Y-Y„||d.

H (IA I 11 A„ Il + Il B„ II) Il Y YJilt

where e„ stands for the first two terms on the right of the inequality and rn(t) is
the first part of the integrand in the third. From the Gronwall inequality ([9, p.
24])

||Y-YnHe„expf rnit)dt,

and this expression clearly tends to 0 uniformly over K because of (2.8) and the
fact that || Y(x, A)|| is uniformly bounded on [c,d]x K. This completes the proof.

Lemma 3.2. Let K+ be a compact subset of Im (A)>0. Then M„(A)—> M(A)
uniformly on K+ (and therefore F„(A)-»F(A) uniformly on K+).

Proof. We will represent M„(A) and M(A) by the matrix circle method of
[13]. For a<d<b and Im(A)>0 let

_*\
,(d,A) -JY*(d,A)JY(d,A) (3.6)

and then let

Cd(A) -2)^'(d,A)S3(d,A),

Ri(A) 2)-l/2(d.A), (3.7)

R2dW [®*2)-i®-M]v2(d,.\);

see [13] for proofs that these expressions exist. Let s&n, S8„, etc, be the
corresponding expressions generated by the fundamental matrix Y„(d, A). Then there
are matrices Vd(A) and V„d(A) such that V^Vd«J, V*dV„d=sJ (see [13]) and

M=Cd + RXdRl
Mn Cnd + R„,dV„dR„ d.
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Therefore

||M(A)-Mn(A)||«||Cd(A)-Cn,d(A)|| + ||Ri(A)||||R2(A)||

+ ||Ri,d(A)||||R2.d(A)||. (3.8)

We know from [13] that Rd(A) and Rd(A) are continuous in d and A and
decreases to 0 as d increases to fc ; hence Rd(A) —> 0 and Rd(A) —» 0 uniformly on
K+ as d —» fc. Thus given e>0 we may choose d sufficiently near fc that
l|Fd(A)||<£. Having fixed d we then note the formulas (3.6) and (3.7) and invoke
Lemma 3.1 to conclude ||Cd(A)- C„,d(A)||<e and ||Rji(A)-R|1,d(A)|<e for n
sufficiently large. Then from (3.8) we get ||M(A)-M„(A)||<e + e2 + 4e2, when n is

large and \eK + and from there the conclusion of the lemma.

4. Atkinson inequality

Here we give a matrix version of Atkinson's extension in [2] of the
Titchmarsh-Kodaira formula (1.2). In our case we shall be extending (3.4).

Let 8 > 0, A, < A2 and define
»X-+Î8

J'X-+.8 F(À)dA-[irr((i)]îï
X.+iÄ

-[8ReF(|* + i8)]fc, (4.1)

where Re F= (F + F*)/2, and define

H(k „ A2) (iTÔ/2)[Im F(k, + i8) + Im F(A2+ i<5)]. (4.2)

We choose for path of integration in (4.1) the horizontal line joining A,-H5 to
A2+.S, so that dA is real and the symbol Im can be moved under the integral sign
and attached to F(A).

Lemma 4.1. The functions G and H are Hermitian, H>0 and

-H =s G =£ FT (nonnegative definite sense). (4.3)

Proof. The Hermitian properties follow from that of t ([11]) and the definitions
of Re F and Im F. Positive definitemness of H is a consequence of the Pick-
Nevanlinna property ImF(A)>0 for Im(A)>0; see [10] and [11].

Emulating Atkinson's proof, we take (3.5) as the starting point for the proof
of (4.3). For the purpose of the proof, in fact, it is best to regard t(/x) as given and
(3.5) as the definition of F(A), for this opens the way for some preliminary
reductions. Note first that the constant K2 does not appear in either (4.1) or (4.2)
due to cancellation. Hence there is no loss in generality in setting K2=0.
Furthermore, K. does not appear in (4.1), because its effect is cancelled between
the first and third terms of (4.1), but it contributes a nonegative definite term to
(4.2). Therefore (4.3) is true for general K,3s0 if it is true for Ky 0. This being
the case, we take K{ K2=Q and prove (4.3) for the special form

F(A)=f (-?—--£_) dr(n). (4.4)
J-cr. \/X — A 1 + (X /

A final preliminary reduction is accomplished by replacing t(/x) by a simplified
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function t(pl; R) which is nondecreasing and agrees with t(ii) for -R =s p. =sR but
is constant outside [—R, R]. Let F(A; R) denote the corresponding characteristic
function given by (4.4). Then we have t(p; R)—> t(p-) and F(A;R)—>F(A) as
R—»oo. We may assume that R is large enough that the term involving t(ja) in
(4.1) is unaffected by the change. If we can prove (4.3) for compactly supported
dr(p,), then we obtain the general result by letting R —» oo. Hence we proceed with
the proof of (4.3) for the special case (4.4), and in which -ripe) is constant outside
some interval [-R, R].

Introducing

fik,p) 8{iß-k)2+82y\
we have J°°oc/(A, p.) dk tt and

• A- + Ì8/¦A- + .Ö r ^ a a.

ImF(A)dA= dr(M-) fik, p) dk,
Ja.+ìs ¦'-oo A,

since the integral on the right is finite in this restricted case of compactly
supported drip). Let

R(7)=[ dr(p.)\ f(k,n)dk-\ dT(/x)f f(k, pi) dk.

so that a calculation leads to
fi8

i ImF(A)dA=[7rx(A)+R(A)]A,

Now by (4.1) G(A,,A2) [R(A)-S ReF(A + i6)]^, so if we let S(A)
R(A)-<5 Re F(A + i8), then what we must prove is

-H(A1,A2)«S(A2)-S(A1)^H(A1,A2). (4.5)

The identical argument in Atkinson's proof gives

S(A)-| dr(M)/l(^)-J dr(.c)h(^X^J, (4.6)

where hia) J~(l + X' dt-a(l +a2)~\ However, 0« h(a)^(Tr/2)(l + a2)-'
and drip.) is nonegative. Thus (4.6) implies

S(A)«(tt/2)[ dT(^)(l + (^-A)2S"2)-1. (4.7)
J—ZK

But in (4.4) we can compute Im F(A + to) by dropping the term /x/(l + /u,2), which
is real, and the result is Im F(A + i8) SjÜ^ dr(/x/(((x - A)2 + S2). Therefore (4.7)
becomes

S(A)«(7rô/2)ImF(A+iS). (4.8)

In (4.6) we could have used the second term to bound S(A) below, and the result
would then read

S(A)=G-(7rS/2)ImF(A + iS). (4.9)
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Combining (4.8) and the reversed negative of (4.9) we get

S(A2) - S(k y) =£ (7rS/2)[Im F(A2 + iS) + Im F(A, + i8)].

The other half of (4.3) follows from switching the roles of (4.8) and (4.9) as used
above. This completes the proof of the lemma.

Since the norm of a Hermitian matrix equals the maximum of the moduli of
its eigenvalues, (4.3) gives the useful inequality

||G||«||H||. (4.10)

5. Proof of main result

Assume the hypotheses of Theorem 1. Then by (4.1) we have for any 5 >0

J'A2+i8 [F(A)-F„(A)dA
A ,+.8

- 5[Re F(p + i8)- Re Fn(p. + i8)]K^

-G(ky,k2)+Gn(ky,k2), (5.1)

where G„ is the function of (4.1) formed from xn and F„; we will denote by Hn
the corresponding function of (4.2). Each of the first two terms on the right of
(5.1) can be made small by making n —*¦ oo. once 8 has been fixed, by the uniform
convergence of Fn to F on the straight line path of integration, in the first
instance, and at its endpoints in the second. We will thus pick 8 so that the
expression Gn(ky, A2)— G(A1; A2) is also small for large n.

Since Aj and A2 are in either the continuous spectrum or resolvent set, we
have SF(A,+ i5)—» 0, as 8—»0, by the result in [11] quoted below (3.2).
Consequently, H(Al5A2) can be made small by making 8 suitably small, and the same
must hold for G(A,, A2) by (4.10). Turning then to the remaining term G„(A1; A2)
in (5.1), one has

||G„(A„ A2)||=s||H„(A1, A2)H||Hn(A„ A2)-H(A,, A2)|| + ||H(A., A2)||

(5.2)

by the triangle inequality. As noted above, the term ||H(A1,A2)|| on the right of
(5.2) has been made small by choosing 8 near 0. For this fixed 5 we drive the term
adjacent to it to 0 by making n —>oo. This completes the proof of the theorem.

6. Examples, extensions and applications

We close the paper with some examples illustrating Theorem 1, a discussion
of two singular endpoint problems and some remarks on convergence of spectral
functions.

(1) Consider the Sturm-Liouville equation -y"+r(x)y-en(x)y Aw(x)y on
a=£x<=c, where the coefficients are differentiable, n(x)>0 and w(x)>0. Writing
the equation as a system, we may apply the methods of [17] and [15] to give
conditions where the unperturbed (e 0) spectrum is purely discrete and the
perturbed spectrum (e>0) is purely continuously differentiable. Briefly, we need
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r(x) to dominate co(x) for discreteness and n(x) to dominate both r(x) and w(x)
for continuous perturbed spectrum; see [17] and [15] for technicalities. For
example, when co(x) x°\ r(x) xk and n(x) x'n the desired situation prevails
when -2<a <k<m<(a +\).

(2) Similarly, there are criteria given discrete spectrum and continuous
spectrum for the Dirac system

/ 0 A(a(x) + eâ(x))-p(x)\
y — I y, a <x <ooy \-k(a(x) + eâ(x))-p(x) 0 )'

in the unperturbed and perturbed cases, respectively; see [17] and [ 16] for details.
Requirements on the coefficients are similar to Example (1) above; p(x) must
dominate a(x) and â(x) must dominate p(x). If a(x) xy, p(x) xk and â(x)
xR, 1 « x < oo, then (-5) « y < k < 8 will be sufficient.

(3) Our results apply to perturbations of the type -y"+(ln x-xf)y Ay,
l=£x<°°, 23=e3=0. As in Example (1), [15] shows there to be purely continuous
spectrum over (-00,0c) when e>0. For e 0 the spectrum is discrete because
ln x—>=c as x—>=c; see [3].

(4) Suppose now that (2.1) and (2.1)n are singular and of limit point type at
both ends of (a, fc). Selfadjoint operators T and T„ are defined as in (2.6) except
that no boundary condition of the type (iii), above (2.6), is necessary. The
characteristic function for T is given by (see [14])

(« (Ma-Mbr' H)iMa-Mh)-\Ma+Mb)
(i)(Ma + Mb)(Ma - MJ ' MhiMa - MhrlMafu)= /lww 7 *w ,_-, w,;"; °\xx; °-, (6.u

where Ma(A) and Mb(A) are the Titchmarsh-Weyl functions for T at x a and
x fo, respectively. The spectral function t(A) is linked to F(A) by precisely the
same formulas (3.4) and (3.5), and the spectrum <t(T) may be characterized by
the regular, pole and singular structure of F just as we described below (3.2) for
the one endpoint problem. All this was done in [14]. If we assume that (2.8)
holds, then it is true that Fn(A) -» F(A) on compact subsets of Im (A) > 0 by (6.1).
So the proof of Theorem 1 would be valid for (6.1). The conclusion is therefore
valid for two singular endpoint problems, including (1.1).

(5) We apply our results now to spectral families of scalar (limit point)
operators Ly =-y" + q(x)y, 0=£x<°c, where with oo(x) p(x)=l in (2.4), Ly
appears as the first component in (2.6). The domain of L is defined in the usual

way by assigning a boundary condition cos ay(0) + sin ay'(0) 0. Letting ipix, A)
be the solution of -y" + q(x)y Ay with <p(0, A) -sin a and <p'(0, A) cos a, the
"transform" with respect to L of a function feL2[0,«-) is defined as ([3])

g0(A)= f fit)cp(t, A) dt.

If p(A) is the spectral function for L, then the eigenfunction expansion

/(.)=[ g„(A)cp(r,A)dp(A)

converges in the mean to /eL2[0, =c); see [3]. The spectral family ([25]) of L
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consists of the projection operators on L2[0, oo) given by

[S(fx)/](t)= T g0(A)<p(t,A)dp(A).
¦'—oc

Now let {q(x)| be a sequence of potentials such that qn(x)—»• q(x) uniformly
on compact subsets of [0, oo). Then it follows from [25, pp. 283-286] that for the
corresponding operators L„ (with same boundary condition at x 0 as L), £,„—»• L
in the strong resolvent sense, and therefore that Sn(p.) —» S(p) (i.e.,
S„((x)f—» S(/x)/ in L2 norm for all fe L2[0, oo)) where Sn(p.) is the spectral family
for Ln.

We now use Theorem 1 to prove pointwise convergence of the projection
operators [Sn(p.2)-S„(p.])]f to [S(p.2)-S(/x1)]f, where p is continuous at p., and
fx2, for functions / of compact support. For if / is supported on [c, d], then

[Sn(lr-2)-S,Xi)]f(x) f I [ /(0<P»(«i A) df~L(x, A) dPn(A)

f f(t)\ \"2<pn(t, k)cpn(x, A) dpM(A)l dt. (6.2)

By an extension of the proof of the Helly-Bray Theorem in [26, p. 31],
fc<pn(t, k)cpn(x, k)dpn(k)^fätp(t, A)cp(x, A)dp(x), n-^co, uniformly for c=ët=S
d, in view of Theorem 1. Hence (6.2) approaches [S(/x2)_S(p.1)]/(x), as n —> oc,

and this is the desired result.
The above proof shows that (S,.(fx)/)(x) —> (S(/n)/)(x), pointwise for functions

/ of compact support, if the spectra of L and Ln are bounded below by a single
number, say dp„(A) dp(A) 0 on -oo<A < A0. For the integrals from /xj to p.2 in
(6.2) could then be replaced by the integrals from —oc to /x. To prove the
analogous result for spectra unbounded from below would require uniform
smallness of the integrals |^<p„((, A)<pn(x, A) dpn(A) for large negative A0 and
n=\,2, 3 While we do know that each p„(A) is exponentially small as
A —» -oo ([2, p. 18]) and that the terms ipn(t, k)ipn(x, A) are exponentially bounded
as A —» -oo, it is not clear that the resulting bounds are independent of n.
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