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Broken symmetries and the generation of
classical observables in large systems

By Anton Amann

Laboratorium für Physikalische Chemie, Eidgenössische Technische Hochschule,
ETH-Zentrum, CH-8092 Zürich

(29. V. 1986)

Summary. Infinite systems are described by an asymptotically abelian action â of space
translations on a quasilocal C*-algebra _j_. Broken symmetries with respect to an action ß of a locally
compact separable group G (essentially) commuting with <v are examined. It is shown that broken
symmetries give rise to classical observables based on a transitive system of imprimitivities over G/H,
where HgC denotes the subgroup of preserved symmetries and G/H is the set of left cosets of H
in G.

I. Introduction

In textbooks and research papers of quantum mechanics the concept of
'observables' frequently is a heuristic one: Observables are said to correspond to
measurable physical quantities. Depending on the particular formalism they are
described by (self-adjoint) operators on a Hilbert space or elements (operators)
of an algebra, a C*- or W*-algebra for example. 'Observable' and 'operator'
sometimes are almost synonymous and the set of operators is introduced as

'algebra of observables'.
A more subtle view of this matter involves a distinction between observables

and their measurement and regards observables as quantities which characterize a

system intrinsically. Observables (such as position and momentum) then
correspond to very particular operators of an algebra, thus giving structure to the

very abstract mathematical apparatus of quantum mechanics.
One way to introduce observables without use of recipes (e.g. the rules given

by the correspondence principle) is based on group-theoretical concepts (cf. [1],
[2], [3], [4, 5] a.o.): Observables are defined as operators which transform
'suitably' under the action of a kinematical group, e.g. the Galilei group. This
way to look at observables is well elaborated in case of observables such as

position and momentum (cf. also [6, 7], [8]) and can be extended to more general
situations by giving a proper sense to the word 'suitably' (s. [4, 5] and chapter II).

Within the quantum mechanical formalism a prominent but sometimes
underestimated role is played by the classical observables (superselection rules).
In the algebraic formalism they correspond to elements of the center of the
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respective algebra denoted by M, i.e. by elements from Z{M) d= {x e M\xy =yx
for all y e M). Examples for classical observables are charge and mass of
particles, chirality and nuclear frame of molecules, temperature and chemical
potential of substances and the time operator in Galilei-relativistic quantum
systems (s. [5]: ch. IV).

A particularly interesting class of classical observables arises in systems with
broken symmetry. Such observables are sometimes said to be generated
'spontaneously'. As examples consider the spontaneous magnetization (the
rotation symmetry is broken, cf. [9]: 3.2, 11(3)), the phase operator (the gauge
symmetry is broken, cf. [9]: 3.2, 11(2), [10]) or the momentum operator in an
infinite system (in the latter example the 'boost'-symmetries are broken, cf. [11]).

A symmetry ß of a system of algebraic quantum mechanics is called broken
with respect to a factor representation n of the underlying algebra si of the

system, if there is no automorphism ß of the generated von Neumann algebra
ji{sd)" such that ß ¦ n n ¦ ß. If the representation n is a GNS-representation
with respect to a factor state - invariant with respect to an additional (asymptotically

abelian) action â - then a symmetry ß commuting with à is accordingly
broken if and only if the state is not invariant under ß (see chapter III, obs. 1; cf.
[9]: 3.2, 12(3)).

The generation of classical observables in systems with broken symmetries
has not yet been entirely clarified:

- Classical observables are often constructed and introduced not as central
operators of an algebraic system but in a degenerated form, namely as

C-numbers (expectation values) associated with certain factor states.

- Sometimes classical observables are constructed by considering direct sums of
representations, e.g. the direct sum of representations with different momentum

parametrized by elements from IR3. This procedure always leads to classical
observables with discrete spectrum which is undesirable in many situations.

It is the goal of the present paper to overcome difficulties such as those
sketched above. The formalism of C*- and W*-algebraic quantum mechanics will
be used in the sequel. A comprehensive review of this formalism from the
physical point of view is given by Primas ([12]). For a shortcut presentation of
group-theoretical aspects in it see e.g. ([5]: Ch. I). Infinite systems and quantum
statistical mechanics on an operator algebraic level are discussed by Bratteli and
Robinson ([13, 14]). The purely mathematical aspects of operator theory are
treated in the monographs of Dixmier ([15, 16]), Pedersen ([17]), Sakai ([18]) and
Takesaki ([19]).

II. Observables based on systems of imprimitivit ies and induced
representations

C*- and W*-systems

A C*-system {si, G, ß) consists of

- a C*-algebra si
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- a locally compact separable group G

- a mapping ß:G—> Aut si of G into the automorphism group Aut si of the
*-algebra sé with the properties
(i) ßss °ßg2 /W Su Si e G {ß is a representation),

(ii) For every operator * e ^, the function {G3g^j8g(jc)} is continuous with
respect to the norm-topology on sl {ß is pointwise norm-continuous).

A W*-system {M, G, ß) is defined similarly: M is then a W*-algebra and the
norm-topology in (ii) is replaced by the a-weak topology.

W*-systems {Mx, G, ßx) and {M^, G, ß2) are said to be conjugate if there
exists a ^isomorphism k: Mx-^> Jt-, such that ß2g°K K°ßXg, Vg € G, holds.

Commutative W* -systems

To each closed subgroup H oi G one can associate in a natural way
a commutative W*-system {££JfilH), G, Ad AG/W): G/H denotes the set

{gH | g e G) of left cosets of H in G (with the quotient topology). On G/H there
exists a probability measure \J-cih, quasiinvariant under the transitive
representation

sg0:G/H^G/H, g()eG,

SgA-gH-^gogH, geG,
(cf. [20]: V.3). Every probability measure /j, with the same property is

quasiequivalent to \jlCih-
ta2L(G//f) is the commutative W*-algebra consisting of equivalence classes

(modulo /iG/w-null sets) of essentially bounded complex-valued jUo/^-measurable
functions on G/H. The representation

Adr\G/H{g):^4G/H)^X(G/H), geG,

(Ad kCIH(g)f)(x) =f(sg-xx), x e G/H, f e SL(G/H),

is well-defined and a-weakly continuous.

Observables

Observables in a VK*-system {M, G, ß) are described here by a faithful
normal (i.e. a-weakly continuous) covariant ""-isomorphism

T.<e*,{G/H)-+M

ßg°x T°AdAG///(g), geG, (covariance),

of ^{G/H) into M, where H is a closed subgroup of G. This description is

equivalent to a transitive system of imprimitivity in the algebra M (cf. [2], [3],
[21])-

This definition is adapted to the particular situation of commuting (central)
observables treated here. More general situations require a covariant (positive,
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linear, normalized but not necessarily multiplicative) mapping cp:ï£x(G)^> M
{H {e} is trivial) (s. [5]). If (M, G, ß) is ergodic and admits such a mapping cp,

a closed subgroup H oi G can be shown to exist such that the central system
(2t(M), G, ß\S(M)) is conjugate to (Ï£X(G/H), G, Ad AG/W) (s. [5]: Theorem
III.4). Thus the consideration of central observables alone just leads to the
definition given above.

As an example take the 'Weyl group' G U6 {(q, p)\q,p e IR3}, where
q describes a space^translation and p describes a shift of momentum. Then
the subgroup H {(0,p) \p e IR3} corresponds to a position observable whereas
the subgroup {(q, 0) | q e IR3} corresponds to a momentum observable. The
former case does not play a role in infinite systems, whereas the latter has been
investigated in ([11]).

Induced representations

Let {Ad p{g) | g e G) denote the representation

Ad p{g):^{GX^{G), geG,

(Ad p{g)f){s)d^f{sg), s e G, geG,

of G on Zßjfi). Aâp acts 'from the right' just as Ad A =f AdAG/{e} acts 'from
the left' on 2J{G) _2L(G/{e}).

Consider a W*-system (&*, H, y) of the closed subgroup H of G on the
W*-algebra _F. The W*-system (Af, G, e) Indg{^, y) induced from {&, H, y)
is defined by (cf. [21])

Afd^{y e ^(G) ® & | (Ad p(h) ® yh)(y) y, VheH)

ek(y) d= (Ad X(k) ® ld)(y), yeJf,keG.
Here <8> denotes the W*-tensor product, {Ad p(h) ® yh) the tensor product
automorphism of the automorphisms Ad p(h) and yh, and Id the identity
automorphism of &>. & is supposed to have a separable predual $v

The W*-algebra ^„(G) <8> _F can be considered as the set of (equivalence
classes of) essentially bounded /iG-measurable (in the sense of [19]: Chapter
IV.7) functions y : G—»• &? from G into 9. If y : G^> 3e is an element of M, it can
be assumed (by eventually changing y on a null set) that

y(gh) y-\y{g)), g^G, heH, (l)
holds. Conversely every y e _-?_.(G) <8> <F fulfilling the relation (1) constitutes an
element of Af.

Let p:G—A-G/H, p(g)=lgH, geG, denote the projection mapping of G

onto G/H. There exists a Borel mapping r.G/H^-G with the property p ° r Id
(use e.g. [17]: 4.2.13, and of course the separability assumptions made here). Id is

the identity mapping on G/H, and r is Borel means that it is measurable with
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respect to the a-algebras generated by the open sets on G/H and G, respectively.
In the following elements of G/H will be denoted by g. The ""-isomorphism

X:Af^^(G/H)®&
X{GBg^y(g) e 3} ^{g/H3g^y(r(g)) e 3)

is well-defined if every y e Jf is represented by a mapping {G sg^y(g)e 9)
fulfilling relation (1). It's inverse is given by

J:%X(GIH)®9-*N

J{G/HBg^x(g) e 3} ®{Gag-* yg-tr(p(g))(x{p{g)))}.

The representation {J^ekJ | k e G) on {^(G/H) ® 2F) has the property

/-,e4/(/®l) AdAc///(/)<Sl (2)

/ e &4G/H), keG.

III. Observations and results

We consider a separable unital C*-algebra 88, describing an infinite system,
and two actions ô":IR3—> Aut 38, ß : G'-*¦ Aut 88, where G is an arbitrary locally
compact second countable group (e.g. the Galilei group), ä corresponds to the
space translations of the system. The following properties are assumed to hold:

(i) limai^\\[&i(x),y]\\=0 Vx,ye®,
(ii) for arbitrary geG and q e IR3 there exists an element g[q] e U3 such that

ßg ° *5 ° ß«-' *AÎ\-

Asymptotic abelianess (i) with respect to space translations is a property typical
for physically relevant infinite systems. It is a very strong assumption since it
implies that Einstein-Podolsky-Rosen correlations vanish for large spatial
distances.

Observation 1

Two extremal â-invariant states on 88 are either equal or disjoint (use [13]:
4.3.19 and [17]: 7.12.8). Furthermore each â-invariant factor state V on 88 is

extremal invariant (this follows from [17]: 7.12.8). If such a factor state W is

quasiinvariant under an automorphism ßg it follows that V is ^.-invariant. Thus
ßg can be implemented on the von Neumann algebra jiy(Sß)" generated by the
GNS-representation of 38 with respect to W if and only if V is /^.-invariant.
Accordingly the symmetry ßg is broken with respect to the factor state W if and

only if W =/= V o ßg. For this observation the separability of 38 is unneccessary.
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Observation 2

Let co be a /3-quasiinvariant state on 88 and let (W(0, nm, Qw) denote the

corresponding GNS-representation. Then Xm is a separable Hilbert space and the
extension ß of ß to jrM(88)" is pointwise a-weakly continuous (cf. [11]: chapter
III), i.e. (jtm(m)", G, ß) is a W*-system.

Theorem. Let cp be an extremal â-invariant state on the separable C*-algebra
88 and define H {g e G \ cp°ßg cp). Then H is a closed subgroup of G and
the action {ßh | h e H) can be extended to an action {yh\h e H) on ^(88)" where

Ka, is the GNS-representation of 88 with respect to cp. There exist

(i) an ä-invariant and ß-quasiinvariant state co on 88 (the corresponding
extensions of à and ß to M — ;r.u(38)" are denoted by a and ß)

(ii) and a faithful *-isomorphism r:^(G/H)-*2£(M) of J£œ(G/H) into the

center 3£(M) of M with the properties

0g°T T° Ad kGIH(g), geG,
<xij°T=T, qeU3.

The state co can be chosen such that the W*-system (M, G, ß) is conjugate to the
induced W*-system Ind^ {^(88)", H, y). In particular M is then of the form
M £4G/H)®Jt4,(®)".

Proof. The subgroup H as defined in the theorem is clearly closed. Let
r: G/H —> G be a Borel cross section and define a state co on 88 (not depending on
the particular choice for r) by

co(x) ^ f cp(ßr(g)-t(x)) dpa/H(g), xe®.
Jgih

It follows from the commutation properties (ii) that co is ä-invariant. Define

f
-% - ^Wrfi)-' dp.(1,H(g),

JGIH

def f®

Jgih

Dd^ {C
jgih X^K)Jdix(;/H(g)^^(G/H)

W= \ {f{g)X-ßfJd^GIH(g), fe^-A-XGIH).

Here (^-^,-1,^.^.-1, ß^»^., 1) is the GNS-representation of 88 with respect
to the state <p°ßr(Ari,Sg e G///.*Recall that Jt+.ß^ ,{x) ^(j8r(i)-i(jf)), x e 88,

g e G/H, and Q^.^.,-1 Q-, hold in a natural identification of the GNS-Hilbert
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spaces fflc.ß i and "M^. The direct integral operators

f®
"?•i-U-iM dnciH{g), -e e 88,

JGIH

can therefore be regarded as bounded ^tG//y-measurable mappings (in the sense of
[19]: Chapter IV.7) from G/H into ^(88)". The algebra of all essentially
bounded jUG/H-measurable mappings^ from G/H to ^(88)" (modulo null sets) is

naturally isomorphic to i£^{G/H) ® ^(88)", where D corresponds to ißJtG/
H) ® C. Using ([13]: 4.3.14, 4.4.9) one proves that the diagonal algebra D is part
of the center of jt(38)" and that there exists a unitary U : 9ta -> % such that
Unlo(x)U* Ji(x), x e 88, holds (cf. the proof of ([11]: lemma in section II)).

Set (Af, G, e) lndH {jt^(S8)", y). Elements of Af are regarded as mappings

y.G^n^®)"
fulfilling relation (1) (s. chapter II). One has

/°jr:88->.A*

J(n(x)) :g-* yg-^(P(g)X<p{ßr(p(g)Xx))}

^{ßg <r(p<.g))ßr(p(,g)Xx)} M/V'(*)}> g e G, x e 88.

It is now a matter of simple verification to show that

ek(J°n(x)) J°ji(ßk(x)), x e 88, k e G,

is true. From this relation it is immediately inferred that co is /3-quasiinvariant.
The corresponding action ß on M is given by

ßk(x) U*(J-l(ek(J(UxU*))))U, xeJiw(9l)",keG.

Defining t:ì£x(G/H)^ nl0(3i)" by r(/) =f U*t(f)U, fe^(G/H), one gets

/,s°r ToAdAG/„(g), geG. (3)

(3) is an immediate consequence of relation (2).
The next point is to show that J*f J(ir(Sß)") holds: Since J(n(00)") contains

XJfilH), that is, all the elements {J(f(f)) \fe£x(G/H)} and since J(n(®)") is

globally £-invariant, Proposition 10.4 from ([21]) can be used: Therefore there
exists a globally y-invariant VV*-subalgebra & of ^(88)" such that /(jt(88)") ç Jf
consists of all the mappings y :g—>y(g) e fJF, geG, fulfilling relation (1). If x is an

arbitrary element of 88, the values Jt^(ßg *(x)), geG, oìJ°jt(x) are thus in -Ffor
g$N, where N is a null set. By continuity N is empty and i.p. n(P(x)e3'.
Therefore ^(88) s _Fs -^(88)" implies ^(88)"=^ and furthermore A"

J(jz(®)").
Let V,p(q) denote the unitary operator implementing âç on 3€0 (cf. [13]:

2.3.17). The mapping g—*V^(r(g)~l[q]) is ^„-measurable: To prove this
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consider the W*-algebra M jr.., (88)" (with separable predual) and the a-weakly
continuous actions a and ß. In the standard representation oi M a and ß are

implemented by strongly continuous unitary representations q—*Uq, q e IR3, and

g-*Wg, geG ([13]: 2.5.32). Since the unitaries on a Hilbert space form a

topological group with respect to the strong (or weak or strong*) topology, the
mapping

is strongly continuous. That G --g^-g[q] is Borel now follows from ([22]: 8.3.5,
8.3.7) and the fact that the unitaries on a separable Hilbert space form a Polish

space. Thus G/H 3g-»r(g)_1[(|] is Borel and therefore G/H3g^>
vX(ÈYl[q]) e 38(^4>) is MG/tf-measurable.

One has

vx(grllq})Mßr(sXx))vMgVm
^(artó)-.m(/3,.(gr,(;t))) Ka, °ßr(gys{oc-q(x)), xem,ge G/H.

Therefore the unitary operator V(q) e X^(G/H)®S^(^X corresponding to
{g—» V^(r(g)~x[q\), g e G/H) implements a$ on Jt(sl)" and leaves D pointwise
invariant. I.p. a^°x x, qeU3, follows, q.e.d.

The above theorem can be generalized to the case where 88 is not necessarily
separable. Nevertheless, it is important to assume that the GNS-Hilbert space "%$

with respect to the state cp is separable.
For such a generalization it is not even necessary to consider the formalism

of Wils ([23, 24], cf. also [25]: Propos. 4.3). The proofs of the relevant theorems
in the separable case (in particular [13]: 4.4.9) can be adjusted without great
difficulties.

In the following we consider a quasilocal C*-algebra sl, obtained as an
inductive limit of an increasing sequence of local C*-algebras s£n, « 1,2,...
(the local C*-algebras (sl„)neN may, for example, correspond to bounded
volumes in IR3). For every algebra sin a faithful representation nn :sln—> 38($f„)
on a separable Hilbert space X„ is supposed to exist.

A state W on sl is called locally normal, if the restriction of V to sin extends
to a normal state on the von Neumann algebra {nn(sln))n f°r every nef..
Generalizing ([26]: Prop. 8) one can show that the GNS-Hilbert space WkV of a

locally normal state W is separable.
Therefore, the above theorem holds true if the (â-invariant) state cp on the

separable C*-algebra 88 is replaced by an (ä-invariant) locally normal state V on
the quasilocal C*-algebra si.

Examples:

- Let G be the Galilei group and H be the closed subgroup of G generated by
rotations, time translations and space translations. Then the corresponding
classical observable based on G/H is a momentum operator (cf. [11]).
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- Let G be the Galilei group and H be the closed subgroup generated by
rotations, space translations and pure Galilean transformations ('boosts'). Then
the corresponding classical observable based on G/H is a time operator (cf. [5]:
Chapter IV).

- Consider a lattice system and replace {â^\q eU3} by the permutation group of
the lattice. Let G=f{0eC||0| l} be a group of gauge transformations
represented by automorphisms {ße | 6 e G) commuting with the represented
elements of the permutation group. Then the classical observable corresponding

to H {e} is a phase operator (cf. [10]).

IV. Concluding remarks

Observables based on a system of imprimitivity over G/H are constructed in
the theorem by integrating disjoint representations over G/H. An important
point in the proof is to show that the respective diagonal operators are elements
of the von Neumann algebra generated by such a direct integral representation. It
is interesting to note that for this the asymptotic abelianess of the representation
à of space translations is essential: Examples are known where a direct integral
representation jr(-) J"® nY(-) dy of mutually disjoint representations ny, y e X,
of a separable C*-algebra % over a standard Borel space X leads to a factor
representation (s. [27]: Example 2.3). In particular in such a situation the
diagonal operators (which commute with all operators n(y), y e <3i) cannot be
elements of the von Neumann algebra ^(88)". On the other hand asymptotically
abelian space translations need not be considered if G/H( - X) is discrete: The
direct integral then degenerates into a direct sum n(-) ®gSGiH^g(') of mutually
disjoint representations and the diagonal algebra ££^(G/H) is part of ;r(88)" even
if 3Ì or G/H do not fulfill separability requirements (s. [28]: Lemma 3).
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