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Notes on asymptotic perturbation theory for
Schrödinger eigenvalue problems

By W. Hunziker

Institut für Theoretische Physik, ETH-Hönggerberg, CH-8093, Zürich

(11. XI. 1987)

Abstract. These notes are intended as a selfcontained introduction to asymptotic perturbation
theory for Schrödinger operators. The emphasis is on geometric methods of spectral analysis, which
allow considerable simplifications in proving stability of eigenvalues and asymptotic estimates. Special
attention is given to non-selfadjoint problems arising in the theory of resonances. The general theory
is developed for a simple class of model operators and illustrated with a number of examples: shape
resonances, stable and unstable anharmonic oscillators, the yV-body Stark effect and the Zeeman
effect in atoms.

1. Introduction

Analytic perturbation theory as developed by Rellich and Kato is a pure
Hilbert space theory: it deals with abstract operator families HK, assuming only
that the resolvent (z - HK)~l depends analytically on the perturbation parameter
jc in some neighbourhood of k 0, and it derives convergent perturbation series
for discrete eigenvalues and for the corresponding eigenvectors [1].

For non-analytic perturbations these expansions may still be defined, but it is

much harder to see what they describe. In Chapter VIII of [1] Kato discusses the
basic problems arising in a theory where analyticity of the resolvent is replaced by
the much weaker requirement of strong convergence as jc —* 0, the foremost being
the stability of the spectrum. In this general setting it may indeed happen that the
spectrum changes abruptly as soon as jc ¥= 0: discrete eigenvalues of H0 may be
covered immediately by the continuum, and new discrete eigenvalues can
suddenly appear. In dealing with a given discrete eigenvalue A of H0 the first task
is therefore to prove its stability in the sense given by Kato: A is the limit as jc—»0

of a group of discrete perturbed eigenvalues having the same (total) multiplicity
as A. It may then be possible to prove that the formal perturbation expansions are
asymptotic to the perturbed eigenvalues up to some finite order or to all orders in
jc. However, in this abstract framework there are no general results which are
powerful enough to handle the great variety of concrete problems.

In physics, the divergence of formal perturbation series was first discussed by
Dyson [22] in quantum electrodynamics. It took some time to realise that even
non-relativistic quantum mechanics abounds with examples of this kind, among
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them the classic problems for which perturbation theory was originally invented:
the anharmonic oscillator, the Stark effect and the Zeeman effect. These are

precisely the examples which led to the mathematical development of an

asymptotic perturbation theory for Schrödinger operators, notably by Bender and

Wu [15], Graffi, Grecchi and Simon [24,40] for the anharmonic oscillator; by
Graffi, Grecchi [25,26], Herbst and Simon [30,31], for the Stark effect and by
Avron, Herbst and Simon [11,12,13] for the Zeeman effect. A review of this

development with some personal reminiscences has been given by Simon [8]. As a

result we now know that the Rayleigh-Schrödinger perturbation series in these

cases are divergent, essentially because the unperturbed operator H0 sits right on
the boundary of a region on analyticity in jc (Dyson's argument). Nevertheless it
turns out that the divergent series still determine the perturbed eigenvalues
uniquely via the Borel summation procedure - provided that the right meaning is

given to the notion of "perturbed eigenvalues". In the Stark case (and in the
other cases for non-physical values of jc) we are in fact dealing not with
eigenvalues of HK but with resonances. Here the Balslev-Combes theory
[14,3,4] or one of its variants [43,36,20,33] comes into play, which define
resonances as discrete eigenvalues of some non-selfadjoint operators associated
with HK. By necessity we are thus getting involved with non-selfadjoint
perturbation problems: H*¥=HK for real jc. A similar situation arises in

perturbation theory for eigenvalues embedded in the continuum [41, 3].
Our goal in these notes is to give a new introduction to this field from a point

of view which offers considerable simplifications. Rather than setting up an
abstract framework we prefer to explain the main steps for a simple class of
model operators, introduced in Section 2. For this class a general theory is

developed in Sections 3-9, with emphasis on the stability theorem (Theorem 5.1),
stability estimates and asymptotic estimates. The fundamental notions like strong
resolvent convergence, stability of eigenvalues, reduction to finite dimension and
the Rayleigh-Schrödinger expansion are taken from Kato's book [1]. By going
through the proofs it should become clear that only a few basic properties of HK

are used in an essential way: the local character of HK and H* as partial
differential operators, local continuity as jc^O and, most important of all, the

property to which we refer as local compactness (Section 3). In other words, we
are taking every advantage of the Schrödinger representation by using configuration

space (PDE) methods. Here we were originally guided by ideas of Enss [23]
which have since blossomed into "geometric spectral analysis" [42, 35, 4].

Sections 10 and 11 are of a different character and can be read independently.

First we recall the notion of Borel summability in a slightly generalized
form needed to treat degenerate eigenvalues (a case largely neglected in the
literature). Section 11 then deals with the finite dimensional problems arising in
this context. Here we confine ourselves to an exposition of the results given in
[34] since we have nothing new to offer in the way of proofs.

The examples of Section 12 form in some sense the core of these notes. They
are collected at the end to keep the general part brief. However, since the whole
set-up is abstracted from concrete cases, the reader will be advised to look for
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illustrations in Section 12 while working through the previous parts. The most
serious omission is that we have not included a systematic discussion of
Schrödinger operators with magnetic fields - apart from the atomic Zeeman
effect. Here we refer to [11, 6, 7] as a starting point.

2. Schrödinger operators

Our examples are Schrödinger operators HK on L2(RV) of the form:

Figure 1 0

H P2*VK(x) (2.1)

Here jc is a complex perturbation parameter living in a sector S near jc 0: H0 is
the unperturbed operator. We will use the language of quantum mechanics:

pk= — i d/dx/A-, k 1 • • • v

are the momentum operators. States are unit vectors u e L2 and

(H):u^>(u,Hu) (2.2)

is the expectation value of the operator H, defined for all states u e D(H). The
range of (2.2) is called the numerical range of H. A fundamental estimate is

\\(z-H)u\\£\z-(u,Hu)\
i_. distance of z from the numerical range of H. (2.3)

The following result is well known from the Hille-Yosida theory of contraction
semigroups and will serve to construct HK.

Lemma 2.1. Let H be a densely defined operator on a Hilbert space with
numerical range in a closed complex halfplane A. If the range R(z — H) of z — H
is dense for some z $A, then it is dense for all z ^A and H has a closure with
spectrum in A.

Conditions on the potential

The complex potential VK(x) is assumed to be locally square intégrable so
that HK is a priori defined on CÔ(RV). VK is a sum

VK Vi+V2K (2.4)
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in Ljoc of two parts with the following properties. Vl is uniformly small with
respect to p2, i.e.

\\Vlu\\^a\\p2u\\+ß(a)\\u\\ (2.5)

holds uniformly in jc for any a > 0 and all u e CO- V2. is locally bounded (L~oc)

and takes values in a jc-dependent halfplane away from the negative reals:

0^Ree-ir"V2K(x); \yK\Hün/2-e (2.6)

with e > 0 independent of jc. As jc —* 0 in S we require that

||(VK -V„)mII-»0 (2.7)

for all u e CO- A first look at some of the examples in Section 12 will help to
understand these conditions.

Lemma 2.2. Under the hypotheses (2.4)-(2.6) we have:

(i) (p2)^aRee-ir'(HK)+b (2.8)

for all states u e CO, with a and b independent of jc. In particular HK has numerical
range in a halfplane AK:

>£

b/a

Figure 2

(ii) (z - HK)CZ is dense for z $AK. Therefore HK has a closure with spectrum
contained in AK.

Proof, (i) By the Kato-Rellich theorem ([2], Section X.2) the operator
p2 — \VxK(x)\ is bounded from below uniformly in jc, namely by - ß(a)(\ — a)~l
for a < 1. We choose a > (sin e)~l with e given in (2.6). By the remark above we
then have

-b^(asine-l)(p2)-a(\V2K\)
for some b independent of jc. This implies

(p2) .i a Re e'^(p2 + Vl) + b.

Adding to this

0^aRee-'rWVj)
we arrive at (2.8). The estimate (2.3) then gives

\\(z-HK)u\\^ dist (z,AK) (2.9)

for all states « e Co and with AK given in Fig. 2.
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(ii) For the rest of the proof we omit the parameter jc which is fixed. For any
z tf A, f e Co and e > 0 we will construct g e CO such that

\\(z-H)g-f\\<2e. (2.10)

Let F e Co, O^F^l and HF=p2 + VF. The potential VF satisfies (2.4)-(2.6)
with the same constants, therefore (2.8) and (2.9) also hold for HF with a, b

independent of F. Since VF is small relative to p2, (z - HF)CÔ is dense for large
negative z. It follows from Lemma 2.1 that (z - Hf)Cq is dense for all z $A.
Therefore we can pick h e CO so that

\\(z-HF)h-f\\<e. (2.11)

Using the estimates (2.8) and (2.9) for HF we obtain

PU S (11/11 + £){dist(z,_4)}-1

and

||(l+p2)1/2Ä||<c (2.12)

with c independent of the choice of F and h. Now let G e Co such that 0 __= G __i 1,

G/=/and
||[G,p2](l+p2)-1/2||^e/c. (2.13)

This is possible since the derivatives of G can be taken arbitrary small. Adjusting
F (and h) such that GF G we then find from (2.11)-(2.13):

e^\\G(z-HF)h-f\\
^\\(z-HF)Gh-f\\

-||[G,p2](l+p2)-1/2||||(l+Pr2/j||
^\\(z-H)Gh-f\\-e.

This proves (2.10) for g Gh. D

Schrödinger operators (Definition). We denote with HK the closure of the
operator given by p2 + VK(x) on CO, and we refer to this definition simply by
saying that HK is a family of Schrödinger operators. For future reference we spell
out the essential properties of HK:

(i) Co is a core of HK.

(ii) The estimates (2.8) and (2.9) hold for all states u e D(HK)
(iii) HK has numerical range and spectrum in the halfplane AK of Fig. 2. In

particular,

||(z-//K)-1||^{dist(z,^K)}-1. (2.14)

(iv) As jc—»0 in S, HK is continuous in the sense that

HKu -> H0u for all u e CO- (2.15)
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(v) The adjoint H* is the complex conjugate of HK:

HXJHJ, (2.16)

where / is the complex conjugation. This follows from the observation
that the complex conjugate potential also satisfies (2.4)-(2.6). Therefore
H* is again a family of Schrödinger operators,

(vi) HK is an analytic family ([3], Section XII.2) in an open region G cz S if
||V|taF||-. is bounded on G for any F e CO and if the functions
jc—» (u, HKv) are analytic in G for all u, v e CO-

Proof of (vi). We choose a sequence Fn e CO with 0 ^ F" ^ 1 and Fn(x) 1

for |-*| <n. As in the proof of Lemma 2.2 we use that HnK p2 + VKF" has

constant domain D(p2) and a resolvent RnK(z) satisfying

||^(z)||^{dist(z,AJ}-1 (2.17)

uniformly in n. By hypothesis, H" is bounded relative to p2 uniformly in jc e G for
fixed n. Therefore the functions

jc^ (u, H^v)

are analytic in G for any u e L2 and v e D(p2). This implies that the vector
function k^-HIv is analytic in G for any v eD(p2), i.e. that HI is an analytic
family of type A ([3], Section XII.2)

Now we fix a real z < —b/a (Fig. 2) and note that

lim HnKu HKu (2.18)
n—*<x

for all u e CO- Since Co is a core of HK it follows from (2.17) and (2.18) that

s - lim RnK(z) RK(z)

(The argument is given in the proof of Lemma 4.1). Therefore

(u, RK(z)v) lim (u, R"K(z)v)

for all u, v e L2. Since the functions on the r.h.s. are analytic in jc e G and

uniformly bounded we conclude from Vitali's theorem that (u, RK(z)v) is analytic
in G, which in turn implies analyticity of the operator function jc—>_RK(z). D

3. Local compactness

As a consequence of (2.8) any multiplier F e CO maps the jc-dependent balls
||u|| + ||//km||S1 into a compact set independent of jc: the image under F of
some ball ||(1 +p2)1/2u\\ ^ const. This proves the first part of

Lemma 3.1. Let HK be a family of Schrödinger operators. Suppose that {jc} is
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a sequence in S and uK e D(HK) a corresponding sequence with \\uK\\ + \\HKuK\\ <
const. // uK —f 0, then

tv

\\F uK\\-*0and (3.1)

||[/4,FK||-*0 (3.2)

for any F e Cq.

Proof. The estimate

\\pku\\^ab-m\\Hku\\+bV2\\u\\ (3.3)

follows from (2.8) and shows that pk is small relative to HK since b is arbitrary
large. Therefore pk and

[HK,F] [p2,F] 2iF,kPk-AF (3.4)

are defined on D(HK), where

\\[HK, FKII \% cx \\HKuK\\ + |3(ar) \\uK\\ (3.5)

for any a>0, with ß(a) independent of jc. In particular, \\HKFuK\\ is bounded
under the hypothesis of the lemma. Now let G e C() such that GF F. Then

\\[HK,F]uK\\ \\[HK,F]GuK\\

lea\\HKGuK\\+ß(a)\\GuK\\.

For small a the first term is arbitrary small uniformly in jc, while the second term
converges to zero by (3.1). D

Local compactness in the sense of Lemma 3.1 will play the key role in
proving stability of eigenvalues and asymptotic estimates. Here we deviate briefly
from this course. Following Enss [23] we show the use of local compactness for
locating the essential spectrum. This will not be needed in Sections 4-11 but will
be convenient to describe the spectral properties of the examples.

The essential spectrum

We define the essential spectrum of an operator H by

oess(H) o(H)\odisc(H)

where the discrete spectrum odisc(H) is the set of all isolated eigenvalues with
finite multiplicities.

We will use the following abstract result, valid for any closed operator on a

Hilbert space:

Lemma 3.2. Suppose that

11 (A — H)vm 11 —> 0 for a sequence
of states vm e D(H) with vm -* 0. (3.6)
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Then Aeaess(//). Conversely (and this is the deep part) (3.6) holds if X is a

boundary point of oess(H).

Remarks

If (Tess(//) contains no interior points then (3.6) is evidently equivalent to
À e aess(//). An example is the case H - H* where (3.6) is known as Weyl's
criterion and has a simple proof by the spectral representation. The proof for the

general case is implicit in [1] (see [44]).
We now consider a single Schrödinger operator (depending trivially on jc):

Lemma 3.3. Let H be a Schrödinger operator and suppose that

11 (A — H)un 11 —> 0 for a sequence

of states un e Cô(\x\ >n), w—»°°. (3.7)

Then A e oess(H)- Conversely, (3.7) holds if A is a boundary point of oess(H).

Proof. uneCÔ(\x\>n) means that un e CO with supp(w„) in |jt|>n. Then
«„-^»0 so that the first part is obvious from Lemma 3.2. Now let A be boundary
point of oess(H) so that (3.6) holds. Since Co is a core of H we can assume that
vm e CO- Let F„ e CO with F„(x) 1 for |jc|<m. By Lemma 3.1 we can then
choose m m(n) such that

||(l-F>m||>è and ||(A-//)(1 - F„K,|| <1/h.
Then (3.7) holds for the sequence

un (l-Fn)vm\\(l-Fn)vm\\-1. D

4. Strong resolvent convergence

Strong convergence of the resolvent

RK(z) (z-HX
as jc^O implies that ||/?K(z)|| is bounded for small jc in 5, by the uniform
boundedness theorem. We therefore introduce the sets

P(HK) {z | RK(z) exists and is uniformly bounded for small jc}
(4.1)

Z(HK) C\P(HK).

These sets reflect the behaviour of HK as jc —* 0. In many respects they will play a

role similar to the resolvent set and spectrum of a single operator, to which they
reduce if HK is independent of jc. We remark, however, that £ (HK) is not
determined by the spectrum o(HK) for small jc (see Example (a)). The standard
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resolvent estimate

\\RK(z)\\ __i \\RK(zo)\\ {1 - \z - Zol ^.(zo)!!}-1 (4.2)

shows that P(HK) is an open subset of the unperturbed resolvent set p(H0).
Moreover, given any compact T c P(Hk), there exists a neighbourhood £/ (in 5)
of jc 0 so that

||Kr(z)|| S const, for (z, jc) e Y x U. (4.3)

This follows from (4.2) by a simple covering argument.

Lemma 4.1. For a family of Schrödinger operators, RK(z) and Rt(z) are
strongly continuous at jc 0 if and only if z e P(HK).

Proof. Let zeP(HK). Since ||_RK(z)||<c for small jc it suffices to prove
RK(z)u—>R0(z)u as jc—»0 for the set of vectors u (z — HQ)v, v e CO. This set is

dense because CO is a core of H0. Then

\\(RK(z)-Ro(z))u\\ \\RK(z)(HK-H0)v\\

^c\\(HK-Ho)v\\-*0
by (2.15). The same argument applies to H*. O

Remark

There is a sharper version of Lemma 4.1 which will be needed in the proof of
Theorem 9.2. Suppose that ||FK.(z)||<c for some fixed z and for a sequence
{jc}^0. Then z e p(H0) and RK(z)^> R0(z). Proof: Given u e L2 we have
RK(z)u-^> v for a subsequence {jc}-»0 and therefore

(f,u) lim((z-H*K)f,RK(z)u)
((z-H*0)f,v)

for any / e CO- Since CO is a core of Hq this extends to all f sD(Hq) which
proves that u (z-H0)v, i.e. that R(z - H0) L2. By the same argument,
R(z - Ho) L2, which shows that z - H0 is injective. Therefore (z - //0)_1 exists
and is bounded by the closed graph theorem. Strong resolvent convergence now
follows from Lemma 4.1. D

Lemma 4.2. For a family of Schrödinger operators the following are
equivalent:

(i) Z 6 P(HK)
(ii) ||(z-JHK)M||^£>0 (4.4)

for small jc and all states u e Co

(iii) z e p(H0) and

\\(z-Hk)u\\^e>0 (4.5)
for small jc and all states u e Cq(\x\ > n),
n fixed but arbitrary
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Proof (ii) and (iii) evidently follow from (i). To show (ii)—» (i) we note that

||(2-ff:)«||__=e>0 (4.6)

follows from (4.4) by complex conjugation. Since CO is a core of HK and of //*,
(4.4) and (4.6) hold for all u in the domain of HK and H*. The two inequalities
imply that R(z - HK) L2 and \\RK(z)\\ _g 1/e for small jc.

(iii)^>(i). We assume that z $ P(HK) and derive a contradiction to (iii). By
(ii) we have

\\(z-HK)uK\\^0 (4.7)

for some sequence {jc}-»0 and corresponding states uK e CO- By passing to a

subsequence we may assume that uk -^ u. For any v e Co we then find

0 lim ((z - H*K)v, uK) ((£ - Ht)v, u).

This extends to all v e D(Hq), which proves that (z - H0)u 0. Since z e p(H0) it
follows that j. 0, i.e. uK -j* 0. From (4.7) and Lemma 3.1 we now deduce

||(1 -FK||-*1 and ||(z-//K)(l-FK||^0
for any F e CO- This is in contradiction to (4.5) if F(x) 1 for |jt| ^ n. O

5. Stable eigenvalues

A discrete eigenvalue A of H0 is said to be stable (with respect to the family
HK) if the following two conditions are satisfied:

(i) A is embedded in the set P(HK), i.e.

{z|0<|z-A|<<5}crP(/4) (5.1)

for some ö. By (4.3) the spectral projection

PK (2m)-1 j dzRK(z) (5.2)

is then defined for any circle T of radius r < ô around A if jc is sufficiently
small.

PH Figure 3

(ii) lim \\PK- P0|| =0. (5.3)
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Remarks

The second condition implies

dim P,. dim P0 (5.4)

for small jc (as soon as \\PK - PQ\\ < 1). Then the part of o(HK) enclosed by Y

consists only of discrete eigenvalues with total algebraic multiplicity given by
dimP0. Since the radius r of Y is arbitrary small, this group of perturbed
eigenvalues (called the A-group) converges to A as jc —» 0.

It is important to understand the difference between strong convergence and

norm convergence of PK as jc—»0. (5.1) together with Lemma 4.1 implies

PKl>P0 and P*Kl>P?, (5.5)

and therefore

dim PK i_; dim P0

for small jc. Thus dim PK need not be finite, and even if it is finite, perturbed
eigenvalues may disappear at jc 0 (Example (b)). On the other hand it is known
that (5.4) together with (5.5) implies (5.3) ([1] chap. VIII, §.1. An error in
Lemma 1.21 has been corrected in the 2nd edition).

Theorem 5.1 [44]. Let HK be a family of Schrödinger operators. Then a
discrete eigenvalue A of H„ is stable if

\\(X-Hk)u\\^e>0 (5.6)

for small jc and all states u e Cq(|jc| > n), n fixed but arbitrary.

Proof, (i) Since A e adjsc(//0) we have

{z|0<|z-A|<o}Cp(//o) (5.7)

for some <5 < e/2. In this disc (5.6) gives

\\(z-Hk)u\\^e/2 (5.8)

for small jc and all states u e CÔ(M > n). By Lemma 4.2 the disc (5.7) is therefore
contained in P(HK).

(ii) By the remark before Theorem 5.1 we need only prove that

dim PK _s dim P0 (5.9)

for small jc. Suppose this is false, then we have

PKuK uK and P()uK=0 (5.10)

for some sequence {jc}—>0 and corresponding states uK. By passing to a

subsequence we may assume that uk -^* u. By using (5.5) we then find

P0u u and Ptlu 0
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as the weak limit of (5.10), i.e. uK -j- 0. On the other hand it follows from
(4.3) and (5.2) that \\HKuK\\ __i \\HKPK\\ <const, for small jc, so that

||(l-fX||->l (5.11)

for any F e CO by Lemma 3.1. Choosing F(x) 1 for |jt|<n we deduce from
(5.8) that

\\(z-HK)(l-F)u\\^\\(l-F)u\\

for small jc, all z e Y and all u e CO- By (3.5) this extends to all u e D(HK). In
particular,

11|(1 - F)RK(z)uK\\ ë (z - HK)(l - F)RK(z)uK\\

^\\(l-F)uK\\ + \\[HK,F]RK(z)uK\\

for small jc and all z e Y. Therefore

11|(1 -FK||=| ||(1 -F)PKuK\\

^(2xX§\dz\^\\(\-F)RK(z)uK\\

Sr||(l - FKH + (27T)-1 j \dz\ \\[HK, FR(zK||,

where r < ô < e/2 is the radius of Y. By (3.5) (4.3) and part (i) of the proof, the
integrand is bounded uniformly for small jc and z e Y. By (3.2) it also vanishes

pointwise as jc^O since RK(z)uk-^0. Therefore the integral vanishes in the
limit jc—»0, and since r < e/2 we conclude that ||(1 - F)uK\\ —*0, in contradiction
to (5.11). This proves (5.9). D

6. Stability estimates

In this section we discuss ways and means to prove the stability condition
(5.6).

(i) Numerical range

(5.6) holds if

|A - (u, HKu)\ è e > 0 (6.1)

for small jc and all states u e Co(|x| > n). This is sufficient to prove stability in
simple one-body systems like the anharmonic oscillator (Examples (d), (f)) or the
one-body Stark effect (Example (e)).
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(ii) Localization

In some situations where (i) fails we can prove (5.6) by localization. The idea
is to divide the region |*| >n into subregions where HK reduces to simpler form.
This is achieved by using appropriate partitions of unity on Rv depending on the
perturbation parameter jc:

Definition. A partition of unity on pc|>« is a finite set of C'-functions
JZ(x), a — \ • • • ß, on \x\>n with the properties

Otag/J(x)^l; 2jaK(x) l
a (6.2)

lim DJaJx) 0.

where D is any first or second order derivative with respect to x.

Lemma 6.1. Let HK be a family of Schrödinger operators and {_/"} a partition
of unity on \x\ > n. Then (5.6) holds if and only if

\\(X-HK)JaKu\\^E \\JaKu\\, a=l---ß, (6.3)

for some positive e, n, small jc and all u e CZ(\x\ > n).

Proof (6.3) evidently follows from (5.6). To show the converse suppose that
(5.6) is false for any positive e, n. Then

||(A-/4)MI^0
for some sequence (jc, n)—> (0, =°) and corresponding states uKn e CX)(\x\ > n). It
follows from (3.3) and (6.2) that

(6.4)

\\[HK,JaK]uKn\\-A-0

and therefore

||(A-//K)/x„IH>0.

On the other hand,

E J"uKn n i
a \

implies that

WJZu^w^ß-' (6.5)

for some fixed a and an infinite subsequence of {jc, n). (6.4) and (6.5) are in
contradiction to (6.3). D

Corollary. Suppose that on the support of each J% the operator HK reduces to
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an operator H" in the sense that

\\(HK-HÏ)JaKu\\èo(K,n)(\\HKJ«Ku\\ + \\J>\\) (6-6)

for all u e C0(\x\ >n), where o(k, m)—»0 as (jc, n)-»(0, °°). Then HK can be

replaced by H% in (6.3). In particular the stability condition (5.6) holds if
-\mP(H<*K), a l--ß. (6.7)

This technique is used for the one-body shape resonance (Example (c)) and
for N-body problems (Examples (g), (h)) in combination with the result described
next:

(iii) Decomposition into subsystems

For -V-body systems we normally use partitions of unity which decompose the

system into noninteracting parts [23,35,42]. This means that the local operators
HI are of the form

HI Hi <g> 1 + 1 <8> Hi (6.8)

with respect to some factorization of L2. (6.7) then poses the problem to find
P(HK) from P(Hl) and P(H2K). We will study this question more generally for
abstract families of the form

HK=Hl + Hl with [Hl,Hl] 0. (6.9)

Given the right sectoriality properties of Hi and H2K we can then construct and
estimate the resolvent RK as the convolution of the resolvents Rl, R2K.

Definition. We say that a family of operators HK (jc e 5) on a Hilbert space
fC is uniformly m -sectorial with sector if if HK is densely defined and if both the
numerical range and the spectrum of HK are contained in some jc-independent
complex sector if with opening angle < jt. This implies in particular

||PK(z)| _s {dist (z, ^)}"1 (6.10)

for all z $ -f, and therefore

2(HK)<=9>. (6.11)

Theorem 6.2. Suppose that Hi and H\ are uniformly m-sectorial with sectors
if1 and if2. If the resolvents Rl(zx) and P2(z2) commute (wherever they exist) and

if if' — 3A + if2 is a sector of opening angle < jz, then HK Hi + H2K has a closure
HK with

2(HK)^2(Hl) + Y(H2k). (6.12)

Moreover, HK is uniformly m-sectorial with sector if.
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Proof. We assume that z $ E (Hl) + £ (H2K) and we establish the convolution

formula

RK(z) (2mX j ds Rl(z - s)R2K(s) (6.13)

for the resolvent of HK to prove that z $ X (HK). The path Y in (6.13) is chosen as

follows:

khW

TT

r-
z-zd^)

Figure 4

By hypothesis, the closed sets z - S (Hl) c z - if\ and E (#2) <= if2 are disjoint,
and (z - ifx) fl .ta/2 is compact. T is a generally multiple path with the following
properties:

(i) Outside some finite region it is a straight line diverging from (z - if1) U
if2. There the integrand of (6.13) is bounded uniformly in jc by

{dist (s, z-if1)- dist (s, if2)X, (6.14)

which is of order \s\~2 as s—»=°.

(ii) Within z - P(Hl), Y can be deformed into a path T1 outside z - if1, and
within P(H2K) into a path Y2 outside if2:

Figure 5

(We give no formal existence proof for Y since Y is easily constructed in the

applications we have in mind.) The part of Y where the bound (6.14) exceeds 1 is

compact. By (4.3) the integral (6.13) is therefore well defined for small jc and
defines a bounded operator_Plf(z) with ||i-K(z)|| < const, for small jc. It remains

to prove that RK(z) (z -HX1-
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HK is densely defined since its domain includes the range of

Rl(X)Rl(X) R2K(X)Rl(r\)

for A $ if1 U if2. Since H\ and H2K are closed and since RK (z) is a norm-limit of
finite Riemann sums we have

(z - HK)RK(z)u RK(z)(z - HK)u

for any u e D(HK). To evaluate this expression we use the identity

RK(z)(z - HK)u (2m)'1 <j> ds (s - t)-\z - s - Hly\z -1 - H\)u

- (2m)'1 I ds(s- t)-\s - Hl)-\t - H\)u,

which holds for any t $ Y and all u e D(HK). Both integrals exist since the
integrands vanish like \s\~2 as s—> °°. To be specific we choose the auxiliary point t
as indicated in Fig. 5. In the first integral Y can now be replaced by Y1 and in the
second integral by T2. The integral over Y2 vanishes and the integral over Y1 is the
residue at the pole s t. Thus we obtain

RK(z)(z - HK)u (z - HK)RK(z)u u (6.15)

for all u e D(HK). To show that HK is closable, suppose that un e D(HK), un^>0
and HKun^>v. Then (6.15) implies RK(z)v 0 and therefore

RK(z)w 0 for w Rl(X)R2K(X)v

with A $ if1 U if2. Since w e D(HK) it follows from (6.15) that w 0 and therefore
v 0. Hence HK has a closure HK and (6.15) then implies that RK(z)
(z - HK)_1. This proves (6.12).

If //^ and #2 are independent of jc, (6.12) says that o(H) c o(Hx) + o(H2).
In the general case we thus have

o(HK) cz o(Hl) + o(H2K)

which shows that HK is uniformly m-sectorial with sector if. D

7. Reduction to finite dimension

Let A be a stable discrete eigenvalue of H{). The A-group of perturbed
eigenvalues is given by

A(jc) A + AA(jc)

where AA(jc) is the multivalued function representing the eigenvalues of

PK(HK-k)PK\MK range of PK
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for small jc. We define

D(*r) P0PKP„U0

Since D(jc)-> 1 as jc^O, the operator

S(jc) D(jc)-"2PoUk

is well defined for small jc. It maps MK onto M0 and has the inverse

S(K)~l PKD(K)-m\Mll

as can be seen from the diagram:

(7.1)

Dl/2 D1/2 Figure 6

For small jc the perturbations AA(jc) can therefore be represented as the

eigenvalues of

with

E(k) S(k)Pk(Hk - k)PKS(K)~

D(k)-V2N(k)D(kX2

N(k) P{)Pk(Hk-X)PkP{).

(7.2)

(7.3)

Here all the operators D(k), N(k) and £(jc) are operators acting on the finite
dimensional unperturbed spectral subspace M0.

Our choice of an isomorphism S(jc): Mk^>M{) is of course largely arbitrary
and in fact not optimal: PK will in general be defined in a larger neighbourhood of
jc 0 than S(k). A more careful but less explicit construction is given in [1].
Compared with the equivalent forms D(k)'1N(k) and N(k)D(k)~' the operator
£(jc) given by (7.2) has the advantage to be symmetric in selfadjoint problems: if
the sector S contains a real half-line where Ht HK, then £(jc)* F(jc) for
real jc.

8. The Rayleigh-Schrödinger expansion

We first recall the formal derivation of the RS-expansion which applies to
families of the form

Hk H0 + kV. (8.1)
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It starts from the iterated resolvent equation

RK =R0 + kRkVR0

Ë KkRo(VR0)k + knRk(VR0)n. (8.2)
k=0

Inserting this into (5.2) and (7.1) we obtain

D(jc)= 2 DX + Dn(k)kn, (8.3)
(.=0

where Dk Dk(0) and

Dk(K) (2m)-1 j> dzP0RK(z)[VRo(z)]kPQ. (8.4)

A similar expansion holds for N(k): the only difference is an extra factor (z — A)
in the integral (8.4). Representing now RQ(z) by its Laurent series at the pole
z A one obtains the expansion coefficients Dk and Nk as the first- and
second-order residues of R0(z)[VR0(z)]k. We sketch the procedure for the most

important case where the unperturbed eigenvalue A is semi-simple, i.e. when

(k-Ho)Po 0.

Then Rc,(z) has the Laurent expansion

R0(z) (z - A)-'Pn + So - (z - A)52 + (z - A)25f, + • • -,

where 50= (A - _f/0)-1(l - P0) is the regular part of the unperturbed resolvent at
the pole z A. This gives:

A,= Po ATo 0

Di 0 taV, P0VP0

D2 -PoVta^VP, N2 P(IVS0VP()

/V3 PoV50V50VPo

-P,,VS2VP0VP0

-P0VP0VSlVPX)

From (7.2) we then find the expansion

£(jc) Y EkKk + F,v(jc)jcW (8.5)

which for a semi-simple eigenvalue A begins with

£o Wo 0

EX NX P0VP0



Vol. 61, 1988 Notes on asymptotic perturbation theory for Schrödinger eigenvalue problems 275

E2 N2 P0VS0VP0

E3 N3-i(NxD2 + D2Nx)

P0VS0VSQVP0

- iP0VP0VS20VP0 - iPoVSlVPoVPc,

What then remains is a problem of finite dimensional asymptotic perturbation
theory: to find the expansions of the eigenvalues AA(jc) of £(jc) from the
expansion (8.5). This is discussed in Section 11.

We now investigate the validity of these expansions, assuming that

HK =p2 + V0(x) + kV(x) (jceS) (8.6)

is a family of Schrödinger operators with a potential VK V0 + jcV satisfying
(2.4)-(2.6). With D(V) we denote the natural domain of the multiplication
operator V(x).

Lemma 8.1. Let HK be the family (8.6). // z e p(HK)D p(H0), then (8.2)
holds on D([VR0(z)]N), i.e. on all vectors u with

R0(z)[VR0(z)]ku e D(V) fork 0---N-l.

Proof. It suffices to prove the case N 1 : the general case then follows by
iteration. Since CO is a core of HI we need only show that

(v, RK(z)u) (v, Ro(z)u) + k(v, RK(z)VR0(z)u) (8.7)

for all v (z- H*K)w with w e CO- Then

v (z - H„)w - kVw

which reduces (8.7) to an identity. D

From the definition of stable eigenvalues and (4.3) we now obtain directly:

Lemma 8.2. Let HK be the family (8.6). Suppose that A is a stable eigenvalue
of Hç, and Y the circle in (5.2). //

_9* sup||[W?o(z)fP0||<°° (8-8)
zer

for k — \,...,N, then D(k) has the RS-expansion (8.3) with a remainder estimate

\\Dn(k)\\^ABn (8.9)

for small jc, where A is independent of N. With suitable A the same estimate holds

for the expansion of N(k).
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Remarks

Using (2.16) we can in fact expand D(jc) and jV(jc) up to order 2N under the

hypothesis of Lemma 8.2. For this we write

p0rk(z) (Rxypx (jRxwr
in the integrand of (8.4) and expand RK(z)P0 as before. The result is

2N-1

D(k)= Y DkKk + D2N(k)k2N (8.10)
k=Q

with the remainder

£>2„(jc) (2m)-1 j> dz(J[VRr,(z)fPtsJ)*R>.(z)[VRtt(z)]NP«

satisfying

\\D2N(k)\\^AB%. (8.11)

We also remark that by Lemma 2.3 (vi) HK - H0 + kV is an analytic family on the
interior of S. Therefore D(jc), /V(jc) and £(jc) are analytic for small jc in the
interior of S.

9. Asymptotic estimates

Analytic perturbation theory deals with the case where VR0(z) is bounded
for z e p(Hq). Then any discrete eigenvalue of H0 is stable and the RS-series are
convergent for small jc.

If VR0(z) is unbounded we have to exploit special properties of P() to arrive
at the estimate (8.8), in particular the characteristic exponential fall-off of the
unperturbed eigenfunctions which has been studied independently in great detail
(see e.g. [3], Section XIII.11., or [5,19,21]). The method described below to
obtain asymptotic estimates from exponential bounds is due to Herbst [30].

First we discuss exponential bounds: this concerns only the unperturbed
operator H0. Let/be a positive C^-function on Rv and

Hf efH0e-f

(p + iVf)2 + V0(x), (9.1)

defined on CO- This is not quite a Schrödinger operator in our terminology, but
under natural conditions on / it will have very similar properties. Let us assume
for the moment that Hf has a closure with non-empty resolvent set. We denote
with Hf this closure and set (z — Hf)~x Rf(z). It follows from (9.1) that

e-%(z) R0(z)e-f (9.2)

whenever both resolvents exist. Since exp (-/) is bounded and maps CO onto
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itself we see that Rf(z) and P0(z) have the same poles in the complement of
oXHf) u °XHq). Thus Hf and H0 have the same discrete eigenvalues in this
region, with corresponding spectral projections related by

e-fPf P0e-f. (9.3)

Now, since exp (—/) has dense range and since dim P0<°°,

R(PQ) R(P(X)<=R(e-f)
which proves

||e'P0||<oo. (9.4)

We remark that for a given discrete eigenvalue A of H0 the exponential bound / is

essentially determined by the condition that A $ ocss(Hf).
To estimate the numbers BN defined in (8.8) we now consider the family Hsf

on 0 ___ _; _§= 1, assuming that

dist (A, aess(Hsf))^o>0 (9.5)

for all s. Then Hsf and H0 have the same discrete spectrum in the disc \z — A| < ó.

Let T be a circle of radius r < ô around A which separates A from the rest of the
spectrum. Then Y e p(Hsf) for 0 _s s __i 1 and we can use (9.2) to rewrite BN in the
form

ß„ sup \\Ve-fINRflN(z)Ve-f'NR2fIN.

Ve-f'NRf(z)e%\\

_s HeWPoll sup \\Ve-f,NRsf(z)\\) (9.6)
Oa.s-Sl

__i II^Poll || VNe-f\\iy sup \\Rsf(z)\\f, (9.7)

OSsSl

provided that these bounds exist. The great advantage of these estimates is that in
/Vth order perturbation theory each factor V in the RS series is reduced by a

factor exp (—f/N). We note in particular that the N-dependence of these bounds
is explicit.

Now we discuss the details. For convenience we work with complex /. The
following lemma gives the basic properties of Hf in close analogy to Lemma 2.2.

Lemma 9.1. Suppose that H0 is a Schrödinger operator with the phase y0
defined in (2.8). Let g be a real C*-function such that the potential

V0-e2*°(Vg)2 (9.8)

still satisfies (2.4)-(2.6), and define

f(x) ae'*'g(x) (9.9)



278 W. Hunziker H. P. A.

for some positive a<\. Then the operator Hf defined by (9.1) on CO has the

following properties:
(i) <p2) + (l-*2)(cosyo)<(Vg)2>

l^aRee-,ra(Hf)+b (9.10)

with a,b independent of the choice of a. Thus Hf has numerical range in a

halfplane A0 given by a,b,yQ (Fig. 2).
(ii) (z - Hf)Co is dense in L2 for z $A(). Therefore Hf has a closure with

spectrum contained in A{).

Proof, (i) By hypothesis the Schrödinger operator with the potential (9.8)
satisfies (2.8). Using the fact that (Vg ¦ p +p ¦ Vg) is real (9.10) follows, (ii) is

proven as in the case of Lemma 2.2 with the following minor changes. The

operator HF results from Hf by the truncation

V0->V0F and Vg->FVg.

It has the form HF =p2 + B with B small relative to p2, and the estimate (9.10)
continues to hold for HF with the same constants a, b independent of F. In
addition to (2.12) this gives the bound

\\\Vg\Fh\\<c

with c independent of the choice of F, h. This allows to estimate the contribution
of the last term in

[G, Hf] [G, p2] - 2ae,n(Vg ¦ VG)F. D

Let Hf now be the closed operator given by Lemma 9.1. We remark that H*
is an operator of the same type, resulting from Hf by the substitutions

V0-»Vo, /->-/
which is allowed since so far g was not assumed to be bounded below. The family
Hsf(0^s .Ü 1) is obtained by changing a into as. By (9.10) it satisfies the estimate

(p2)+(l-a2)(Cosyii)((Vg)2)
^aRee-'r"(Hsf) + b (9.11)

uniformly in Ofâs ^ 1. As a consequence all the results of Sections 3 and 4 also

apply to the family

HK H(S+K)f (9.12)

where s is fixed in 0 __i s là 1 and jc variable in 0 îk s + k _i 1.

Theorem 9.2. Let Hf be the closed operator given by Lemma 9.1 and suppose
in addition that Ref is bounded from below. Let A be a discrete eigenvalue
of H0. If

\\(k-Hsf)u\\£>Q (9.13)
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uniformly in 0 __i 5 __= 1 and for all states u e CÔ(|*| > n), n fixed but arbitrary, then

(9.2)-(9.7) hold with

sup ||Ps/(z)||<œ (9.14)

Remarks

This theorem reduces the proof of asymptotic bounds to the stability estimate
(9.13) for which the methods of Section 6 are available.

Proof. By hypothesis there is a disc

{z|0<|z-A|<o<£}cp(//o) (9.15)

with £ given by (9.13). We will show that this disc belongs to p(Hsf) for O-tis ___ 1,

thus proving (9.2)-(9.5). We fix z in this disc. Then

\\(z-Hsf)u\\^£-6>0 (9.16)

for O-tais __i 1 and all states u e Co (M > n). Let B be the subset of Oîâs ___
1 where

p(Hsf) b z.B is non-empty since Oeß. Also, B is open as a consequence of (9.16)
and Lemma 4.2(iii), applied to the family (9.12).

Let (be a boundary point of B and {_?} a sequence in B with s-^-t. Then
\\Rsf(z)\\^--<x> by the remark following Lemma 4.1, so that

\\(z-Hsf)us\X0 (9.17)

for a corresponding sequence of states us e CO. By passing to a subsequence we
have us -+ u. It then follows as in the proof of Lemma 4.2 that

(z - Htf)u 0.

Taking scalar products with CÔ-functions and using the properties of the adjoint
H*f we find

(z - H0)e-tfu 0.

Since z e p(H0) we see that u 0, i.e. us-^0. This together with (9.16) and

(9.17) leads to a contradiction as in the proof of Lemma 4.2. Therefore B has no
boundary points, i.e. B [0, 1].

Suppose now that (9.14) is false. Then

\\(zs-Hsf)us ||->0 (9.18)

for a sequence {s} in Ofks 1 and corresponding zs e Y and states us e CO- By
passing to a subsequence we have s—*t, zs^>z, and us-^u. Since z e p(H,f)
we deduce that u 0 as in the proof of Lemma 4.2. By the now familiar argument
this is in contradiction to (9.16) and (9.18). D
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10. Borel summability

For an introduction to Borel summability in perturbation theory we refer to
[3], where the case of simple eigenvalues is treated.

In the degenerate case the operator £(jc) given by (7.2) takes the place of
the perturbed eigenvalue. We therefore consider functions /(jc) taking values in
the algebra L(f() of bounded operators on some Hilbert space W - in fact $f will
be the finite dimensional subspace M() introduced in Section 7. /(jc) is said to be
Borel-summable in a sector S if it has the following properties:

(i) /(jc) is holomorphic for small jc in the interior of a complex sector 5 with
origin 0 and opening angle > n

(ii) /(jc) has an asymptotic expansion

/(jc) Y fX +M«)X; fk e L(W)
k=0

to all orders N, satisfying a "strong asymptotic estimate"

||/„(_c)|| _gCa"_V! (10.1)

for small jc e 5 and all N.

The principal fact about Borel summable functions is that they can be
constructed uniquely from their asymptotic expansion, i.e. from the set of all
expansion coefficients [3].

In perturbation theory this means that the perturbed eigenvalues are
uniquely determined by the PS-series if £(jc) is Borel summable. In this case we
will also obtain more precise spectral information for £(jc) than in the general
asymptotic case (Theorem 11.1). In order to derive a strong asymptotic estimate
for £(jc) we need the elementary.

Lemma 10.1. Suppose that the functions /(jc), g(jc) satisfy strong asymptotic
estimates in a common sector S (of arbitrary opening angle). Then the same is true
for the functions /(jc) + g(jc), /(jc)g(jc) and - iff(0)~l e L(W) -forf(K)~\

Proof. We prove only the last statement. By hypothesis/(jc)"' g(jc) exists
for small jc. We will prove

\\gN(K)\\^C(l + CYoNN\ (10.2)

provided that

||g(jc)||__.C and \\fN(K)\\^CoNN\. (10.3)

For N iï 1 all term of order iË N in the identity
/V-1

k=ü
1= 2f(K)gX+f(K)gN(KX
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must cancel. This gives

gN(K) -g(jc) Y fN-k(K)gk (10.4)

and in the limit jc—»0 the recursion for the gk. By (10.3) we find for .Y iï 1

\\gN(K)\\^C2 Y \\8k\\ oN~k(N - k)\
k=t>

while ||go(jc)|| ||g(jc)__iC. Using that (TV- k)l kWXW (N - 1)! for l_5A.__i.V-l
one now confirms by induction that for N iï 1

||g/v(ic)||__iC(C2 + C4+--- + C2AyA'.V! D

Lemma 10.2. Suppose that the operators D(k) and N(k) given in (7.1) and
(7.3) satisfy strong asymptotic estimates in the sector S. Then the same is true for
£(jc) D(jc)-1/2yV(jc)£>(jc)-1/2.

Proof. By Lemma 10.1 we need only show that D(k)~V2 has a strong
asymptotic estimate. Since D(0) 1 the spectrum of D(jc) is contained in the disc
of radius 1/2 around z 1 for small jc. Then we have

D(jc)-"2 (2.™)-'cj) dzz~l/2(z - D(jc)W

where Y is the circle of radius 3/4 around 1 and z~"2 the branch taking the value
1 at z 1. The resolvent in this integral is bounded in norm for z e Y and has a

strong asymptotic estimate given explicitely by (10.2). This leads directly to the
estimate for D(jc)_i/2. D

Remarks

If HK has the form (8.1) we see from (8.9) that £(jc) will satisfy a strong
asymptotic estimate in S if

BN^CoNN\. (10.5)

Suppose that/is an exponential bound in the sense of Theorem 9.2. Then (10.5)
follows from (9.7) if

||VNe-f || tatataCa^/V!. (10.6)

Since £(jc) is analytic in the interior of S this will prove Borel summability if S

has opening angle > tc: the standard example is the quartic anharmonic oscillator
(Example (d)). In other cases where HK is defined only on a sector 5 of opening
angle < n, it is sometimes possible to prove Borel summability by constructing an

analytic continuation of £(jc) to a larger sector (Examples (e)-(h)).
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11. Finite dimensional asymptotic perturbation theory

Here we return to the question raised at the end of Section 8: given the
expansion (8.5) of £(jc), what can we say about the asymptotics of the
eigenvalues of £(jc)? This is a finite dimensional problem, unrelated to our
discussion of Schrödinger operators. We therefore confine ourselves to an
exposition of the results proven in [34].

We assume that £(jc) is defined for small jc in a complex sector S as an

operator on a Hilbert space of dimension m < <*. £(jc) is further supposed to
have an asymptotic expansion (8.5) with

||£N(ic)|| 0(l) (jc^O) (11.1)

for values of N specified below. The basic problem can be stated as follows. The
expanded part

£~(jc) Y EX (11.2)

is analytic in jc. Therefore its eigenvalues and eigenprojections are given for small
jc by convergent perturbation series ([1], Chapter II). The task is to show that
these expansions are asymptotic to the corresponding quantities for £(jc) up to
some order in jc which can be estimated in terms of N and m.

Theorem 11.1. [34]
(i) Eigenvalues to order p

To find the eigenvalues of £(jc) to some prescribed error o(|jc|p), p 0,

we expand £(jc) to some order N ___ mp and the eigenvalues of En(k) to
the highest ordere p. The result is a number of finite Puiseux series

e(K)= Y ekKk (11.3)
k=r/b

r=\,2...[bp\
with integer b number of branches of e(/c) and [x] largest integer __i

x. Each branch of e(jc) represents a group of eigenvalues of En(k) and a

corresponding group of eigenvalues of £(jc) up to an error o(\k\p). Both
groups have the same total algebraic multiplicity, which is the same for
each branch of e(jc). In short: for NiHmp the eigenvalues of £(jc) and
En(k) coincide up to errors o(|jc|p). Fig. 7 gives a picture of the b

groups of eigenvalues described by (11.3):

separation > 0(IkIp)

diameter o(IkIp)

Figure 7
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(ii) Spectral projections to order q
The spectral projections of £(jc) corresponding to the b groups of
eigenvalues given by (11.3) form a 6-valued function P(jc) defined for
small jc e S. This function has a Puiseux-Laurent expansion

P(jc)= Y PX + o(\k\«) (11.4)
k=rlb

r=s,s+l,...[bq]

which is obtained by expanding the corresponding spectral projections of
En(k) for some N ___ q +p(2m - 1) up to the highest order ___ q. Here s is

a possibly negative integer; in fact s is strictly negative if b > 1.

(iii) The symmetric case

Suppose that E*k Ek for all (relevant) k. Then (11.3) and (11.4) reduce
to Taylor expansions: b 1, 5 0. In this case it suffices to take jV ___/? in
(i) and jV___p + q in (ii).

(iv) Asymptotic series

Suppose that £(jc) has an asymptotic series, i.e. an expansion (8.5) to all
orders _V. Then, for small jc e S, the eigenvalues of £(jc) fall into groups
which are separated by a distance ==__ const |jc|v for some v =__ 0 and which
have diameters vanishing faster than any power of |jc| as jc—>0. These

groups and the corresponding spectral projections have asymptotic
expansions (11.3) and (11.4) to all orders which can be computed from
the coefficients Ek by analytic perturbation theory as described above,

(v) Borel summable E(k)
If £(jc) is Borel summable in 5, then the eigenvalues and eigen-
projections of £(jc) are holomorphic for small jc in the interior of S.

Different eigenvalues cannot be degenerate to all orders in jc. The
asymptotic series given in (iv) then describe individual eigenvalues and
eigenprojections.

(vi) Borel-summability of eigenvalues and eigenprojections
Suppose that £(jc) is Borel summable in S and that Et Ek for all k.
According to (iii) and (v) the eigenvalues and eigenprojections then
have asymptotic Taylor series. These Taylor series are Borel summable
to the eigenvalues and eigenprojections of £(jc). Moreover, the
perturbed eigenvalues remain semi-simple: the eigennilpotents vanish
identically for small jc.

Remarks

(i) and (ii): We point out that the lower bounds required for N refer to the
least favourable case, where the separation of the groups of eigenvalues in Fig. 7

is only of order |jc|p. For larger separation the conditions on _V are less restrictive.
(iii): We emphasize the fact that Ek Ek (all k) does not imply that

£(jc)* £(jc) for real jc. This situation arises naturally in perturbation problems
where bound states turn into resonances as in Examples (c), (f), (g). For the
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expanded part it is of course true that En(k)* £/v(jc) if jc is real: this is why
(11.3) and (11.4) reduce to Taylor expansions in this case. Moreover, the
resolvent (z - En(k))~x is then bounded in norm by some constant times the
inverse distance of z from the spectrum of En(k) for small jc: this is the reason
why the conditions on N are less severe in the symmetric case (In the general case

the inverse m-th power of this distance can appear).

12. Examples

(a) ThesetY,(HK)

The Hamiltonian describing the free fall in a constant field of force provides
a good example which shows in particular that the set E (Hk) defined by (4.1) is

not determined by the spectrum of HK. This example was first discussed by
Herbst [30] in connection with the Stark effect. On L2(RX) we consider the family

HK p2 - kx on S : e _=i arg jc ^ jz - e

Lemma 12.1.

(i) T,(HK) is the range of the Hamiltonian function

(jc, p, x)-+p2 - KX

on S X R1 X R1 (given by the shaded region in Fig. 8)
(ii) o(HK) is empty for kj=0.

(12.1)

(12.2)

o- HJ

UHJ
Figure :

Proof, (i) The numerical range of HK and therefore E (HK) are contained in
the range of (12.2). Conversely, let

.2z — a lib for some (n, a, b) e S x P1 x R1.

The idea is to take a sequence jc„—>0 and to construct corresponding states un
such that

/?2)i/„|| —»0 and \\(nb - Knx)u„\\^>Q, (12.3)

i.e. quantum states un for which both the kinetic and the potential energy take
prescribed classical values with vanishing mean square deviation in the limit
jc —» 0. A fortiori we then have

||(z -HJun\\-*0,
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which shows that z e E (HK). A possible choice is

jc„ un~4, n 1,2,
(12.4)

un(x) emxn-'/(n"2(x - n4b))

with arbitrary / e CO, ||/|| 1.

(ii) First we remark that odlS(.(HK) is empty since HK is unitary equivalent to
HK + Ka for any real a by a translation. To show that oXHk) is empty we use
Lemma 3.3. Any state u eCÔ(\x\>n) decomposes into u u+ + u~ with
u+'" e Cq(±x > n). From the numerical range estimate we thus obtain

\\(z-HK)u2\\ \\(z-HK)u + \\2+\\(z-HK)u\\2
^d2(\\u + \\2+\\u-\\2) d2,

where d is the distance of z from the set given in Fig. 9

nk

nx

Figure 9

Since d is positive for any z and sufficiently large n, it follows from Lemma 3.3
that oess(HK) has no boundary points and is therefore empty. D

(b) Strong convergence of PK

This is a rather trivial example to show that eigenvalues of HK can simply
disappear in the limit jc^>0 if PK and P* converge strongly but not in norm. Let

p2+V(x-X) if jc>0
if jc 0«,- V V ' 'I ._n (12.5)

on L2(R1), where V is some negative C0 function so that H=p2 + V has an

eigenvalue A <0 with eigenfunction v, \\v\\ 1. For jc >0 HK is unitary equivalent
to H: A is an eigenvalue of HK with eigenfunction vK(x) v(x - jc1). Moreover
||PK(z)|| is independent of jc for any z e p(HK) p(H) c p(//0). Since HKu^>Httu
for all u e CO as jc —» 0 it follows as in Section 5 that

PK P^Po 0.
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This is of course also seen from the explicit form PKu (vK, u)vK since vK -£> 0.

A 0
a(Hk)for k#0

ö(H0)
Figure 10

(c) Shape resonances

As a first illustration of Theorem 5.1 we discuss a system which exhibits
typical shape resonances:

HK =p2-g\x\-1-K \x\ (1 + jc \xX (12.6)

with g > 0 and jc i_;0. The potential VK(x) nas tne form:

VK(x)

K=0

K>0

Figure 11

As soon as jc > 0 we expect that the bound states of H0 in the energy range
-1<A<0 become unstable: they can tunnel through the potential barrier which
has thickness of order jc-1.

According to the Balslev-Combes theory ([3], Section XIII.10, [4], Section
8.1) these eigenvalues should turn into resonances, given by eigenvalues of the
dilated Hamiltonian

Hi Xp2-gX \x\-' - UK \x\ (1 + fite |jt|)-' (12.7)

for suitable complex [i¥=0. We assume |arg ju| < n/2. Then Hf) has the spectrum

A 0

2 arg p

Figure 12

with negative real discrete eigenvalues independent of fi: the discrete eigenvalues
of/iV
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To the family (12.7) we assign the sector

Figure 13
S^:_-;arg(|Jk) <-!¦-£¦

Since |.r|
x is small relative top2 it is easily seen that (apart from an overall factor

p~2) H'i is a family of Schrödinger operators.

Definition. E« is the set of all complex A which violate the stability condition
(5.6) with respect to H^.

Lemma 12.2. E£ is the range of the function

(JC, p, X)-*XP2 - (UK 1*1 (1 + V-K \x\)~x

on S"xR3x R3-. the shaded region in Fig. 14.

(12.8)

Figure 14

2 arg u

I\L-oo -

Cess.H^ o-ess(H0)

Remarks

The two circles passing through -1 and 0 are determined by the angle e

given in Fig. 13. According to Lemma 3.3 the essential spectrum of H* depends
only on the behavior of the potential VK(x) as \x\—»°°:

oxKx\o{rfi [t k=o
essV K) \o(Xp' -l) if k^O

Proof. If A is in the range (12.8) it is easy to construct a sequence jc„ —* 0 and
states uneCQ(\x\>n) such that ||(A - //£ )w„11 —*0 (see Example (a)). Therefore
AeE£.

To prove the converse we use localization (Lemma 6.1). Let/be the function

f(cf>,s)= - e'*s(l + e'+s)-1
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onO^i^œ, £ =i cp ___ n - e. In this region / and df/ds are uniformly bounded.
Given any ô > 0 we can thus choose a finite set of nonnegative Cœ functions
Ja(s), a 1... ß, and corresponding points ^"inO^s^oo such that

SJ'(î) 1 and |/(0, s) -f(d>, sa)\< Ó

a

for all cp if s e supp F*. The scaled functions

/?(;<:)=/"(|JC/U| |*|)

form a partition of unity on |jt| > n in the sense of (6.2). For states u e CÔ(\x\ > n)
we have

\\(m-ma)J>\\^(\gHn\-l + ô) ||/;n||, where

H£a =__ M"2p2 - e'*s"(i + A")"1, ^ --- arg (//.*).

Since the numbers s a are constants the numerical range of H^a is contained in the

range of (12.8). If A is not in this range it follows from (12.9) that the stability
conditions (6.3) are satisfied for suitably chosen n, ô. D

By Theorem 5.1 and Fig. 14 all eigenvalues A of HS in the open intervals
(—=o,-l) and (-1,0) are stable with respect to HI1, but with a different
qualitative behavior for real jc>0:

—oo<A<— 1: Then the perturbed eigenvalues are also eigenvalues of HK
and therefore real. They represent bound states.

-1<A<0: In this case the perturbed eigenvalues have strictly negative
imaginary parts for arg tj, > 0 (the situation depicted in Fig.
14); these are the shape resonances.

These statements are based on the following facts:

(i) A discrete eigenvalue of H1/, is independent of \i as long as it is separated
from the essential spectrum of //£ (shown in Fig. 14)

(ii) For real jc 0 the real eigenvalues # —1 of H^ and HK coincide
(iii) For real jc > 0, HK has no eigenvalues > -1

(i) and (ii) are general aspects of the Balslev-Combes theory ([3][4]). (iii) is

elementary for spherical symmetric potentials (with limit -1 as \x\ —>°°.) and in
fact a special case of "nonexistence of positive eigenvalues" ([4], Section 4.4).

Remarks

The details of Fig. 14 depend of course on the special form chosen for the barrier
potential. By using "exterior complex scaling" [43] or other variants of the
Balslev-Combes method [20,33] only the behavior of the potential in the

energetically allowed outer region will come into play.
From our proof it is also clear that the global numerical range argument (6.1)
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must fail in this case. In the limit of large n the numerical range of //£ for states
u e Côd* | >«) is the convex hull of the set E S which covers the interval (—1, 0).

We mention that a similar perturbation problem with respect to an infinitely
high barrier is treated in [9]. The most interesting aspect of shape resonances are
estimates or asymptotic formulas for the widths [27,28,38]. This problem has

been studied in particular for shape resonances appearing in the semi-classical
limit *-»0 (see e.g. [29, 18, 32]).

(d) Stable anharmonic oscillators [3]

This is our first example for asymptotic RS-expansions. Let

Hk=p2 + x2 + kV(x) ony
(12.10)

S: — jr + e arg jc jx — e

with VtauïO in LZc(Rv)- The conditions (2.4)-(2.7) are obviously satisfied. For
states u e C0(|x| > n) HK has expectation values in the region

I

Figure 15

Since n is arbitrary large, each eigenvalue of Hn is stable by the numerical range
argument (6.1). To establish the RS-expansion we construct an exponential
bound.

Lemma 12.3. For any positive a<\, f(x) exx2/2 is an exponential bound
satisfying the hypothesis of Theorem 9.2.

Proof. The function g(*)=Jc2/2 is chosen such that the potential (9.8)
vanishes. Hsf is given by

Hsf p2 + iß(x -p+p-x) + (l- ß2)x2 (12.12)

where ß =sa:0^ ß^a a<\. For states u e CT,(\x\ > n) we have

Re(/F/}^(1--V2)«2
uniformly in Oês lu 1. This proves (9.13) for any A if « is taken sufficiently large.

D

It follows from (8.11), (9.7) and Theorem 9.2 that D(k), N(k) and £(jc)
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have RS-expansions up to order 2N if

sup \V(x) exp (-ax2/2N)\ <°o
X

for some a< 1.

We now turn to the quartic anharmonic oscillator

HK =p2 + x2 + kx4

which has become the model example for Borel summability [24, 3]. To show this
we need the sharper estimate (9.6). First we prove that

||x2Mi|^c(||//s/«|| + ||«||) (12.13)

uniformly in 0__i5 ___
1. Proof. Let A p2 + iß(x ¦ p +p ¦ x). By (12.12) we have

on CO

H:fHsf A*A + (1 - ß2)2x4

+ (1 - ß2)(2 Y pXpk - 2v) - 4/3(1 - ß2)x2

ê (1 - ß2)x4 - 4/3(1 - ß2)x2 - 2v(l - ß2)

WH (1 - or2)2*4 - 4ax2 - 2v.

This proves (12.13) for u e CÔ, which is sufficient since CO is a core of //S7,. D

(12.13) implies that

p2Ps/(z)|| < c{\ + (1 + |z|) ||_R„(z)||}. (12.14)

With (9.6) and (9.14) this leads to the estimate

BN < CbN sup |x2" exp - ax2/2)\

< CdNNN < CoNN\

since NNtàeNN\. By Lemma 8.2 and Lemma 10.2, £(jc) is thus Borel summable
in the sector S. We also remark that £(jc)* £(jc) for real jc so that Theorem
11.1 (vi) applies.

(e) The one-body Stark effect [25, 30]

This is a shape resonance problem with a linear barrier potential.
Corresponding to (12.6) and (12.7) we have

HK=p2-\x\~1-K(e,x)
(12.15)

Hi Xp - « M"1 - Kju(e, x)

where e e P3 defines the direction of the electric field. jU2//£ is a Schrödinger
operator as long as jc/z3 is not real.

For |arg p\ < jx/2 the spectrum of H^ is shown in Fig. 12. Here we also need
the following result of the Balslev-Combes analysis. Let P0 and Pg be the spectral
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projections of H0 and //{} corresponding to a given (common!) eigenvalue A<0.
Then

P0v U(ii)-lPSU(p)v (12.16)

for all v e D(U(fi)). Here U([i) is the dilation group, given for real \i > 0 by

(U(fi)v)(x) X2v(Xx)
and extended to complex pt via its spectral representation. (12.16) shows that the
(finite dimensional!) spectral subspaces M0 R(P0) and MI^ R(P^) are in the
domains of £/(/*) and U(Xl> respectively, so that

^(/u)U„ bijection Af0-* Mg. (12.17)

As a first step we discuss the perturbation of a discrete eigenvalue A of //g
under (12.15) for fixed //. It is clear from Example (a) that the stability condition
(5.6) cannot hold if A is in the range of the function

(jc, p, x)^> Xp2 ~ Kii(e, x).

To exclude this we define the sector Sß for the family (12.15) by

5M.Ê-arg/c + 3ar8iu-jr
£ .s arg jc + arg n^kjt-

(12.18)

with small e > 0. The region allowed by these inequalities is shown in Fig. 16 for
£ 0:

Figure 16

arg u

TT/2

arg
3rr/

tt/2

-TT/2 —

For a fixed fi with |argju| <;z:/2 the sector 5M is given by a horizontal interval
inside the allowed region. In particular,

SW £ â arg ic ;§ jr - £ (12.19)

corresponds to the undilated Hamiltonian HK in which, however, jc is not allowed
to be real ¥= 0. For states ueCÔ (\x\ > n), and up to an error of order n~l, H^ has

expectation values in the shaded region of Fig. 8. Therefore each (negative)
eigenvalue A of H0 is stable by the numerical range argument (6.1).
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To establish the RS-expansion we show that for a given eigenvalue A

f(x) a\x\ (12.20)

is an exponential bound satisfying (9.14), provided that a>0 is chosen

sufficiently small. To be precise we should regularize f(x) near x 0, but this is of
no consequence. The optimal a can be determined from (9.13) and is known as

O'Connor's bound ([3], section XIII.11). However, since any a>0 will serve
here, we use a simpler argument:

a^-Hf Hß + iaXipx \x\~l + \x\~lxp) ~ oc2X

is an analytic family of type A for small complex oc, since the operator in brackets
is bounded relative to Hß as a consequence of (2.8). Given any compact set
T --- p(H0) it follows directly that

sup ||Ps/(z)||<oo (12.21)

OSjSI

for sufficiently small _v>0. Thus (9.7) gives the estimate

BN < CbN sup 1*1" exp (-a \x\)
x

<CoNN\,

which leads to a strong asymptotic estimate for £m(jc) in the sector Sß by Lemma
10.2. This estimate holds in particular for

£(jc) £x(jc) on S1,

which has the asymptotic RS-series computed from the undilated Hamiltonian
HK.

To prove Borel summability we construct an analytic continuation of £(jc) to
a sector of opening angle > jt. We pick \i with |arg /i| < jt/3 so that the sectors S1

and 5" overlap (Fig. 16). For small jc in S1 n S" it follows from (12.16) that

£(jc) Udj-XE^Udu) (12.22)

where U(p.) is the bijection (12.17). Thus (12.22) defines an analytic continuation
of £(jc) to small jc in 5M. In the sector Sß, E(k) has a strong asymptotic estimate
obtained via (12.22) from the corresponding estimate for £m(jc), since U(iu) and
{/(ju)-1 are bounded. The expansion coefficients of £(jc) in the sectors S1 and Sfl

are the same, since both expansions hold in S1 fl 5M. By joining a third sector to
S1 U 5^ and so forth (see Fig. 16) we arrive at the following result:

Lemma 12.4 [30]. £(jc) is analytic for small jc in - n/2 + e __i arg jc __i 3jt/2 -
e and given by the Borel sum of the RS series for the Stark Hamiltonian HK.

The Stark resonances are the perturbed eigenvalues for real jc > 0. As in

Example (c) they have strictly negative imaginary parts since it is known that
HK H* has spectrum (—°°, +°°) with no embedded eigenvalues [10]. This also



Vol.61, 1988 Notes on asymptotic perturbation theory for Schrödinger eigenvalue problems 293

shows that

£(jc)*^£(jc)
for real jc ¥= 0, while of course

£* Ek for all k.

Therefore Theorem 11.1 (vi) applies: the perturbed eigenvalues are semi-simple
and Borel summable in a sector — jz/2 + e arg jc 3jt/2 — e with real RS-

expansion coefficients. For small real jc>0 they have strictly negative imaginary
parts which vanish faster than any power of jc as jc^O. This also shows that the
RS-series are actually divergent. In fact there is a quantitative relation between
the growth of the RS-coefficients and the asymptotic behavior of the imaginary
parts (the widths of the resonances) as jc —» 0. For a discussion of this aspect we
refer to [8].

(f) Unstable anharmonic oscillators [17]

As a second illustration of the method used for the Stark problem we treat

Hk=p2 + x2 + kV(x), (12.23)

where V(x) is a real homogeneous polynomial of order m >2 on Pv. We do not
assume V to be positive. As in the Stark case we bypass the problem of assigning
a definite self-adjoint extension to the operator given by (12.23) e.g. on CO for
real jc # 0. Instead we start again from the dilated operator

Hi Xp2 + M2*2 + K\xmV(x)

on the sector

£ arg jc + (m — 2) arg \i Ji — e

e arg jc + (m — 2) arg (i n — e

The allowed region for (argjc, arg/u) is shown in Fig. 17:

(12.24)

(12.25)

Figure 17

arg p

S^

.m-2)

arg k

TT + £(m-2)
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We note that |arg (i\ < jz/4 and that any sector

jz ji
— — (m — 2) + £ arg jc jtH— (m— 2) — £ (12.26)

with £>0 can be covered by finitely many S**. This sector has opening angle
arbitrarily close to m.Ji/2. For m > 4 it cannot be drawn in the simple jc-plane but
on a Riemann surface with branch point 0.

It is easily verified that \i2Hi is a family of Schrödinger operators. For states
u e Cq(|-t| > n) the expectation values of Hi are in the shaded region of Fig. 18,
drawn for arg ß > 0. :

^n
2arg|j TT-2argp- £

2arg u

Figure 18

Since n is arbitrary large, each eigenvalue of HQ is stable by the numerical range
argument (6.1). As in the case V(x) =x4 (Example (d)) we find the estimate

BN < CbN sup (|x Nlm-2) exp (-ax2/2))

for some a > 0, which gives

BN<CdNNN(m~2V2. (12.27)

This is converted into a strong asymptotic estimate with respect to a new
expansion parameter Ç defined by

r(m-2)/2 (m even)
ï(m-l,/2 (m odd)

•

Then (12.27) transforms into

BN < Cannn,

where n now denotes the order in §. Thus £m(jc) has a strong asymptotic estimate
in a sector 5M of the £-plane corresponding to (12.25). As in the Stark case we
can patch these results for a finite number of sectors 5^ to cover any sector of the
form

Jl 2n K- T. + £ arg Ç t + t; - £ (m even)
m ¦2 2

^r(m — 2)

2(m - 1)
+ £ ^ arg § ;

2-T -T(m — 2)
A--T-. — — £

m 1 2(m - 1)
(m odd).
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For small £ these sectors have opening angle > n: E(k) £x(jc) is the Borel sum
(in these sectors) of the RS-series computed from the undilated Hamiltonian HK,
so that again E% Ek for all k. For real § =£ 0 the perturbed eigenvalues can be

interpreted as resonances of the (ill-defined) Hamiltonian HK by using some
cut-off for large negative values of V(x) [16].

(g) The N-body Stark effect [31, 36]

For N particles with masses m, • • ¦ mN and charges qx ¦ ¦ ¦ qN the dilated Stark
Hamiltonian corresponding to (12.15) is

HK= -X& + X Y «M* \x, -xk\~1-Kß(e, x) (12.28)
i<k

defined for jc in the sector (12.18). Here and in the following analysis /i is fixed
with |arg ju| < n/2 and therefore omitted as a superscript in HK and 5. HK acts on
the Hilbert space £2p0, where

X {* (*!••• xN) | xk e P3, Y mkxk o} (12.29)

is the space of .V-particle configurations in the center-of-mass (CM) frame,
equipped with the scalar product

(x,y) 2Ymkxk-yk, (12.30)

xk ¦ yk scalar product in P3. A is the Laplacian for the metric (12.30) and (e, x)
an arbitrary real linear form on X. As in the case N 1, [i2HK is a family of
Schrödinger operators since the Coulomb potentials are small relative to A and
since real jc//3 are excluded by (12.18).

The following notions are standard in the theory of /V-body systems. With

D (Cx---Cn),2^n^N
we denote the nontrivial partitions of (1 • • • _V) into n subsets (clusters) Ck. For
given D we can represent any * e X by the components

x (xD, xc* • ¦ ¦ xc"),

where xD (%x ¦ ¦ ¦ §„) is the configuration of the centers-of-mass of Cx- ¦ ¦ CN

(E MkK~k 0, Mk total mass of Ck) and xc the configuration of the cluster C in
its own CM-frame. The corresponding configuration spaces XD, Xe are defined
in obvious analogy to (12.29) and (12.30). The advantage of the metric (12.30) is

reflected in the identity

(x,y) (xD,yD)+ Y (xc, yc)
CeD

which says that A' is the orthogonal sum of the subspaces XD, Xe' ¦ ¦ ¦ Xe". Thus
each decomposition D induces a factorization

L2(X) L2(XD) (8) L2(XC') <8> ¦ • • ® L\XC")
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of the -V-particle Hilbert space. With respect to this factorization the Laplacian
takes the form

A AD <8 1 <g> • • • <g> 1

+ 1 (8) ACl <g> ¦ • • <g> 1

+ 1® Kg) g)Ac-,

for which we simply write

A A° + Y X.
CeD

Similarly, the system of non-interacting clusters Cx ¦ ¦ • Cn is described by the
Hamiltonian

Hi X^D-^(eD,xD)+Y He,

where He is the Stark Hamiltonian for the subsystem C in its own CM-frame:

Hc= -p~2Ac + X Y qiqXi-xX-\),K(ee,xe).
i.keC
i<k

According to the Balslev-Combes theory the unperturbed Hamiltonian H() has

the spectrum shown in Fig. 19:

2arg p

Figure 19

The details of this picture are explained in the Balslev-Combes paper [14] (see
also [3], Section XIII. 10). Here we only need the following facts:

(i) T and the real eigenvalues of H0 below T are independent of pt. These
eigenvalues form the discrete spectrum of the undilated Hamiltonian
HQ Ho which has the continuous spectrum [T, + °°)

(ii) For any decomposition D (Cx • • • C„) we have

o( S He if

where if is the complex sector with origin T shown in Fig. 19.

(12.31)

We also mention that HQ is m-sectorial with an arbitrary narrow sector if{) shown
in Fig. 20. This is evident for the operator — n~2A and extends to Ht} since the
Coulomb potentials are small relative to A.



Vol. 61, 1988 Notes on asymptotic perturbation iheory for Schrödinger eigenvalue problems 297

opening angle arbitrary
' small for suitable P

^
dK

Figure 20

Lemma 12.5 [31]. For fixed /i with |arg ju| < ji/2 any eigenvalue A < F of H0
is stable with respect to HK.

Proof. In the first step we use a partition of unity on X which is standard in
/V-body spectral theory (see e.g. [4], Section 3.3):

i 2 JD(x),
o=(c,,c2)

where JD(x) is homogeneous of degree zero, Cx on -V\{0} and

dist (C, ,C2)^a\x\ on supp (JD)

for some a >0 depending on the masses. Then (6.2) is evident and (6.6) holds in
the form

\\(HK -H°)JDu\\^ const. rt~' ||FJw||

for all u e C„(|x| > n). By (6.7) it therefore suffices to prove

XeP(H°) (12.32)

for any two-cluster partition D (CX, C2). In fact we will prove this for all
D (Cx ¦ ¦ ¦ C„) by induction in n. For « /Vwe have

H® - ju"2A - //jeté, jc),

so that (12.32) follows from the numerical range argument (6.1) as in Examples
(a), (e). Now we proceed by induction. Let D (C, • • • C„) be fixed with
2\%n<N. We assume that

A e P(//f)
for all D' obtained from D by splitting some cluster CeD into two clusters
C, C":

D : C

D': C' C"
Figure 21 K_y V / v_^

To prove (12.32) from the induction hypothesis we construct a second partition of
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unity on X as follows. First we define subsets of X:

Q+/- : diameter of C < 1 for ail C e D
and ± (e, x) > -1

QD :dist(C, C")>(2N)-\
These sets form an open covering of X. For suppose that * £ Q+ U Q~. Then
diam (C) ^ 1 for some C eD. Therefore C can be split into two clusters having
distance it. (N — l)-1, which shows that * e QD for some D'. Now we choose a

partition of unity

1=J+(x)+J-(x) + YJd'(x)
D'

whose members Ja are nonnegative Cx functions with bounded derivatives,
supported in the corresponding sets Qa. Then we scale this partition, defining

Ji(x)=Ja(\K\l/2x)-

In analogy to (6.3) we need only prove

\\(k-H^)JaKu\\^ô\\Jiu\\ (12.33)

for some ô > 0, small jc, all u e CO and all members J% of our partition of unity.
On supp (/£') we have

dist(C\ C")^(2N)-1\k\-V2.

There H« reduces to H® up to an error of order |jc|1/2 in operator norm (tails of
Coulomb potentials between C and C"), and (12.33) follows from the induction
hypothesis.

On supp (J«) we have the two inequalities

diam (C) ^ \k\~112 for all C e D and

(e,x)ÌH-\K\-m,

which imply

\K(ec,xe)\^ const |jc|1/2 and

|jc(eD, *°)-l ___ const |jc|1/2.

(with (a, *)+/_ we denote the positive/negative part of the function x^>(a, x)).
On supp (JW the operator H% thus reduces to

-X^D-^{eD,xD)++ Y He

K hD

up to an error of order |jc|1/2, and it remains to prove that

XeP(hXhD). (12.34)
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h* is uniformly m-sectorial with a sector X:
0

2 arg p

r—
Figure 22

On the other hand, hD is independent of jc and m-sectorial with a sector if0
shown in Fig. 20. Therefore we can apply Theorem 6.2, which together with
(12.31) gives

Y (K + hD) cX + o(hD) cST + ST.

^J^rWx-
Figure 23 X<tf\\\\^ vAW

This proves (12.34). The proof for J~ is analogous.

Borel summability

Given the stability result of Lemma 12.5 the PS-expansion and the
asymptotic estimates follow exactly as in the one-body case. As a result, Lemma
12.4 holds in the /V-body case for any eigenvalue A < T.

Remarks

For the atomic case (defined in the next example) Sigal has shown that the
Stark resonances have positive widths [37] with an upper bound depending
exponentially on the shortest Agmon distance across the energetically forbidden
region [39].

(h) The Zeeman effect in atoms [13]

#,. _£ [(Pk-K(eAxk))2-Z\xk\-x\
k \

+ Y \xt-xX
i<k

describes an atom with fixed nucleus and N electrons in a homogeneous magnetic
field jce. This problem is simpler than the Zeeman effect in an arbitrary N-body
system for the following reason.

HK H0 + k2 Y (e a xk)2 - 2kL,
k
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where

L e, Y xk a pk
k

is the total angular momentum in the direction of the field. Since L commutes
with HK we can drop the term - 2jcL from the Hamiltonian, treating it like a

constant. Again we start from the dilated operator

HK H0 + K2fi2Y(e Axk)2
k

h0 2 (x2pl - Xz M"1) + X 2 \x,-xk\'\

(12.35)

where the dilation parameter p is fixed in |arg ju| (n/2) - e and with jc restricted
to the sector

ji - - _ JlS:-- + £.garg(jcy) =§--£.

The region of allowed jc, /ì is shown in Fig. 24:

arg p
TT/2

arg k

TT/2

TT/?

TT/2
Figure 24

It is easy to check that \i2HK is a family of Schrödinger operators. The spectrum
of H0 is given by Fig. 19.

Lemma 12.6. Each real eigenvalue X<T of H0 is stable with respect to the

family HK given by (12.35)

Proof. The proof is essentially the same as in the Stark case. Since now there
is a nucleus (called particle 0 with coordinate x0 — 0) we consider two-cluster
partitions D (C0, Cx) of the set (0 • • • N) where C0 is always the cluster
containing the nucleus. There is a partition of unity

1= Y JD(x)
_-» (C.,C,)

on X L2(R3N) with nonnegative JD, homogeneous of degree zero and smooth
for x ¥= 0 such that

dist(C0, Cx)^a\x\
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on supp (JD) for some a > 0. In this region HK reduces to

H? Hc° + hc<

in the sense of (6.6), where He" is the original Hamiltonian restricted to the
subsystem C0 (containing the nucleus) and hi the Zeeman Hamiltonian of a

cluster of electrons without nucleus:

hcK=Y X2pl + K2Xe ^xk)2) +p'1 Y \x,-xk\~\

By (6.7) we need only prove

AeP(//?)

i.kcC

(12.36)

for all two-cluster partitions D. Again we will prove this by induction for all
D (C0 • • • C„) with nel, where always 0 e C„ and where H® is obtained from
HK by dropping all intercluster potentials. In particular

HX-ZXYk + ^Xe^xX)
k

in the case n N: D (0)(1) • • • (N). The numerical range of each term in this
sum is in the shaded sector if, of Fig. 25:

X 0

Figure 25

arg p

arg p

2 arg p

This proves (12.36) for n N. By the same argument, (12.36) also holds for any
D (C0 • • • C„) with C0 containing only the nucleus (here we use that the
electron-electron potentials are positive. Notice that the ray argz — argju is
within the sector ifx in Fig. 25). It remains to prove (12.36) in the case when C()

contains electrons, starting from the induction hypothesis that

AeP(//f)
for all D' obtained from D by splitting C„ into two clusters Co, C'a with 0 e C,',:

Figure 26 'XX) IW
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As in the Stark case we introduce a second partition of unity

1=J°(x) + YJd'(x)
D-

with the properties

diam (C0) 1 on supp (J°)

dist (Co, Cl) ^ (2N)-1 on supp (JD).

Then we scale this partition defining

Ji(x)=Ja(\K\1/2x)

To prove (12.36) it then suffices to show that

||(A -H°)J%u|| È_ô||./>y (12.37)

for some ô > 0, small jc, all « e Co and for all members JaK of our partition of
unity.

On supp (J® the operator H® reduces to H13 up to an error of order |jc|1/2

in operator norm, so that (12.37) is satisfied by the induction hypothesis.
On supp (J°) we have diam (C0) l^l"172, therefore H% reduces to

He°-rYhc'
k \

up to an error of order |jc|. As we have already noted, the operators hc are
uniformly m-sectorial with a sector ifx (Fig. 25), while the sectorality of the
jc-independent operator Hc° is given in Fig. 20. By Theorem 6.2 and (12.31) we
thus obtain

Y(Hc"+YhCt)^ifx + y,
\ /- 1 /

which proves (12.37) for J°. D

Borel summability

As in the Stark case we use an exponential bound

/(*) a |*| (a>0)
for any eigenvalue A < F of H(). Since the RS-series for (12.35) is a power series in
jc2 we find from (9.7) the estimate

BN=X BN< CbN supp |*|N exp (-a |*|/2)
X

<CoNN\ (.V even).

Patching these results for different values of the dilation parameter \i as in
Example (e), it is evident from Fig. 24 that we arrive at
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Lemma 12.7. For any eigenvalue X<T of H0, E(k) is the Borel sum of the
RS-series, computed from the undiluted Hamiltonian, in a sector —ji + e^
arg jc ê jr — e.

Remark

In this case we have of course £(jc)* £(jc) for real jc: the perturbed
eigenvalues correspond to bound states.
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