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Abstract. We present an extension of Mourre’s method for proving absence of singularly
continuous spectrum of a self-adjoint operator H. We specify a large class of locally H-smooth
operators and apply these results to N-body Schrédinger operators.

1. Introduction

Let H be a self-adjoint operator in a Hilbert space # and E(-) its spectral
measure. Mourre’s method for determining the principal spectral properties of H
consists essentially of two points [1], [2]:

(i) find a self-adjoint operator A that is locally conjugate to H modulo a
compact operator, more precisely such that, for suitable intervals J:

E(J)[iH, AJE(J) = aE(J) + K,

where a>0 and K are a real constant and a compact operator respectively
(depending on J);

(ii) replace the imaginary part of z in the resolvent (H —z)™' by (Imz +
N.), where N, is a certain self-adjoint operator (having the same sign as Im z)
constructed from the commutator [H, A] and depending on a parameter
€ € (0, 1), with N, — 0 as ¢ — 0; then show that, for a suitable operator L, there is
a differential inequality (as a function of &) for the norm of L(H — A +i(u +
N.))7'L* in such a way that the coefficients of this differential inequality are
independent of A and u for A in a suitable subinterval J, of J and u =0. If these
coefficients are not too singular as functions of ¢ near £ =0, one obtains after
integration that

sup {||L(H — A+ i(u + N,))'L*|| | £ € (0, 1), A e Jo, 4 =0} <o, 1)
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which implies local H-smoothness of L and hence the absolute continuity of the
spectrum of H in J,,.

Part (ii) requires various technical assumptions on the domains of A, H and
their commutators, in particular an assumption on the double commutator
[[H, A], A] which, in the applications to Schrodinger operators for example,
entails a certain restriction on the potentials (see e.g. Remark 3 on page 523 of
[2]). In trying to understand the origin of this restriction, we found that it can be
by-passed by using more carefully the ideas of part (ii) of Mourre’s arguments. In
fact the derivation of (1) would go through if the coefficients appearing in
Mourre’s differential inequality were replaced by more singular functions of &,
and this extra freedom can be exploited by choosing auxiliary operators N
different from those used by Mourre and subsequent authors.

There are various possibilities for generalizing the operators N, used
previously. We shall here present in detail the case where N, is constructed from
[H(e), A] rather than from [H, A], where H(¢) is a suitable approximation of H.
In applications to Schrodinger operators this allows one to dispense with the
restriction on the potentials mentioned above and, for example, to recover
essentially Lavine’s smoothness result [3] by the Mourre method; in this case
H(€) is obtained by introducing an e-dependent cut-off on the potentials.

The organization of the paper is as follows. In Section 2 we introduce the
general mathematical framework. In Section 3 we present a simple proof of the
virial theorem and its implications for the point spectrum of H. In Section 4 we
give the generalized form of part (ii) of Mourre’s argument. In Section 5 we
construct a large class of operators L that are locally H-smooth, and in Section 6
we give some applications to N-body Schrodinger operators. In order to limit the
length of the paper, some of the proofs will be indicated only at a formal level;
detailed and rigorous arguments may be found in [4]. For an extensive
bibliography we refer to [5].

2. General framework

Our basic objects are a self-adjoint operator H in a complex separable
Hilbert space # and a strongly continuous one-parameter group {W(«&)},cr Of
unitary operators leaving the domain of H invariant.

In the present section we introduce some additional quantities that can be
defined in terms of #, H and {W(«)}, and we specify our notations. We denote
by (-, -) and ||-|| the scalar product and the norm in 9 respectively. We let 4' be
the domain of H, provided with the norm

1Nl = N2+ [HDE,

where I is the identity operator. We observe that the above norm is equivalent to
the graph norm (||f||*> + ||Hf||*)"%. For s € [0, 1], we denote by ¥ the interpola-
tion space between §°= % and ¥'; ¢* coincides with the domain of the operator
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(I + |H|)’ in # and is provided with the norm

1 1ls = I+ |HIYF

(see e.g. [6], p. 44). We denote by ¥ =(%°)* the adjoint Hilbert space of §°
(the vector space of all anti-linear continuous mappings from %° to C, provided
with the usual dual norm). We shall always identify %* =(%°)* with # =4’
through the Riesz lemma, and we then have

GcbcHc6"'c9” forany 1=s=t=0,

with continuous and dense inclusions. We use the notation {E(-)} for the spectral
measure of H.

Since each W () is assumed to leave %' invariant, it follows by interpolation
that each ¥° (0=<s =<1) is invariant under {W(a)},cr, and that the restriction of
{(W(a)}wer to §° defines a strongly continuous (with respect to ||-||;) one-
parameter group in %’ (the strong continuity is implied by the weak measurability
([7], Section 10.2) and the latter is easy to prove from the strong continuity in ).
By taking the adjoints of these one-parameter groups, one sees that {W(a)}.cr
extends from  to a strongly continuous one-parameter group in % for each
s €[0, 1].

The generator A, of the group {W(a)},er in 9’ (—1=<t=<1) is a closed
densely defined operator (see [7], Section 10.3), and A, is self-adjoint. Formally
we have W(a)=-exp (iaed,). We set €= D(A,) and provide it with the graph
norm

1 lle = CNFIT+ NAFID™
Clearly

EcYcHc¥ ' cE,

where the image of each embedding is dense in the respective space. The
restriction of {W(a)},.r to € defines a strongly continuous one-parameter group
in €. We denote by A the operator A, considered as defined on & with values in
%'; hence A is a bounded operator from € to 4.

If %, %, are Hilbert spaces, we denote by B(%,, %) the Banach space of all
linear continuous operators from % to %. We set B(%F)= B(F, ¥) and we
denote by ||| and |||, the norm in %B(%) and in B(%°, 4*') respectively. An
operator T € B(F, F*) is said to be symmetric if (f, Tg) =g, Tf) for all
f, g€ %, where (-, -): F X F*— C is defined by (f, ) =@(f), f € F, p e F*.

All operators that we shall consider will be well defined as elements of
RB(€, €*). If T is an operator in B(¥’, ¥') for some s, te[—1, 1], then its
restriction to & clearly belongs to B(%, €*). On the other hand, if an operator §
in B(%, €*) has an extension to a bounded operator from %° to %' for example,
then we say that S € B(%°, 9') and use the same symbol § for this extension.

If T:%°— %' is symmetric and continuous, with s = =0, then its adjoint
T* is in B(9’, ¥7°). Since T* coincides with T on ¥° c ¥’, it follows that T has
an extension to an operator in %B(%‘, ¥™°); hence (with the convention made
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above) one has T € B(%’, ¥™°) and
IT e = NT*l=s = T Iy, - (2)

Similarly the symmetric bounded operator A from & to %' introduced before
extends to a bounded operator (also denoted by A) from (4")*=%""to &€*; in
other terms A € B(€, ¢')N B(¢~", €*). In particular, if Se RB(%', §"), then
the commutator [A, S] is well defined in %B(%, €*). Also there is no need to make
any distinction between the operators A, and A.

Finally we observe that, if 8 is a bounded function of compact support, then
O(H) € B(9°, §') for any s, t €[—1, 1]. In particular, if J is a bounded set, then
E(J)e B(4', 4").

3. The virial theorem. The point spectrum
We begin with an auxiliaty result and then prove the virial theorem.

Proposition 1. Let T € B(9', §7') and —1<t<ss<+1. For a eR, define
T, =W(a)TW(—«). Assume that [A, T]| € B(9G°, 4'). Then
(a) One has for any «, B eR:

T,—T,=—i fﬁ W(7)[A, TIW(-1) dx, 3)

where the right-hand side is defined as a strong integral in B(%4°, §').
(b) The following relation holds, as a strong limit in B(%°, §'):

[A, T]=lim —ia~'[W(a), T]. 4)
a—0
(c) In particular, if s=+1 and t=-1, T, is strongly continuously
differentiable with respect to o in B(9', §7"), and dT,/da |-, = i[A, T).

Proof. We indicate only a formal proof. (a) is formally clear, it suffices to
integrate d71./dt over [a, B] and to observe that the derivative makes sense in
B(E€, €*). (b) is then easy to derive by using the result of (a) with § =0 and the
fact that W(a)— I as a— 0 strongly in %°:

[, T] = lim [4, T]W () = 1@& " deW (DA, TIW(—1)W(a)
= lim - (W(a)TW(~a) ~ T}W(a)

1
= lim —[W(a), T},
a—0 Ll

where all limits are in B(%°, 4'). ®
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Proposition 2 (Virial Theorem). Let H be a self-adjoint operator in 3 with
domain 4', and assume that B = i[H, A)] belongs to B(G", 4 "). Let f € §' be an
eigenvector of H (i.e. Hf = Af for some A€ R). Then (f, Bf) =0.

Proof. For a € R, set f, = W(a)f and H, = W(a)HW(—«). Then H,f, =
Af,, so that (for a #0):

(f, o "(Ho —H)fy) = (f, «'(A—H)fe) = & {fo, (A = H)f ) =0.
Since H, is a symmetric operator in %(%', ¥™'), this implies that
(far’ (a)_l(Ha - H)f) =0 Va #0.

Now, as a— 0, f,— f strongly in 4' and o~ '[H, — H]f — — Bf strongly in 4~' by
Proposition 1(c). H

Proposition 3. Let H be as in Proposition 2 and assume that B=i[H, A]
belongs to B(%4', 47"). Let J be a bounded Borel set in R and assume that there
are a number a € (0, ) and a compact operator K in # such that (as an operator
inequality in ¥):

E(J)BE(J)=aE(J) + K. 5)

Then H has at most a finite number of eigenvalues in J, and each of these
eigenvalues is of finite multiplicity.

Proof. (i) If f is an eigenvector of H with associated eigenvalue in J and such
that ||f|| =1, then (since E(J)f =f) the hypothesis (5) implies together with
Proposition 2 that (f, Kf) < —a <0.

(i) Now assume that there is an infinite orthonormal sequence {f,} of
eigenvectors of H with associated eigenvalues {4,} in J. Then (f,, Kf,)—0 as
n—x, since {f,} converges weakly to zero in # and K is compact. This
contradicts the fact that (f,, Kf,) < —a<0foreachn. W

4. Absence of singularly continuous spectrum
The purpose of this section is to prove the following theorem:

Proposition 4. Let H be a self-adjoint operator in ¥ with domain 4'. Set
B =i[H, A] and let ] be a bounded interval. Assume that

() B e B(Y', 6 ") and that the Mourre estimate (5) is satisfied for some
a € (0, <) and some compact operator K in ¥,

(B) there is a family {H(€)}o<e<1 Of symmetric operators belonging to
B(G', ¥) such that

(B1) the mapping [0, 1]3 e—> H(e) € B(Y', ¥) is strongly continuous, and
H)=H, :

(B.) for each € € (0, 1], the operator B, = i[H(¢), A] belongs to B(4', ¢ 7),
is strongly continuously differentiable as a B(%4", 4~ *)-valued function of ¢ on
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(0, 1), and there are constants C < and 6 >0 such that
k)
de

(B5) for each € € (0, 1] one has [B., Al € B(%', ") and, for some constants
C<xand 6 >0;

I[Be, Allls, - < Ce™ '™ (7)

B,

<Ceg '*?° (6)

1,-172

Then H has no singularly continuous spectrum, and the number of eigenvalues of
H in J (multiplicities counted) is finite.

Proof. The finiteness of the number of eigenvalues in J has been established
in Proposition 3. To prove the absence of singularly continuous spectrum, it
suffices to show that each A,eJ which is not an eigenvalue of H has a
neighbourhood which does not contain any singularly continuous spectrum. To do
this, we shall show in the remainder of this section that the hypotheses of the
proposition imply that each A, as above has a neighbourhood J, such that

sup  ||(I +AG)H(H = A+iu) (I + A5 <. (8)
Aedy,ue(0,1)
In fact the validity of (8) is a special case of the much more general Proposition 5
(take L, =(I+ Aj)~' and observe that (33) is satisfied with v =0, since the
restriction of A: 47" — &* to D(A,), the domain of A, in ¥, coincides with A).
Now (8) implies that (I + A3) 'E(J,) is an H-smooth operator, so that the range
of E(Jy)(I + A%)™' is contained in the absolutely continuous subspace of H (see
[8], Theorems XIII1.30 and XIII.23). Since the range of E(J,)(I + A3) ' is dense
in E(J,) #, it follows that the spectrum of H in J, is purely absolutely continuous. W

In the lemma below we give some consequences of the hypotheses of
Proposition 4. These hypotheses are assumed to be satisfied throughout this
section.

Lemma 1. (a) We have B € B(%', 47 "?) and
|B— B.ll;,-1.<C6 'e". )

(b) If Ay €J is not eigenvalue of H, there exists an open interval J,, a number
€,€(0,1) and a function @ € C5(R) such that AyelJy, @(A)=1 for all A€l
O<g@(A)<1forall AeR and

¢(H)B.@(H) = (a/2)p(H)*  Vee(0, &) (10)
(c) If @ is the function determined in (b), set
D= @p(H), P =1- (11)

and, for € € (0, €)):
N, =(2¢/a)PB,®. (12)
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Then (for some constant ¢ <x):
N, = e®?, (13)
INell < ce, (14)
and there is g,€ (0, €,) such that for all € € (0, €,), all LeJ,, all u=0 and all
fe¥g" -
I[H = A £ i(N, + w]f | = ((e*/16) + u®) (|- (15)

Proof. (a) As a consequence of (6), {B,} is Cauchy in B(%', §~'?) as £¢— 0.
But the limit of this Cauchy sequence is just B, because B, — B in B(é, €*) as

£—0 by (B,).

(b) Let {J,}.- be a sequence of open subintervals of J such that J, ., cJ,
for all n and (),-,J, = {Ay}. Since 4, is not an eigenvalue of H, we have
s-lim E(J,) =0 as n— =, hence (since K is compact) lim ||E(J,)KE(J,)]| =0. We
fix n such that ||E(J,)KE(J,)|| <a/4 and observe that ||E(J,}(B. — B)E(J,)||—0
as €¢—0 by (a). We choose &, such that this last norm is less than a/4 for all
€ € (0, £,) and then have for these values of &(pre- and post-multiply (5) by E(J,)
and observe that E(J,)E(J) = E(J,)):

EU,)B.EU,) = E(,)(B. = BYE(U,) + E(J,)BE(,)
= —a/4+aE(J,)+ E(J,)KE(J,)=—a/2+aE(,). (16)
Now it suffices to take for J, any subinterval of J, containing A, such that the
closure of J; is contained in J,, and then to choose ¢ with the required properties
such that supp ¢ < J,. (10) then follows upon pre- and post-multiplying (16) by
@(H), since (H)E(J,) = @¢(H) if @ is as indicated above.
(c) The inequality (13) follows immediately from (10) and (12), and (14)
holds with _
¢ =(2/a) llo(H)Bo(H)|| + 3 |l(H)I%,
because ||E(J,)(B — B.)E(,)|| <a/4 if ¢ <g,. To prove (15), we first notice that
for fe D(H) and u = 0:
I[H = A £ i(N. + wIf 1P = I(H = £ iNIF I+ u? | F 1P+ 20(f, NeS)
= ||(H = A iNJf 1P+ £, (17)
since N, =0 by (13). On the other hand we have, by using again (13):
g |IfI*<2e | f |I” + 2¢ | D fI?
<2e |®f P +2Re (f, [Fi(H — ) + N, — e®?|f) + 2¢ | ®*f|
<2[IfINICH = ANl + 22 || fI] |2 £ (18)

Furthermore, since

k=sup |[(H — 4)~'®*|| <,

AeJy
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we have by (14)
1@ Il =I(H—A)"'®*(H — A £ iN.)f Fi(H —1)"' N f||
<k ||[(H = A£iN)f|| + exc || f]l. (19)

By choosing ¢, € (0, £,) so small that 2g,k <1 and gyokc < 1/8, we find from (19)
and (18) that

eNfIl<3I(H = ALIiNf|l +&/4|Ifll.
This, together with (17), leads to (15). W

In what follows, we always let J,, €5, @ and N, be the objects defined in
Lemma 1. In the next lemma we study the commutators of ® and N, with A.

Lemma 2. (a) The operator [(H+i)"', A] belongs to B(¥, 4"*)N
BG "2, %),

(b) The operator [®, A] belongs to B(§~">, §'?).

(c) The operator [N,, A] belongs to B(4~'*, 4"*) and is given by

[N, A] =2¢/a{[®, A]B.® + ®B.[D, A] + D[B., A]D). (20)

Proof. (i) The relation

t
[eth, A] =f eiHsBeiH(r—S) ds
0

implies together with Lemma 1(a) that [exp (iHt), A] € B(%4", 4~ '%) and
Ile™, Al 12 <|IBll,- 12 ltI.

Now let v :R—C be such that (1+ |t|)y(¢) € L'(R; dt), where v denotes the
Fourier transform of 1. Then

(), A1= @)y [ e, Alpe) ds,

so that [y(H), A] € B(4", 4 '7).
(ii) The following relation is formally evident:

[(H+i)", Al =i(H +i)"B(H+i)"". (21)

It can be rigorously justified by the methods of (i) by noticing that the Fourier
transform of y(A) = (A + i)~ is Y(t) = —i(27)" exp (—1)x[0,«|(t), Where xg is the
characteristic function of Q. The operator on the r.h.s. of (21) is bounded from #
to 4" and from ¢ '* to ¥, since (H +i)”' is bounded from %* to 9¥°*' and
Be B(%', ¢ )N RB(Y"? 4 ") by Lemma 1(a) and (2). This proves (a).

(iii) Next, let 6 € C5(R) and define y by w(A) = (A +i)?6(4). Then

[6(H), Al =[(H + )" 'y(H)(H +i)", A]
=[(H+)7", Aly(H)(H + i)™ + (H + )" [y(H), Al(H + 1)
+(H +i) "(H)[(H +i)"", A (22)
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By (a) and the result of (i), each term on the r.h.s. is bounded from ¥ to 4"
Hence [0(H), A] € B(¥, ¢"%) for each 6 € C;(R). By using this fact (for y(H))
together with (a) in (22), one sees that [@(H), A] € B(9~ "2, 4"?). In particular
we have (b).

(iv) The identity (20) is formally evident, since N, =2ea~'®B,®. Each term
on the r.h.s. of (20) is in B(%¢ %, 4'?), since ® € B(¢', 4"), B, € B(¢", ¢ "N
B(G2, 47", [B., Al e B(%9"', ¢°") by hypothesis and [®, A]e B(G 2, 4'?).
(A rigorous proof of (20) can be obtained by writing [N, A]=
lim,_, (—i&) " '[W(a), N,] in B(%, €*), expanding [W(a), ®B,®] into a sum of
three terms and using Proposition 1(b), cf. [4]). ®

The inequality (15) shows that, if £€(0, &) and u=0, then H—4%
i(N, + u) are isomorphisms of %' onto %. Hence we can define, for these values
of € and u:

G =G, (A, u)=(H = A+i(N. + p))"". (23)

It is clear that G, and G belong to B(¥, 4"); their boundedness between # and
%' follows from the closed graph theorem or from the identity

HG, =1+ (A—iN. — iu)G.. (24)

The Mourre method consists in proving the boundedness for small £ of a
family {F }o<.., of operators of the form

E=F(A p)=L.G.L;, (25)

where {L,}o<.<., is a suitable auxiliary family of operators in B(¥), A €J, and
p=0. The next lemma contains some estimates on the operators introduced
above.

Lemma 3. There is a finite constant ¢ such that for all € € (0, &;):

IGello.i + IIGEllo. < c/e, (26)
@ Gello. + 19 GEllo <c, 27)
IPGL: o1+ [|PGELE |0 < ce™ " ||E||™?, (28)
IGeLZllo + IGELE o < ce™ 2 |E|IY* + ¢ || L. (29)

Proof. We show how to estimate the first term in these inequalities. The
proof for the second term is similar in each case.

(15) implies that ||G.||<4&~', whereas (24) and (14) show that |HG,| <
1+ (JA] + |ul| + c£)8(e + u)~'. These inequalities imply (26).

The second resolvent equation implies that

LG, = D G,[I - iN.G.].

Since ||@*Gy(A, n)|| < and ||H®Gy(A, u)|| <= if A €J, and since ||N.G, || <4c
as seen above, (27) follows.
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Next we use (13) and the first resolvent equation to write (recall that u = 0):
1
L.G!®*G,.Lf < . LGN, +un)G.L;

= (1/2ie)L.(G = G,)L? = (1/2ie)(F{ - F,).

Hence ||®G.LY||*=|L.G!®*G.L¥|| <& "||F.|. Since ¢ has compact support,
we have ||H®G,L}|| <c,||®PG,L}|, which implies (28).

Finally (29) follows from (28) and (27) by observing that G,.L; = ®G, L} +
d-G.LE. 1

We now derive Mourre’s differential inequality in the present context.

Lemma 4. Assume that the family {L.}o-c<., € B(¥) is weakly C' as a
function of & when considered as a B(9', #)-valued function and such that
L.A € B(G", #). Then there is a finite constant ¢ such that for all € € (0, &), all
AelJyand all u=0:

1,0)}

Proof. We denote derivatives with respect to € by a prime. All derivatives
below are in the weak sense, and the use of the rule for differentiating a product
is justified since a weakly C' function is norm continuous. Now

F.=L.G.L*+L.G,L* —iL.G.N'G.L*
=L!G.L*+L,G,L.* — (2i¢/a)L.G,®B'®G,L*
— (2i/a)L.G.®B.®G,L*. (30)

d
—F
de ¢

with B=1-6<1.

d
gt

<ce P BN+ (e NN+ [LD(IL + 1 LAl o+

The norm of the first term on the r.h.s. (and similarly that of the second one) is
bounded by [IL¢|l1,0 |G L lo,1 < I Lell1,olce ™ I ENI" + ¢ [ILc ] by (29), whereas
that of the third term is bounded by

2

' , 2 ¢ B B
26/a |IL.G.®||-1.0 [ Billi -1 |G Lilloy <= e IEIICe ™ = cre P | E
by (28) and (6).
To estimate the last term in (30) we use the identity
L.G.PB.dG.L;=L,G.B.G.L}—L.G,®* B, ®G,L}
-L.G.®B,®'G.L! - L,G,®*B,®"G,L:. (31)

The norm of the second term on the r.h.s. (and similarly that of the third term) is
bounded by

Ll 1Ge @ (=10 l|Bell1, -1 1PGeLElloa <2 Ll €72 || |2,
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where we have used (27), (28) and the fact that ||B,||, -, <c; by Lemma 1(a).
Similarly the norm of the last term in (31) is seen to be bounded by c, ||L.||*.

It remains to estimate the first term on the r.h.s. of (31). By using the
identity

B, =(B,—B)+i[H - A+i(N, + ), A] +[N,, A]
and Lemma 2(c), this term may be rewritten as
L.G.B.G.L;=L,G.(B, - B)G,L}+i(L,AG.L}—iL,GAL}
+ (2¢/a)L.G.[®, A]B, PG, L} + (2¢/a)L. G, PB. [P, A|G. L}
+ (2¢/a)L. G, P[B,, A]PG, L. (32)
The norm of the second plus third term is majorized by
2|Le Ao (G LElloq + NG ELE loal < cs [ILeAll (e ZHEN "+ (ILe D),
while that of the first term may be estimated as follows by using (9) and (29):
IGeLEllox IGELE Nlo1 1Be = Bll1,—1 < co(e ™ IE || + || Lell?)e®
<ce(e PIIEN + L)
The norm of the fourth (and similarly of the fifth) term is bounded by
2e/a || L\l NGl I[P, Alll =120 | Bell1,~12 1P Ge LE 01
<c; |ILc|le” " [|E "

(use (26), Lemmas 2(b) and 1(a) as well as (28)). Finally the norm of the last
term in (32) can be estimated by the following expression by using (28) and (7):

2¢/a ”(I)GEL:HUJ “(DG:Lj“o,l [B:, Alll1, -1
<cge(e " |F|)e " P=cye P|F). W

Proposition 5. Assume that the hypotheses of Proposition 4 and of Lemma 4

are satisfied. Assume furthermore that there are constants c € (0, <) and v <3 such
that for all € € (0, €,):

Ll + [|LeAll1,0+ | Lell1 oS ce™™ (33)
Then one has
Sup {“LEGE(AJ M)L:“ | 0<e< €0, A EJO: U = 0} <, (34)

Proof. We set y=max (B, v+3). From Lemma 4 and the inequality
x"2<1+x (x =0) we obtain that

IFell < e PIIEN + ce ™Y BN + 0167 < 260 7Y(| | + 1), (35)

This implies the boundedness of ||F.|| by repeated integration. (By introducing
the inequality ||F.|| <ce? into (35), one finds that ||F | <c'(1+ & **'""); now
the first of these inequalities holds for b =2v + 1, because ||E|| <||L.||* ||G:|| <

ce”*"!; since 1 — y >0, one obtains (34) after a finite number of steps). W
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5. Local smoothness

We continue to use the notations of Section 4 and denote by o,(H) the set of
all eigenvalues of H. By using the results of Section 4, one can now prove the
local H-smoothness of various operators and the existence of the boundary values
of (H—2z)"" in B(¥,, #;) when z approaches the real axis, where %, is a
suitable auxiliary Hilbert space. We refer to [4] for a discussion of boundary
values and present here some results on local smoothness.

Definition. Let v € [0, 3). An operator L e B(%'?, ¥) is said to belong to
the class &, if there is a family {L, }<.<, of operators in B(#) such that

(@) L, converges to L weakly in B(%'?, %) as ¢— 0,

(B) The mapping £+ L, is weakly C' on (0, &,) when considered with values
in B(%', %),

(v) L. A€ B(4', %) for each £ € (0, &),

(6) there is a constant c¢ such that the inequality (33) is satisfied for all
£ € (0, &)

Proposition 6. Assume that all hypotheses of Proposition 4 are satisfied. Let
v€|[0, 3) and let L be an operator belonging to the class ¥,. Then for each closed
subinterval J, of J such that J,N 0,(H) =, one has

sup ||L(H — A+ ip) 'L*|| <, (36)

Aed,u=>0
In particular L is H-smooth on J,.

Proof. Since J; is compact, it suffices to show that each A,eJ; has a
neighbourhood J, in which (36) holds (with A € J,). Thus we may assume that we
are in the situation of Proposition 5, in particular that (34) is true.

(i) We first observe that (33) implies that

IL—L,||1osc(1—v)" e (37)
Next assume that A € J,, u > 0. Then, by the second resolvent equation
I(H—=A+ip)™" = Ge(&, Wllos < I(H = A+ip) o IN:| |G (R, |
<c(u)e,

where the last inequality follows from (14), the fact that ||G,(4, u)|| < |u|™" (cf.
(15)) and ||(H — A +in) o1 < cy(1 + |u|™") for all A € J, (use (24)). Similarly one
finds that ||(H — A +iu) ™" — G.(A, u)*|lo.1 =<c(u)e. Hence G,(A, u) converges to
(H—A+iu)™! in the norm of %B(%¥, 4') and in that of B(¥', ¥). By
interpolation one then obtains that, for A € J, and u > 0:

li_ff(l) NGe(A, u) —(H—-A+ iﬂ)_lu—l/z,m =0. (38)

(ii) Now write

L.G.L*=LG.L*+ (L, - L)G.L* + L.G.(L* — L*). (39)
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Since L e B(%9"?, %), hence L*e B(¥, § %), the first term on the r.h.s.
converges in the norm of B(#) to L(H — A+ iu)~'L*, by virtue of (38). The
second term converges weakly to zero in %B(3) because L, — L— 0 weakly in
B(%'*, %) by assumption (a). The last term in (39) converges to zero in the
norm of B(#); this follows from (37), (29), the boundedness of ||F;||, (33) and
the assumption that v <3:

ILeGe(L = L)< ||Le = Llly o IGELE oy < cr8' (72 IIEN" + [ILe]I)

<= C2£]/2— v

Thus L,G.L7— L(H —A+iu) 'L* weakly in 2(%). This implies that
|L(H — A+ iu) 'L*|| < liminf ||L,G,L¥|| (see [9], p. 151), so that (36) follows
from (34). W

It remains to indicate more explicitly a class of operators L belonging to Z,.
This is the purpose of Proposition 7, which will be preceded by some preliminary
considerations.

Lemma 5. Let X be a positive self-adjoint operator in # such that
{exp (—=tX)},=o leaves 4" invariant. Assume that there are finite constants M and
m >0 such that |lexp (—tX)||;1 <M exp (—mt) for all t=0. Then X~ “ € B(%4°)
for each w >0 and each s € [—1, 1], and one has

lirr(a) (I+eX)y " 2=1 strongly in B(%°), (40)
I+ eX)_‘“||S,S =M Ve>0, (41)
H n EX = c(w) Ve>0. (42)

Proof. (i) Since exp (—tX) is a bounded self-adjoint operator in #, one also
has ||lexp (—tX)||-1 -1 < M exp (—mt), hence by interpolation

lexp (—tX)||;, < Me™  Vse[-1, +1]. (43)

As explained in Section 2 for the group {W(«&)}4er, oOne finds that
{exp (—tX)},>0 is a strongly continuous semi-group in %B(%°). Also observe that
(43), for s =0, implies that X =m >0 as an operator in .

We shall use the following integral representations for powers of a strictly
positive self-adjoint operator S in #:

S—“’=%w)',; %

sin TP

le™*Sdx (0 >0), (44)

5P =

rS(s +x) %P ldx (0<p<1). (45)

(44) holds on # and (45) on the domain of S°. These relations are easily proved
by working in a spectral representation of S and observing that, by simple
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changes of variables, (44) and (45) are true when § is replaced by a positive
number.

(i1) We first use (44) with S =a + bX, where a =0 and b >0. The integral
on the r.h.s. will then exist in B(%") for any s € [—1, +1], by virtue of (43).
Hence (a + bX)™“ € B(%9°) for each s € [—1, +1] and each w >0, and

M o
a+bXx)™® sss“—‘_J' x‘“_le_(“+bm)xdx=Ma+bm e, 46
I@+bX)lLs <5 | (a +bm) (46)
In particular we have (41). Similarly one has

I+ eX)™ = 1I||s,s <

f xw—le—x[e—exX_I] dx
0

1
['(w)
This converges to zero as £¢—0 by the Lebesgue dominated convergence

theorem, which gives (40).
(iii) Next, by using (45) with § = eX(I + eX)™!, € >0, one finds that

[I i)gX]p B Sin:rnp J:xl””?f+ x) [l B ﬁ(xﬁ)(i)sX]’

where B(x)=x(1+x)~". This implies (42) for 0<w <1 (with c(w) =1+ M)
after observing that, by virtue of (46):

I1BG)(B(x) + eX)'lss < MB(x)(B(x) + em)™' < M.

To see that (42) holds for general w >0, it suffices to write w = n + 6 with n
integer and 0 < 6 <1 and to observe that, by virtue of (41):

1EX)" U+ eX) "l = M- U+ eX) T, <> W

s,5

Proposition 7. Let X be a positive self-adjoint operator in ¥ satisfying the
conditions of Lemma 5 and such that X 'A € B(9', §"%). Let p €0, 3) and let R
be an operator in B(%*, ¥). Then, if a >3, the operator L=RX™* belongs to
£,, where v=max(p, 1 — «a). In particular, if H satisfies the hypotheses of
Proposition 4, then RX™ % is H-smooth on each compact subset of J\o,(H).

Proof. By virtue of Proposition 6, it suffices to show that L e%,. Since
X~ %€ B(%") by Lemma 5, we clearly have L € B(%9”, ¥) c B(94"*, ¥).
We set G = (I + |H|) and observe that, for £ > 0:
NG+ eG) ;s = |G U+ eG) P& if 0<a+s'—s<b
(47)
and

IG*“(I + €G) ||, <1 if a+s'—s<0 and b=0. (48)
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We also set T =max (1 — &, 0) and define, for £ > 0:

R.=R(+ &G)™ Y, (49)
T.=X"%(I+X)7F, (50)
L.=R.T.. (51)

Clearly all these operators belong to %B(#), and we must show that the conditions
()—(0) in the definition of %, are satisfied.

(i) From Lemma 5 one obtains that T, — X~ strongly in B(%"?) as ¢—0.
Since p <3 and (I + eG)™"— I strongly in B(%"?), one sees that L, — L strongly
in B(%"?, ), which proves (a).

The validity of (y) is easily established by writing L,A = R.(T,X)(X'A) and
observing that the first two factors on the r.h.s. are in %(#) and that
X 'AeB(Y, 9 c B(Y, %).

To prove (B), it suffices to observe that the function £+ L, is strongly C' in
PB(#) on (0, g); in fact one has
d—‘iLE =R.T.+R.T.=—-vRG(I +G)™""'T,

— 1 "R(I + eG) "(eX)"(I + X)L (52)

(if) It remains to prove that L, satisfies (33). We estimate separately each
term on the lL.h.s. of (33). First we have

ILell < IR]lv.0 I+ €G) Vlo I + 80 X)* X || <ce™
by (47). Next we write
LA 10 IR |20 1+ €G) 12 1€ (X)) + X)) liz.102
) “X“[r_(l_a)]Hl/z.l/z ||X_1A”1.1/2-

By using (47) and (42) and by observing that 7 —(1—a)=0, one sees that
||LeA|l,o=ce "<ce ¥, since t<vand e<l.
Finally (52) implies that

ILAlo<IIRIlvoIGU+eG) ™ 1v I T: |11
+ 77T |IR|lvo I + €G) "Iy I(X)T( + €X)™ ||y I + EX)—IHM-

The first term is bounded by ¢, ™" (use (47) and Lemma 5) and the second one
by c,€" "<c,e "V (use (48) and Lemma 5). W

6. N-body Schrodinger operators
In this last section we indicate how the preceding abstract results can be

applied to N-body Schrédinger operators. We restrict ourselves to the usual case
of N-body Schrodinger operators in the center-of-mass frame with local pair
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potentials. A proof of the Mourre estimate (5) for such Hamiltonians can be
found in [10] (see also [2] for a somewhat smaller class of potentials). It is
possible to extend all these results to N-body Schrodinger operators with
non-local potentials and with many-body interactions; for these extensions and
further details on the special case treated below we refer to [4].

If #=L*R"), we let Q=(Q,,...,Q,) and P=(P,...,P,) be the
self-adjoint n-component position and momentum operator respectively (Q; is
multiplication by x;, P is differentiation: P, = —i3/3x;), and we set

(Q) = (1+§1 Q?)m, (P)= (1+§1 P?)

For r€[0, 2], we let #" = #"(R") be the domain of (P)", with norm [|f]|s =
I{P)f|l.2, and we denote by %~ the adjoint Hilbert space of #’. The norm of
an operator T in B(L*(R")) will be denoted simply by || T||.

We denote by D the differential operator

1/2

D=—-i/2 i (x; 3/3x; + 3/dx;x;). (53)
=1

I

To each y € Cy(R™) we associate a function § € C5(R") by

()= 2 xexu(x), where x(x)=3/dx.x(x).
k=1
We observe that, for £ > 0:

d qn
Ie x(eQ)=¢""7(Q), (54)

[x(£Q), D] = iz(£Q). (35)

Lemma 6. Let ¢ € C5(R”), v e CG(R"\{0}) and k €0, 1]. Then there is a
finite constant c such that for all e€ (0, 1) and j=1, ..., n:

(a) ||(P(EQ)Q;'P;'(Q>_K||aﬁ(%*'.%*1)ECE_HK,

(b) @(eQ) is a strongly continuous B(H*)-valued function of € and converges
strongly in B(#?) to @(0)] as e— 0.

(c) ”"/’(EQKQ)_K”@(%-') = ce”

Proof. The proof can be based on the following observation: if T is a
symmetric operator and s >0, then

T llmese-s) = 1T llaagsey = I{PYT{P) . (56)

For s =2, we get

IT lagoe= < ITIl + I[P, TIKP) ]I, (57)
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whereas for s = 1;
T || wese-ny < |1 T(P)~"|| + 2 |P.T(P)™"||

<@+DITI+ 3 P T (58)
The norms on the r.h.s. of (57) and (58) can be explicitly evaluated when T is a
function of Q. We shall use the relation
3/3x, (x) = 03/3x, (1 + x*) ™= —kxp (1 + x3) " "{x) ¥ (59)
We have for example from (58) and (59):
1p(e2)0,{Q) ™ "Iz =< (n + 1) || @(ex)x;{x) ~“|| =)

+ ;1 ”‘p,k(gx)sxj(x)—K”U‘(R") + ||q;(£x)(x)"‘|le(Rn)

+ 2 K “(p(EX)xjxk(l +x2)_l(x>—K”Lx(Rn). (60)
k=1

The last three terms are bounded by a constant ¢ independent of &, whereas for
the first term on the r.h.s. we have

@ (ex)x;(x) ™ *|| p=mmy = €7 sup [yl 19 () [e72(e* +y*)]?

1+k

< 8“‘*"3;1@ 1yl [y1™* l@(y)| =ce™' "5,

where c is finite since ¥k < 1. Hence, for s =1:

lp(eQ)Q;{ Q) “llmze— < ce™ ' (61)

In a similar way one finds from ‘(57) that (61) also holds for s = 2.
Now, by commuting P; and (Q )" and by using (59), one sees that

||‘P(8Q)Qij<Q>_K||%(gte—l,gg-z)
< ||@(eQ)0i{ Q) “|lawe-s + k |@(Q)Q,{Q) - Q{0 ) ?llme-ny.  (62)

Since Q,(Q)? is bounded as an operator in %, it follows from (61) that each
term on the r.h.s. of (62) is 0(¢~'**), which proves (a).

The proof of (c) is analogous; it suffices to derive the analogue of the
inequality (60) and to observe that the last supremum in the inequality below is
finite since y@(y) =0 near y =0:

”W('Ex)(x>_K”L°°(IR") = f:lu%?" lp(y)l [e7%(e* + yz)]ﬂdz

<e&"sup [p(y)|ly|™"
yeR"

Finally (b) is easily obtained by the same type of arguments. W
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Lemma 7. Let u:R"— R be a measurable function such that the operator
U=u(Q) maps #*(R") into L*(R™) and such that, for some k >0, the operators
(Q)Y*U and (Q)*[U, D] belong to B(H*(R"), ¥ '(R")). Set  =min (1, k) and
let 0 € C5(R™) be real and such that (x) =1 for |x| <1. Define U(¢) by

U(e)=0(eQ)U = UB(eQ). (63)

Then:
(i) U(e) is a strongly continuous B(H*(R"), L*(R"))-valued function of ¢
on [0, 1], with U(0) = U,
(i) the commutator [U(g), D] is strongly C' in B(H*(R"), X '(R™)) for
€€ (0,1), and

ld/de[U(e), D]”%(%?.%-')SCE_H(S, (64)
(iii) one has
I[LU(e), D], DYl sy < c&™*2, (65)

where c is some finite constant.

Proof. (i) follows immediately from Lemma 6(b). For (ii) and (iii) we
remark that

[U(e), D] = 6(eQ)[U, D] +i8(£Q)U, (66)
d/de[U(e), D] = e '6(eQ)[U, D]+ ie '6(cQ)U, (67)
[[U(#), D], D] =2i6(¢Q)[U, D] - 6(Q)U — 6(¢Q)D[U, D]

+ 6(<Q)[U, D]D. (68)

(ii) is obtained from (67) by noticing that &, b e Cy(R™\{0}) and that, if
(Q)°T € B(HK?*, #") and y € C;(R™\{0}), then by Lemma 6(c):

W (eQ)T |l ssez, 51y < ||¢(5Q)<Q>_6”%(%") I (Q)aT“%(%Z,%*') <ce®,

The same reasoning shows that the first two terms on the r.h.s. of (68) are
0(£°) in B(H?, H~")c B(H*, %~?), so that it only remains to prove that the last
two terms in (68) are 0(g~'*°) in B(H?, H2).

For the third term on the r.h.s. of (68) we have

10(eQ)D[U, D]H%(%Z.%—Z)
<2 16(Q)IQE(Q) Nl 1 Q) (U, Dl -

+n/21|8(eQ)[U, D]llmcser, 5

The first term on the r.h.s. is 0(e'*°) by Lemma 6(a), the second one is 0(1)
since B(£Q) is a continuous function of ¢ in B(# %) as a consequence of Lemma
6(b). Finally the last term in (68) may be estimated in the same way by choosing a
function 8, in C5(R") such that 6,6 = 8 and writing

10(eQ)[U, DID|| yin2, # 2= 10(eQ)U, DIDO(Q)|| sz, 5 2

< ||16,(eQ)D[U, D]llgcwz, e 2 [|10(€Q ) ez W
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We now apply these results to N-body Schrodinger operators in the center-of-
mass frame. We refer to [2] or [11] for the relevant definitions. The Hilbert space
is # = L*(R™™™"), the free Hamiltonian is denoted by H, and the pair potentials
Vi 1<k <I=<N) are measurable real-valued functions defined on R". We
denote by Q¥ the n-component position operator of the [-th particle. |

Proposition 8. Let H be an N-body Schridinger operator in the center-of -
mass Hilbert space % = L*(R"™~Y);

H=Hy+ 2 Vi,
1=k<l=N

where Vi, = v, (Q® — 0D). Assume that each vy :R"—R has the following
properties:

(i) v (Q) is a compact operator in B(H*(R"), L*(R")),

(i) [v(Q), D] is a compact operator in B(H*(R"), £ *(R")),

(iii) vy, can be decomposed into vy = uy + wy, in such a way that uy,, wy, are
real, satisfy u,(Q), wiu(Q) € B(FH*(R"), L*(R™)) and

(@) (@) u(Q)and (Q)"[w(Q), D] belong to B(H*(R"), ¥~'(R")) for
some k >0,

(B) [wu(Q), D] € B(H*(R"), # '(R")) and
[[Wu(Q), D], D] € B(H*(R"), %~ *(R")).
Then:

(a) H has no singularly continuous spectrum, the set T(H) of thresholds of H
is closed and countable, the eigenvalues of H not belonging to t(H) are of finite
multiplicity and their accumulation points are contained in t(H).

(b) Let >3 and s<1. Let R be an operator in B(#*(R"), L*(R")) and
denote by Q° the operator of multiplication by Y'Y~V x? in LA(R"™~"). Then the
operator R(I+ Q%) ~*? is H-smooth on each compact subset of R\{t(H)U
0,(H)}.

Proof. The properties of 7(H) and the Mourre estimate for compact
subintervals J of R\r(H) are proved in [10]. The other assertions of the
proposition follow from Propositions 4 and 7 combined with Lemma 7 by setting
X=01+Q»)", Uu(e)=08((Q® - @M (Q® — 0Py (with 8:R"—R as in
Lemma 7), Wy, = w,(Q* — Q) and

H(e)=Hy+ 2,  (Wy+ U(e)) (69)

1sk<I=N

and by choosing for A the operator

in(N—l)

A=-3 > (x;8/0x;+ 3/3x;x)). (70)

It suffices to observe that the norm in %” is equivalent to that in #*?(R"V™"),
that i[H,, A]=2H, and that [f(Q* — Q®), A]=[f(Q¥ - Q0"), D]® I in the
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tensor product decomposition L*(R"™~")= L}*R")® L*(R"~~?), where the
variable in the first factor is x*’ — x and where D denotes the operator (53) with
respect to this variable, whereas the variables in the second factor are relative
coordinates between the center of mass of the pair (k, [) and the remaining N — 2
particles. W

The potentials wy, in Proposition 8 cover the class considered in [2], and for
u,, one may for example take a sum of functions u:R"— R satisfying one of the
following conditions, for some x > 0:

(@) ue Lh(R"), (Q)u(Q) € BHAR"), LA(R™)) and
(Q)* 2 0u.(Q) € BEI(R™), #~'R")),

where the derivatives of u are in the sense of distributions.
(B) Q)" u(Q) € B(#*(R"), LYR")).

The condition («) is satisfied in particular if « is C' and for j=1, ..., n:
lu(x)|<c(x) ™  and |3/dxu(x)|<c{x) """

For n <3, (B) is equivalent to the requirement that

1/2
sup ()| [ u)ay| <
x—yl=

xeR"*
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