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STABILITY OF SOLITONS

E. Magyari and H. Thomas

Institut für Physik der Universität Basel

Basel, Switzerland

Phase transitions (PT's) are announced dynamically by a critical
slowing-down phenomenon which manifests itself in general as a
"softening" of a normal-mode frequency. Thus, bulk PT's both in
lattice dynamics and in magnetism are associated with an extended
soft mode (soft phonon and soft magnon, respectively), announcing
the transition to a new ground state of the system. Similarly,
the instabilities of topological solitons, refered to in this
paper as PT's in domain walls (DW's), are connected in lattice
dynamical systems (e.g. in ferroelectrics) with a soft localized
mode signalling the transition to a new DW structure. In
ferromagnetic systems, however, there occur DW-instabilities which
are associated with an essentially different mechanism of critical

slowing-down, termed "softening of the velocity change". The
role of the soft eigenmode is taken over by the perturbation
which carries the static DW into a moving one with infinitesimal
velocity, and the role of the soft-mode frequency is taken over
by the velocity change induced by the perturbation. The present
contribution aims to survey by means of two typical examples the
basic aspects of soliton (DW) instabilities in quasi ID crystals
and in Heisenberg ferromagnets, and to discuss their peculiar
dynamics comparatively.

1. Domain Walls in Lattice Dynamical Systems /1,2/
1.1 Model and Domain Wall Solution
We consider an unbounded 3D crystal with two-component order
parameter Q (Q].fQ2) quartic anharmonicity and anisotropy in the
on-site harmonic terms which may be realized by coupling to an
external uniaxial strain. In classical continuum approximation
the model is described by the Hamiltonian

H
2 /[Qi2+Q22+(VQl)2+(VQ2)2"glQl2~g2Q22+

+ |u(Q12+Q22)2]dxdydz (1.1)
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giving rise to the equations of motion

Q1.2 - v2qi,2 «1,2 Ql,2 - U(Q12 + Q22)Q1,2 • (1'2)

where Q1>92 >0' u > ° and the dot denotes d/dt.
The system has a doubly degenerate ground state (GS)

Ql ±Q10 ±^1/^)1/2. Q2 0 (1.3)

The linear excitations of these uniform field configurations
consist of two phonon branches with frequencies

"lq 2gi + q w2q g± - g2 + q (1.4)

showing the linear stability of the GS's for g <g At <3-,=<-.0 there
occurs a first-order PT to a state with Q and Q interchanged,
associated with a soft phonon. The occurrence of a soft mode at a
first- order PT is connected with the fact that the point gi g2
of the above model is a point of infinite degeneracy.

We are interested in this Section in a certain class
of quasi ID configurations of the displacement field Q, namely in
plane DW's Q^ 2(x,y,z) Q^ 2(z-vt), which are static (v=0) or
uniformly moving (v=const=)t0) permanent-shape field structures
connecting the two GS's ("domains"). The dynamic equations (1.2) are
invariant under a formal Lorentz transformation (z,t) ¦+ (ç,t),
where ç y(z-vt), x= y(t-vz), y (1-v2)-1/2 and v2 < 1. Therefore

it is sufficient to consider the static DW's only, since by
the substitution (z,t) -+ (ç,t) all results may be transcribed
directly for moving DW's.
The static wall structures are solutions of the system of coupled
equations

Qi,2 -9l,2Ql,2 + U(Q1 + Q2)Q1,2 ' (1-5)

satisfying the boundary conditions

Q1(±cc) ±Qio Q2(±co) 0

Q-_' (±«) Q2' (i») 0
(1.6)

where the prime denotes d/dz.
Equations (1.5) may be interpreted as the equations of

motion of a point particle in the plane (Qi,Q2) under the influence

of a potential
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v(q1,q2) l-gjQ-L2 + g2Q22) - ^^i2 + Q22)2- (1-7)
This analogy permits to write down immediately a first algebraic
integral of the system (1.5), namely the "energy" integral

II 2 (Ql'2 + Q22) + v(Qi'Q2) • (1-8)

By using some special methods /3,4/ one finds surprisingly also a
second algebraic integral /2/:

I2 (QjQ2 - Q2QX + u i(g1-g2) [ Q-^
z - Q„ " +

2 „-l/_ \ r r,
' 2 „ ' 2

2

2 2 14 4 (1-9)
+ g1Q1 - g2Q2 - | u(Q1* - Q2*)]

The existence of this integral offers the possibility to enumerate
by qualitative analysis all the solutions of the system (1.5).

This analysis shows /2/ that there are only two DW solutions
satisfying the boundary conditions (1.6), namely:

(1) A one-component DW

Q1I(z) Q10 tanh [(| g1)1/2z] Q^ 0 (1.10)

I 3/2with energy per unit xy-area E (y/3u) (2g..) ' existing in the
whole interval 0 < g < g and

(2) A two-component DW

Q1II(z) ±Q10 tanh [(gi-g2)1/2z ]

Q9ZI(z) Q,n sech [ (gi-g0)1/2z ]
(1.11)

with energy per unit xy-area E11 (2y/3u)(g +2g )(g,-g2)
where Q„n [(2g -g )/u ]1'2, existing only in the interval
g/2< gZ2U< gv

2 X

We notice that the system described by the Hamiltonian
(1.1) has attracted considerable attention in recent years.
The ID-counterpart of (1.1) was also investigated extensively in
various fields of the soliton theory /5-7/.

1.2 Energetic and Dynamic Stability
We discuss in this Section the linear stability of the DW's (1.10)
and (1.11). To this end we first linearize Eqs. (1.2) according
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If the LHS of (1.17) vanishes for both z -+ - <» antj z -u + oo, the
corresponding x is termed a "localized mode" of
the DW. Otherwise, x is referred to as an "extended mode" of the DW.

We now immediately see that the DW is linearly stable
if no negative eigenvalue co2 of Eqs. (1.15) exists (for w2 < 0 the
perturbation grows exponentially for t -+ °°) The case w2 0 is
of special importance because each solitary wave on a translatio-
nally invariant system has an u2 0 mode, the well-known Gold-
stone mode (GM), which restores the broken translation symmetry.
In the present context the GM of our DW is

{"2< Xl,2}GM= {°< Qi,2 (Z) } ' (1-18)

According to the above considerations the GM is defectively degenerate,

and one finds the accompanying "algebraic mode" (AM):

{"2' *1,2}AM= {0< fc Qi,2 (Z)} • (1-19)

Let us now examine the physical significance of the AM (1.19). If
Q-. _ (x) is a static DW solution of Eq. (1.2), then, as mentioned
above, Q „(ç), ç= y(z-vt), is also a solution, describing a DW

moving with velocity v. For infinitesimal v and finite times,
Q, ~(Ç) Q, z) - vt Q' „(z). Comparing this expression with Eq.
(I'.I9), we see immediately that the AM (1.19) represents a perturbation

which carries the static DW into a moving one with
infinitesimal velocity. Similarly, the AM {oo2 x\ o^AM ^0, T Qi 2^^'
represents a perturbation which generates from the given ' DW

moving with velocity v another DW moving with infinitesimally
changed velocity v + <5v, since for v -> v + 6v, Q 0(ç) -+ Q, ~(ç) -
- Y2<SvTQi 2(ç).

X' '
' After these general considerations let us examine the

stability of the one-component DW (1.10) in detail. In this case
the system Q-. 15) decouples into two Schrödinger-type eguations:

2
I -T-2 + - (to - 2g + 6 sech s ] X, 0

as gl l L (1.20)
r d „ ,2,2. .^ ,2—2 +-^«0 + g2- g;L)+2sech s ] X2 0

1/2where s (g./2) z These equations can be solved explicitly.
One finds three localized modes: the GM

2
to 0; x, sech s x? 0 (1.21)

a thickness vibration mode
2 3

co — g.. ; x sech s tanh s, x2 0 (1.22)
and an internal oscillation mode of the DW

2 1
03 ^ Q1 - <32 f X1 0 x2 sech s (1.23)

(The extended modes of the DW (1.10) can also be written down
explicitly. They are, however, of no relevance for the stability,
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to the ansatz

Ql,2 Q1,2(Z) + h,2 (Z'U (1-12)
and obtain

X'l,2- V\,2 [gl,2 - U (3Q122+Q221)]X1, 2-2uQlQ2X2,1 (1-13)

where X are small deviations from the components Q _(z) of
the DW ufiaer consideration (the superscripts I and II ftere omit-)
ted). We are interested in solutions of the form

X1/2(z.t) X1/2(z) T (t) (1.14)

Equations (1.13) and (1.14) lead to the following system of
ordinary differential equations

2

[§--2 + co2 + gli2 - u(3Q22 + Q2^)] x1#2 ^Q, X2>1 (1.15)

T + co2T 0 (1.16)
2

where -to denotes the constant of separation. These equations are
of basic importance since (1) they determine the possible linear
excitations of the DW, and (2) the linear excitations yield complete

information about the linear stability.
Equation (1.16) is very simple. For co * 0 its general

solution is a linear combination of the exponentials
T _= exp(-ito t) with co ± to whereas for to 0 one
has 1.1 const. and T2 t We see, therefore, that in
the function space (xl of separable perturbations, each eigenvalue

to2 of Eqs. (1.15) is doubly degenerate with respect to the
time-dependent part of the.perturbation, i.e. each eigensolution
{co2; Xi 2^ of d-15) is associated with two linearly independent
time-evólution functions T. For nonvanishing eigenvalues to2, the
corresponding T's are purely exponential functions of t, but for
co2= 0 the two characteristic frequencies become coincident,
co. to 0 and both the purely exponential T's reduce to a
constant. In analogy to comparable situations occurring in algebraic
eigenvalue problems, this type of degeneracy may be termed "defective"

/ 8/. Obviously, it is only apparently "defective", since
the role of the missing exponential T is taken over in fact by a
solution with an "algebraic" t dependence, T t

The separation constant to1 was referred to above as
eigenvalue parameter of Eqs. (1.15), but the corresponding eigenvalue

problem was not fully defined. This problem is specified by
the physical requirement that the configurational parts x, 2(z)
of the normal modes (1.14) be bounded functions of x,i.e.

lim xx 2(z) < oo (1.17)
lz h °°
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since these solutions correspond to the continuous spectrum of two
Eqs. (1.20) extending to the regions co2 > 2g and to > g -g > 0,
respectively). Therefore, the one-component DW (1.10) is stable
for g < g./2. At g„ g./2 there occurs an instability against
a soft localized oscillation (1.23) and a bifurcation /6,7/ of
the two-component DW (1.11), signalizing a second-order PT within
the DW. For g2 > g]_/2 the two-component DW must represent the
stable DW up to the bulk stability limit g2 g., because no
other solution connecting the two GS's exists /2/. It does not
appear simple, however, to confirm this stability by solving
analytically the corresponding eigenvalue problem (1.15) & (1.17)
for the linear excitations of the DW (1.11). Indeed, Eqs. (1.15)
do not decouple in this case,and except for the zero-frequency
mode (1.18) no other closed-form solution seems to exist.

As an important conclusion we emphasize that the
instability at g„ g^/2 represents a second-order PT in a DW with
order parameter Q7n/ which is associated with a soft localized
mode, and which anticipates the bulk PT occurring at g„ g.
(Fig. 1). Such behaviour (DW instability as precursor of a Bulk
instability) appears to be a generalphenomenon in lattice dynamics

as discussed by Lajzerowicz and Niez /9/.

bulk

oc

2gi gi

Fig. 1 Phase transition in a
lattice-dynamical DW. The bulk
PT at g2 gi is associated with
a soft phonon of frequency
uq=èk (gi~<?2)1/2 » the domain-
wall PT at g2 igi is associated

with a soft ' localized
mode of frequency to]_oc
<Ì9l-92>V2

We close this Section with three remarks,
(i) We see that at the bifurcation point g g-,/2 of the two-com-

-ta... _ ••__--,. tata, _ _ .2 ta^tata.-tatal.
ponent DW, the (soft) eigenvalue corresponding to the internal
oscillation mode (1.23) of the one-component DW becomes defectively

degenerate in the function space (x(z,t)} (and regularly
degenerate with the GM (1.21) in the function space { X (z })• Hence,
at g2= g-,/2 the soft mode (1.23), x?

0 ={0,sech s} is accompanied
by an algebraic mode X$ {0, t se6K s}. What is the
significance of the defective degeneracy of the soft mode? At the
bifurcation point, the linear part of the restoring force of the
internal oscillation mode vanishes. Therefore, an initial perturbation

x? ?(0) a {0, sech s}/given an initial velocity
Xs .-.(O) ='v {0, sech s}, will evolve in time according to a linear
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law x? o(t) (a + vt) {0, sech s} corresponding to a linear
superposition of the soft mode and the associated AM, until the
motion is reversed as a result of anharmonic contributions not
considered in linear stability analysis. In other words, the AM
describes in this case the initial stage of the nonlinear oscillation

in the purely anharmonic potential at the bifurcation point
/ 8/.
(ii) Our second remark concerns the space-dependence of the
perturbations of the DW's. By linearizing Eqs. (1.2) according to
the ansatz (1.12) we have considered "uniform" perturbations,!.e.
perturbations depending only on the coordinate z normal to the
plane of the DW's. Obviously, "nonuniform" perturbations, i.e.
perturbations depending also on the coordinates x and y in the
plane of the wall, x X(X»Y/z,t), may not be excluded a priori.
Their (undramatic) effect, however, may be evaluated easily. Indeed,
the linearized dynamic equation (1.13) is invariant under x- and
y-translations which implies that the (x,y/-dependence of the
non-uniform perturbations may be taken of the form exp [i(gix+q2y)]
where q^ and q2 are the components of a wave vector q lying in
the (x,y)-plane. Thus, the only effect of nonuniform perturbations

on the eigenvalue equations (1.15) is the replacement of
d2/dz2 by (d2/dz2)-q2, where q2 qj^2 + q22. This is equivalent
to a shift of the eigenvalues to2 by a positive quantity q2.
Therefore, the nonuniform perturbations have no influence on the
stability limit of the one-component DW.

(iii) We would like to comment briefly also on the title of the
present Subsection 1.2. The linear stability analysis carried out
above is a "dynamic" stability analysis, since it yields complete
information about the time evolution of the perturbations. On the
other hand, the structure equations (1.2) of static (Q 0) field
configurations are just the Euler-Lagrange equations corresponding

to the static part H of the energy functional (1.1), i.e.
for static structures the functional H is stationary. Therefore,
the linear stability of static DW's could have been analyzed also
"energetically". The energetic stability analysis only requires
to expand H f Q ] to second order in the static deviations
Xi 2(z) from trié DW Qj^ 2 (where W stands for I or II),

H,. fO, ,] H QW ] +'AH [ x-, -Ai and to determine the eigen-
values e of AH as function of g^ and g2. The DW under consideration

is energetically stable if no eigenvalue e is negative. The
limit of stability occurs at critical values of g-, and g2 where
an eigenvalue e vanishes. This "diagonalization" procedure of the
second variation AH0 of H0 leads to the eigenvalue equations
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<5 (AH
o

X 1,2
£ Xl,2 (1.24)

where the LHS represents the functional derivative of Ahq with
respect to Xi 2 •

An energetic stability analysis is
in general less powerful than a dynamic one, since it yields no
information about the time-evolution of the perturbations (in
particular on the dynamics of possible instabilities), but the
corresponding eigenvalue equations may be substantially simpler than
the linearized dynamic eigenvalue equations. The spin-dynamic
system discussed in Sect. 2 yields an explicit example in this
sense. In the present lattice-dynamical context, however, the
"energetic" eigenvalue equations (1.24) coincide with the dynamical

ones (1.15), with e co2

2. Domain Walls in Magnetic Systems /10-12/

2.1. Model and Domain Wall Solutions

We consider in this Section a ID biaxial Heisenberg ferromagnet
described by Hamiltonian

¦j O v o
(2.1)H Z.{-JS.• S. ta.i l l+l A(SZ)2 c(s*)2}

where J and C are positive constants and A is a parameter satisfying

A<C such that the Sx axis is the easy axis. The hard axis
is along S for A>0 and along Sz for A>0. In the classical
continuum approximation one obtains the energy functional

+ oo

E [s] - ì / (s'2 - as2 - s2 + l)dz (2.2)

and the equation of motion

s s x (s" + s e + as exx z z
(2.3)

where s(z,t) S(z,t)/S, s 1, a A/C <1, the prime indicates
8/oz, the dot denotes 3/3t, and the units of z,t and E are
[ z] (J/2Cr2d (d is the lattice constant), [t]= (2SC)-1 and
[E] S2(2JC)!'2, respectively.

_^ For a <1, the ground states of the system are the
domains s (±1,0,0) while £or a >1 this role would be taken over
by uniform solutions s (0,0,±1). The dispersion relation
for the small-amplitude oscillations (spin waves or magnons) in
the domains (±1,0,0),

co2 (1-a+q2) (1+q2) (2.4)
shows that these configurations are indeed linearly stable for
a< 1, and that the first-order PT ("bulk instability") to the new
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ground states s" (0,0,Ì1) occurring at a 1 is associated with
a soft magnon.

We now consider solitary waves s(z,t) s (Z z z_vt,
connecting the two ground states (±1,0,0) of the system. These
are 180° DW's satisfying the boundary conditions s"(±<») (±1,0,0).
There are two static (v=0) DW's (plus their trivially symmetric
counterparts) satisfying these boundary conditions. One of them
is the Bloch wall

sx tanh z, s sech z, sz 0 (2.5)
with energy EB 2, and the other is the Néel wall
s tanh f (1-a) 2z], s„ 0 s sech [ (1-a) 2z] (2.6)

1-2Y z
with energy EN 2(1-a) The widths of these DW's are given
(in physical units) by the expressions <5 (J/2C) 2d and <5

(J/2C)/2(l-a)- 2d, respectively. Therefore, the Bloch and Neel
walls are long-wavelength profiles of the spin field satisfying

the validity requirement of the continuum approximation
(<5>>d) only if J>>C or J>> C-A respectively.

For a + 0, any "intermediate" wall between the Bloch
and Néel wall is a moving DW. These moving DW's may also be given
in simple analytic form /12/. it turns out /12/ that for fixed
a ^ 0 the possible wall velocities are restricted to the interval
|v|<|l-(l-a) 2|. For a 0, on the other hand, there exists a
family of intermediate static DW's which is described by

-u
s tanh z, v sech z, k sech z) (2.7)

2 2where the constants k2 3 are subjected to the condition k + kt=l.

3.2 Energetic and Dynamic Stability
Our aim in this Section is to examine the linear stability of the
Bloch and Néel walls in detail. We start with the Bloch wall, by
representing the spin field in spherical coordinates s" (coso
cos<}>, cosG sin<|>, sinG) where |G|«tt/2 and 0<c|><2tt. Thus, the wall
(2.5) becomes Q 0, sin<j) sech z. Linearizing now the dynamic
equations (2.3) around (QB,c|>B) according to the ansatz

0(z,t) G_.(z) + a(z) exp (-icot)
B (2.8)

<Mz,t) c(>B(z) + ß(z.) exp (-icot)

we obtain for infinitesimal deviations (a,£) from the wall
configuration the following system of coupled eigenvalue
equations :

(L+a)a icoß, Lß -iioa (2.9)
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2 2 2where L -1 + 2 sech z + d /dz Before we examine the physical
content of these equations, i.e. the dynamical aspects of the
stability, we discuss the stability problem from the energetic
point of view. This is possible, since for static spin configurations

the energy functional (2.2) is stationary,i.e. for s" 0
the structure equations (2.3) are obtained as Euler-Lagrange
equations corresponding to the variational functional (2.2).
Therefore, as described at the end of Sect. 1.2, we expand E[0,c|>]
to second order in the static deviations (o(z), ß(zl) from (0B/t>B)
and determine the eigenvalues e of Ae[a,3] as function of a.
This leads us to the eigenvalue equations

(L+a+£)a 0 (L+e)ß 0 (2.10)

The Bloch wall is stable as long as all en(a)>0 The limit of
stability occurs at a critical value ac found as the root of
e0(ac) 0 where e0 is the lowest eigenvalue. The corresponding
eigenmodes (an ßn) are for en 0 solutions of the linearized
equations of motion (2.9) with to 0
We see now explicitly that in the case of the magnetic DW's (in
contrast to the lattice dynamical ones) the energetic stability
analysis is operationally much simpler than a dynamic analysis,
since the energetic eigenvalue equations (2.10) are decoupled,
unlike their dynamical counterparts (2.9)

The system (2.10) admits two localized solutions:
(1) e=0, a=0, ß= sech z, which is the Goldstone mode reflecting
the marginal stability of the Bloch wall against translations,
and (2) e=-a,a= sech z, ß= 0. Therefore, the Bloch wall is
energetically stable against 0 perturbations for any a<0, but at
a a 0 it becomes unstable with respect to a perturbation
connecting it to the family of static 180° DW's given by (2.7).
A similar analysis of the Néel wall (2.6) shows that this static
spin configuration is energetically stable for 0<a<l and becomes
unstable also at a 0 with respect to a perturbation connecting
it to the same family of static 180° DW's.

Let us now return to Eqs. (2.9) with the aim to elucidate
the normal-mode dynamics of the DW instability at a=0. The

dispersion relation (2.4) shows that the domains connected by the
walls under consideration are stable above the bulk-PT point a=-l.
Having in mind the lattice-dynamical example discussed in Sect. 1
one might expect (compare Figs. 1 and 2) that the instability of
the Bloch wall at a=0 is associated for a^O with a localized
dynamic spin mode (a(z, a) ß (z, a)) corresponding to a frequency to (a)
whose square is positive for a<0 and negative for a>0, such that
for a->-0, to (a) goes to zero and (a (z., a) ß (z a) approaches the
static instability mode (sech z,0). This is, however, not the
case. In the present model, the non-existence of such a soft lo-
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calized dynamic spin mode can explicitly be proven, since the
system (2.9) may be reduced to trivially coupled equations *).
Indeed, by the ansatz c.= (l-k)Wç- (l+k^, ß=(l+k)WQ + (l-k)W1,
where k (a+2ico) ^2 (a-2ito)-^2, the system (2.9) goes over into

(2L + a+fi)W 0, (2L + a-fi)W. -4icoW (2.11)o lo2 2 !"2where __= (a + 4co It is easy to show that this system
admits localized solutions only for __=-a, i.e. for co=0, /12/. Thus,
the only localized solutions of Eqs. (2.9) are identical to the
static eigenmodes, i.e. the GM (a,ß) (0, sech z) for any a, and
at a=0 in addition the static instability mode (a,ß)= (sech z,0).
Therefore, the energetic instability of the Bloch wall at a=0 is
not associated with a localized soft dynamic spin mode. The
normal-mode analysis of the Néel wall leads to a similar result.

How can the absence of a soft mode be reconciled with
the existence of an instability? As we have shown, the family of
intermediate static DW's (2.7) bifurcate from the Bloch wall at
the critical field a=0. On the other hand, any infinitesimal 0
deviation from the Bloch wall leads for any value of a to a DW

moving with infinitesimal velocity /12/, except for a=0 where it
connects to a static DW with infinitesimal kß. This result
suggests that in the present problem the role of the soft eigenmode
is taken over by the 0 perturbation which carries the static DW

into a moving one, and the role of the soft-mode frequency is
taken over by the resulting velocity change. The "softening" of the
velocity change 6v at the critical value ac=0 may be seen explicitly

by calculating <5v produced by a perturbation with maximum
deviation 60o as function of a. The simple and convincing result is
&v/ÒQ0 a (Fig. 2).

This picture is confirmed by a more careful stability
analysis. Instead of making the exponential ansatz (2.8), we
linearize the equation of motion (2.3) for deviations ä(z,t) and
ß(z,t) from the Bloch wall, with arbitrary time dependence. In
this way, in addition to the Goldstone mode (ä^jß^^) =_(0, sech z)
we find a nonexponential solution ä2 (v/a) sech z, ß2=
-vt sech z, the "algebraic mode" of the DW. For a^O v^O this
mode describes a DW moving with infinitesimal velocity v. For
a+O v-*0 v/a finite, it reduces to the static instability mode

(a,ß) (sech x, 0).

*) We want to emphasize that the possibility of decoupling of
Eqs. (2.9) is an accidental property of the model discussed. In
other cases of physical interest, e.g. for a planar ferromagnet
in an external field /13,14/, the dynamic eigenvalue equations
can not be decoupled, and thus the energetic stability analysis
represents the only source of analytic information about the soliton

stability.
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Fig.2. Phase transition in a magnetic DW. The bulk PT at a 1 is
associated with a soft magnon of frequency to§üJk (1-a)1^2 ; the
domain-wall PT at a 0 is associated with a soft velocity change
<5v/ôe0 a

We close this Section with a brief discussion of the
nonuniform modes of plane DW's in 3D magnets. Similarly to the
case of the lattice-dynamical DW's the (x,y)-dependence of the
nonuniform perturbations of the Bloch wall may be taken of the
form exp[ i(q^x + q2y)] where q^ and q2 are the components of a
wave vector c| lying in the (x,y)-plane. Thus the only effect of
the nonuniform perturbations on the eigenvalue equations (2.9)
and (2.11) is the replacement of L by*) L-q2, where q2=qi +q2
As a consequence, the system (2.11) admits localized solutions
only for Q 2q2-a i.e. for to2 q2 (q2-a) We see, therefore,
that in a real 3D ferromagnet the Goldstone mode is connected to
a branch of corrugating modes which for small q are unstable for
a > 0 and stable for a < 0 (Fig. 3).

*) This is now only valid if the contribution of the magnetosta-
tic interaction to the total energy density may be replaced by a
term proportional to the hard-axis part as? of the anisotropy
energy. This is exact for the unperturbed DW and for uniform
perturbations, and is a good approximation also for nonuniform
perturbations with wave lengths large compared to the DW thickness

/15/.
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Fig.3 Frequencies of the nonuniform wall modes as functions of
the wave vector in the wall plane for a lattice-dynamical DW (a)
and a magnetic DW (b)

Fig.3 demonstrates the different dynamical behaviour
at a DW phase transition in a lattice-dynamical DW and a
magnetic DW. In the lattice-dynamical case there exist two low-
lying branches, the Goldstone.branch to2 q2 and an internal -
oscillation branch to2 q2 + —g - g and the DW phase
transition is associated with the softening of the latter. In the
magnetic case there exists only a single branch, the Goldstone
branch to2 q2 (q2 - a) ,which becomes destabilized at q^ 0 for
a> 0. At q=0, the DW phase transition shows only in the algebraic

mode, giving rise to the softening of the velocity change.
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