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1. INTRODUCTION

1.1. Interplay of Physics and Mathematics

Many physicists hope that the superstring model [1,2] will yield a unified quantum

theory of all fundamental interactions, including gravitation. Several difficult
physical and mathematical problems must be solved before this hope will be
substantiated. However it is already clear that the very rich mathematical structure of
the model has significantly stimulated the collaboration between mathematicians
and physicists. Here we are interested in the contributions to algebra.

In 1968 the Veneziano [3,4,1] or dual resonance model was invented. One year
later two important tools for the understanding of the model were introduced :

vertex operators and the Virasoro algebra. The latter is an extension of the infinite
dimensional conformai algebra acting on a space of two dimensions. On the other
hand, in 1967, Kac [5] and Moody [6] introduced the infinite dimensional affine
Lie algebras, which turned out to be a discrete version of the current algebras
considered by physicists in the early sixties. In 1980, Frenkel, Kac [7] and Segal [8]

(FKS) constructed highest weight representations of the Kac-Moody algebras using
the vertex operators of the dual model. The Virasoro operators provide labels for
these representations. In 1985, the FKS [7,8] construction served to compactify the
bosonic part ofthe heterotic string [9] from 26 to 10 dimensions and to display gauge
groups of rank 26 — 10 16. In 1969, the bosonic string provided a Lagrangian
formulation of the dual model [10]. Together with the fermionic string it gave
one of the first physical models of supersymmetry. Superalgebras were studied by
Berezin and Kac in 1970 [11].

The dual model and its string and superstring versions failed to explain the

phenomenology of strong interactions. Interest was revived after it was shown that
gravitation could be included and that anomalies could be cancelled in a seemingly
miraculous way for the gauge groups Es x E9 and SO(32) [12]. One of the main
problems is now to compactify the superstring from 10 to the physical 4 dimensions.
One possible relatively easy way is to replace in the compactification procedure
tori by orbifolds, which differ from the former by "twisted" bouûdary conditions
[2]. Here again work was greatly stimulated by discussions between physicists and

mathematicians, the latter being able to provide "twisted" constructions of Kac-
Moody algebras [13,14]. The main tool are now "twisted" vertex operators. They
play an important role in symmetry breaking. One can also speculate that they
could be used to describe emission of "twisted" strings [15].

The aim of these lectures is to give a self-contained unified description of
untwisted and twisted vertex operators and the corresponding constructions of
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Kac-Moody algebras. We use materials from mathematicians [13,14,16] and recent
preprints of mathematical physicists [17,18,19] but try to be comprehensible to the

average physicist.

1.2. Summary

The main ideas are the following : 1) For a string moving on a torus T in
d dimensions, the eigenvalues of the center of mass (cm) momentum operators p
are discrete. They can be identified with the points of a rank d weight lattice of
a finite, simply-laced Lie algebra g, provided T IR /Q, where Q is the root
lattice, and the set of components of p forms the Cartan subalgebra (CSA) of g.
For a closed string, the vertex operator U is periodic in the string variable cr. The
Laurent coefficients of U together with the set {p } and the harmonic oscillators
entering in the definition of U are the generators of the infinite-dimensional Kac-
Moody algebra in the level 1 highest weight representations.
2) This construction has been generalized in several directions, a) Consider a string
moving on an orbifold. Construct a new vertex operator U which is periodic up to
an automorphism w of the root lattice. The Laurent coefficients of U, acting on
a different Hilbert space, will be generators of a twisted Kac-Moody algebra. For
to — 1 we recover the previous construction. This approach will be followed here.

b) Replace the simply-laced Lie algebra g by a non simply-laced algebra [20].
c) Introduce fermionic instead of bosonic oscillators [20]. In this case one finds an
interesting connection with octonions [21].

2. LIE ALGEBRAS AND KAC-MOODY ALGEBRAS

2.1. Simple Finite Dimensional Lie Algebras [22]

The hermitean generators Ta of a simple compact Lie algebra g satisfy the
commutation relations

[Ta,Tb} ifalKTc (2.1.1)

The adjoint representation is defined on the vector space g spanned by the generators.

The Killing form defines the scalar product

(Ta,Th) const Tr(Ad Ta Ad T„) (2.1.2)

AdTa(T„) [Ta,Tb} (2.1.3)

By a clever choice of the basis g can be divided into an abelian Cartan subalgebra
(CSA) h spanned by the generators Hl such that (H%,H}) S{ • and the step
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operators Ea, where a € h (the dual of A) is a root; (2.1.1) gives then

[jff\#'] 0

[Hi,Ea] a(Hi)Ea aiEa

(£(a,ß)Ea+ß, if <* + /?€ A C2'1-4)

[Ea,Eß]=<Ha, if a+ -3 0

{ 0, otherwise.

where A the set of roots. Here, to any root a S h we have associated a generator
Ha £ h such that

(Ha,E) a(H) VH£h (2.1.5)

Identifying h with its dual h we can define also the scalar product on h by

(a,ß) (Ha,Hß) (2.1.6)

One calls t dim h the rank of g. The set A of the roots can be divided into two
equal sets of positive and negative roots. A simple root o^ is a positive root which
cannot be written as a sum of positive roots. The I simple roots a{ form a basis
offe'.

We shall limit ourselves in the future to simply-laced Lie algebras for which
all the roots have same length. It can be normalized to 2 : (a, a) a =2. The
Cartan matrix is then defined by

Aij (ai,aj) (2.1.7)

The factor e(a,ß) is called a 2-cocycle and obeys

e(o, ß + j)e(ß, 7) e(o, ß)e(a + ß, 7) (2.1.8)

e(a,/9) (-l)(«'«e(/?,a) (2.1.9)

One obtains a representation of g by acting on vectors |A) :

Ea\X) (a,X)\X) (2.1.10)

A 6 h is called a weight. For compact simple Lie algebras all representations
possess a highest weight A such that (A,aj > 0 i 1,.../ and

EJA) 0 a > 0
(2i ni

JTJA) (a,A)|A) l • ' ;
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The whole representation space is then obtained from |A) by repeatedly acting on
it with various E_a (a > 0).

2.2. Untwisted Affine Simply Laced Kac-Moody Algebra [23,24]

To each finite Lie algebra g one assigns an infinite Lie algebra g or Kac-Moody
algebra. The generators are Ta 9 tn, Ta £ g, t £ C, with the commutation relations

[Ta 9 tn,T„ 9 *"'] ifakcTc 0 tn+n' + n(Ta,Tb)Sn<_n,k (2.2.1)

where n,n G 2Z ; a,b,c l,...dim5 and k is the central term

[k,Ta9in} 0 (2.2.2)

One identifies Ta 9 t with T0, the generators of g, satisfying (2.1.1).

It is useful to introduce a dilation or derivation operator d, (which we will in
the following identify with the Virasoro operator — L0)

[d, Ta 9 tn] n Ta 9 tn (2.2.3)

[<£,*] 0 (2.2.4)

Corresponding to the basis (2.1.4), one writes

[H{ 9 tn,H> 9 tn'} n 6i'jSn_n,k (2.2.5)

For n ^ 0, one gets an infinite set of harmonic oscillators (also called a Heisenberg

algebra).

The other commutations relations are

[Ha 9 tn,E±ß 9tn'] ±(a,ß)E±ß 9 tn+n' (2.2.6)

(e(a,ß)Ea+ß9tn+n', if a + ß e A
lEa®in,Eß9tn\=lHaQtnW+nSn_niki i{a+ß Q (2.2.7)

*> 0 otherwise.

If rank g l, g has I + 1 simple roots, namely those of g (ai: i 1,..., t) and

a0 S - 0 (2.2.8)

9 is the highest root of g and S the "imaginary root" with zero length

(M) 0 (S,aA i 0,...,i (2.2.9)
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This shows that the metric in root space h is not euclidean. Correspondigly
the Cartan matrix

Â (ai>aj) i,j 0,1,.J (2.2.10)

is degenerate.
Example : for g Aj .stt(2), g A\ has the Cartan matrix

-Ci?) (2.2.11)

with det A 0. Here 0 o^ and one verifies that S (a0 + 0!!) =0.
The root system of g is given by A {jS + 7 \ j G 2£, 7 g A} U {j5 | j 6 22*}.

One can again identify h and h_ with the correspondence : Ha. <-> a{ (»

0,...,£); fc *-> 8; d «-» A0. The dimension of h is I + 2 and A0 satisfies : (A0, A0)
(öi)Ao) ° (»'= l,--->0 an<l (A0,^) (A0,a0) !¦

There exist highest weight representations (HWR), but for instance the adjoint
representation is not a HWR. We shall consider HWR with the highest weight
vector |A) satisfying

(A,aA>0, i 0,l,...,l (2.2.12)

£a®in|A) =0 (2.2.13)

for either n > 0 and (or) a > 0, and

Ha9tn\A)=0 Vn>0 (2.2.14)

The weights of a HWR have the general form [23]

A Â + (A, 5)A0 + (A, A0)£ (2.2.15)

where Ä is a weight of a HWR of g. (A,A0) is arbitrary and corresponds to a
choice of zero-point for the gradation of the corresponding HWR (it is usually set

to zero). (A, S) fc is the level of a HWR

fc|A) =(A,£)|A) (2.2.16)

Since [fc, g] 0, the central term acts as a scalar and the level has the same value

on the whole (irreducible) representation. One can show that it has to be a positive
integer for unitarity to be satisfied. From (2.2.12) and (2.2.8) it follows then that
(Â,0) < fc, where Ä is the projection of A on the root space of g. We shall be
interested in level 1 representation for which

A Ä + A0 (2.2.17)
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One can show [23] that |A|2 > |A|2. Using (2.2.14)-(2.2.16) this implies that all
weights of a HWR Lie inside the paraboloid

|Â|2+2fc(A|A0)<|A|2 (2.2.18)

According to (2.2.15), S is the axis of the paraboloid. Orthogonal to S are the

weights A of the finite Lie algebra g.

2.3. Twisted Affine Kac-Moody Algebras [24,23]

We start again with the compact Lie algebra g with commutation relations
(2.1.1). An automorphism t of g leaves (2.1.1) unchanged

lr(Ta),T(Tb)i ifabcT(Tc) (2.3.1)

Suppose t is of order m
Tm 1 (2.3.2)

In a complex basis one can divide g into eigenspaces jl of r
m-l

0=00* (2-3.3)

such that
t(T) =rkT if T € g^

r exp (—2-KÌ/m)

This introduces a grading in g :

(2.3.4)

[T,T')eg_.+k ifT€£j ,r'6£i (2.3.5)

For the (non hermitean) Ta 6 g^, one defines a twisted Kac-Moody algebra g with
generators labelled by fractional indices of the form :

Ta 9 <n/m ;n jm + (n) if Ta € g^n) (2.3.6)
j e Z, 0 < (n) < m - 1

Apart from the range of the indices, the commutation relations are the same as

before :

[Ta 9 inlm,Th 9 tn'/m) ifahcTc 9 *<»+"'>/"* + -(Ta,Tb)Snt_n,k
m

[d, Ta 9 tn/m] —Ta 9 tn>m (2-3-7)
m

[d, fc] 0
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For t 1, m — 1 and one recovers the untwisted algebra, for which the grading is
the same for all elements of g. For this reason this is also called the homogeneous
construction.

When t is an inner automorphism, one gets in this way a Kac-Moody algebra
isomorphic to the untwisted algebra [24]. In this case r(Ta) -yTa-y~ 7 € G, the
Lie group of g. Since automorphisms produced by conjugate elements 7 70770

give isomorphic twisted algebras, one can choose 7 exp (ip'H such that, acting
on the Cartan subalgebra and the step operators

T(Ha) Ha

r(Ea) expi(p,a)Ea

If t has order to, then

m(p,ct) 2itn, VaeA,neZZ (2.3.9)

To show that we reobtain in such a way a Kac-Moody algebra isomorphic to the
untwisted one, let us redefine the generators in the following way :

E'a 9 Ea 9 t*+(p>aV2*

H'a9tr Ha9tp + k(p, a)6pij2* (2.3.10)

d d-(p,H)/2it

which satisfy the untwisted commutation relations.

However, in a highest weight representation, the spectrum will look differently,
because the derivation operator d (d —L0) is different. For example, the highest
weight state (lowest energy state) will transform under a representation of <i, the
subspace of g invariant under t. Hence one gets symmetry breaking.

If the automorphism t is outer, the twisted Kac-Moody algebra gT ^ g will
be a subalgebra of g [23]: even more symmetry breaking.

3. VERTEX OPERATORS

3.1. Untwisted, Frenkel-Kac-Segal, Or Homogeneous Construction

The treatment of Kac-Moody algebras in Chapter 2 was abstract in the sense
that it was based only on the commutation relations and the action on weight
states. The aim of the present paragraph is to give a concrete realization of the

generators as functions of harmonic oscillator operators acting on a Fock space,
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which will be identified with the Heisenberg generators, and momentum operators
corresponding to the CSA of the underlying Lie algebra. This construction uses as

an intermediate step the vertex operator of string theory, the moments of which
yield the remaining step generators of the untwisted (homogeneous) Kac-Moody
algebra.

We already noticed that the Kac-Moody algebra is equivalent to a current
algebra with discrete momenta. In the context of string theory, this means that
one compactifies the string on a torus. This happens for example for the bosonic
part of the heterotic string for which 16 out of 26 dimensions are compactified. The
Kac-Moody algebra in the Frenkel-Kac-Segal construction (FKS) then corresponds
to the gauge algebra.

A torus T is a circle which has the same topology as a finite segment of the
real axis R. with ends identified. Equivalently, T Œt/Q, where Q is the set of
points nt, n € 7Z and I some real number. In general, T is the product of d copies

l d

of T A lattice Q in d dimensions is the set of points ^ n«A> n» ^ ^Z> A some
t=i

basis vectors of R. Then
Td ~ Rd/Q (3.1.1)

Q could be the root lattice of the finite Lie algebra g of rank d.

For a closed string on a torus the vertex operator obeys periodic boundary
conditions. In the next paragraph, we shall consider twisted vertex operators. In
this case, the torus is replaced by an orbifold. The vertex operator will only be
periodic up to an automorphism of the lattice Q. Our orbifold O is defined as

O Traction of w, we Aut Q (3.1.2)

We now recall the construction of the vertex operator of a string moving on a torus
rd Rd/Q, where Q will be t
simple Lie algebra g of rank d.

The components of the Fubini-Veneziano operator are

X'(x) qI- ip1 lnz + i Y, K Z— (3.1.3)

where z — expi(r ± a), r and cr are the string variables. The hermitean operators
q and p are the position and momentum operators of the cm of the string (also
called "zero modes"), and hn (h'n h_n, h0 p) are the harmonic oscillators,

T IR /Q, where Q will be the root (or weight) lattice of a simply-laced finite,
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with the usual commutation relations (compare with (2.2.5))

UI,PJ} i6i,j (3.1.4)

K,hï'] nSi,jK,-n- I,J l,...d n,n'eZZ (3.1.5)

A closed string is unchanged when <r —? a + 2ir. Hence X is unchanged up to an
arbitrary vector in Q

X(ze2lri) X(z) modQ (3.1.6)

In the FKS construction, the operators p satisfying \p ,p ] — 0, I,J
l,...,d, generate the CSA. This relation, together with (3.1.5) corresponds to
Eq. (2.2.5), and the oscillators hn(n ^ 0) form the Heisenberg algebra. We shall

clearly identify (hn,a) hna Ha 9 t"'¦

The vertex operator is then

U(a,z) za'>2 : ««».*<*»<. :

(3 17)
zaJ/2ei(«.«)c z(a,P)ei(Jf_(z),a)ei(X+(*),o)

K ' ' '

where a is a root of g and

*±(*) ;£ k~ (3.1.8)

The operator ca is needed to get the right commutation relations, as explained
in Ref.[24] and in Paragraph 3.4.

The Hilbert space on which the vertex operator acts is

H T9\P) (3.1.9)

T is the Fock space of the oscillators hn with a ground state satisfying

hTn\ 0 n > 0 (3.1.10)

|P) is an oo dimensional space of states with momenta on the lattice P, caracterized
by following considerations : The action of p and q on |A) 6 \P) is

pJ|A) A'|A) (3.1.11)
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ei(«-a)|A) |« + A) (3.1.12)

In accordance with (3.1.6) we require the boundary condition

U(a,ze2*i) U(a,z) (3.1.13)

which is obviously satisfied by the oscillator part. To satisfy it for states |A) in |P)
it is necessary that

(A,a) + a2/2€ ZZ (3.1.14)

Suppose the ground state of p satisfies

p'lP) p'iP) (3.1.15)

If a £ Q, (3.1.14) implies
peQ* (3.1.16)

so that P ~ Q consists of all the points of the root lattice Q of g shifted by p.

We now use one instance of the Quantum equivalence theorem (Q.E.T) of
Goddard and Olive [24] : the Virasoro and Sugawara constructions (see below) are
equivalent only if A p+ A0 is the highest weight of a level one representation (see
Eq. (2.2.17)). This strongly suggests that the construction of KM currents out of
free bosonic fields (3.1.3) and their exponentials is only possible for such weights.
Higher level vertex constructions have been considered in [16]. For the heterotic
string, p 0 and A A„ belongs to the trivial representation of g. The general
expression for ca is [24]

ca=Y,e(a,ß)\ß+p><ß + p\ (3.1.17)

where e(a,ß) is the cocycle entering the commutation relations (2.1.4).

One also defines the Klein factor ca

ca ei(*'a)ca (3.1.18)

cacß e(a,ß)ca+ß (3.1.19)

(-)le"nhè* (31-20)

Finally, the generators ofthe untwisted (or homogeneous), affine simply-laced
Kac-Moody algebra in a level one representation are given by

&{<*) =—f^M",*) (3-1-21)
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together with the momentum operators p and the generators hn of the Heisenberg

algebra. Indeed, it will be shown in Paragraph 3.5 that Ul(a) have the same

commutation relations (2.2.7) as Ea 9 tl, for fc 1.

The Q.E.T. implies that the generators of a Virasoro algebra are either given
by

£.= jE E --^n-n'hl.: (3.1.22)
1=1 n'eX

or, for a level 1 representation of the Kac-Moody algebra g (g simple, simply-laced)
via the Sugawara form

1 dimj

£n=r-ö-E E ¦¦K-mUam: (3.1.23)
Z + y* a=lmeZ

Here [/* include all the generators of the Kac-Moody algebra.

Q-0 is the eigenvalue of the Casimir operator in the adjoint representation of g
(with highest weight 6) and a normal ordering is necessary according to which U^
with positive m are moved to the right of those with negative m.

3.2. Automorphisms of the Root Lattice

As a preparation for the twisted vertex operator we consider automorphisms
w of the root lattice Q which satisfy

a —? wa
to to t3"2-1)

(wa,wß) (a,ß)

This induces an automorphism on the CSA, since h and h ar<» isomorphic (see

Paragraph 2.1)

™Ha Hwa (3.2.2)

Let the order of w be m
wm 1 (3.2.3)

We divide the complexified vector spaces h ~ k into eigenspaces of w

m-l
A=0A„ (3.2.4)
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The spaces h^ and hn,, orthogonal if n + n ^=0 mod m, correspond to the
eigenvalues rn,

r exp(-27Tt/m) (3.2.5)

Call pn(a) the projection ofaonA,,

m-l
« E P»(«) (3-2-6)

n=0

«-?„(«) rnPn(a) (3-2.7)

The inner automorphisms of Q form the Weyl group W(g) generated by the Weyl
reflections about simple roots a{ of g :

wiß ß-(ß,ai)ai (3.2.8)

The quotient Aut Q/W(g) is then equal to the automorphism group D of the
Dynkin diagram. D 7Z2 — {1,-1} for the simple Lie algebras At(£ > 1),

Dt(t > 4) and E6. D S3, the permutation group of 3 elements, for the algebra
D4. D is trivial for the algebras A,, E7, Es, Bx, Ct, G2, Ft.

There is a close, although not a one to one relation between w £ Aut Q and

r £ Aut g (see Paragraph 2.3). If we set

r(Ha) wHa (3.2.9)

it follows from [Ea,E_a] Ha that

tE é E

with ipa some phase.
If a + ß is a root, the Eq. (2.1.4), [Ea,Eß] e(a,ß)Ea+ß, requires

tp*L -pÉL. (3.2.10)
Wa+ß £(wa,wß)

One easily sees that ipa ipafa is also a solution provided fafß fa+ß-
For w-invariant roots a, ß £ An h^, ^)ai>ß V'a+a- With <f>\^nht V1 an^

4>a4>3 — 4>a+3 everywhere, xj)a ij>a<j>2 defines a r such that r(Ea) Ea if
wa a. Consider à X^1 t»n(a). Then rm(Ea) VÓVCa • ¦ • ^w—»a-^ot-

Since wâ â, ij>'& 1 and rm(Ea) (—ya'a'Ea. Hence, if w has order to, t has

order to or 2m depending on whether (à, a) £ 22Z, V a € A or not [25].
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3.3. Automorphisms : Example of su(3)

The impatient reader can go to paragraph 3.4. The finite Lie algebra su(Z)
A2 has the Dynkin diagram

o- o oa2 (3.3.1)

and the Cartan matrix

The automorphism w leaves A invariant. The Weyl group W(g) of inner automorphisms

is generated by the reflections w{ about the simple roots a{ (i 1,2).
Conjugate elements of W correspond to equivalent constructions. W has six elements
which fall into 3 conjugacy classes which we denote H (homogeneous, untwisted),
M (mixed, twisted), P (principal, twisted)

# {1}
M {w1)w2,w1w2w1} (3.3.3)

P^= {tüjtüj.lOjWj}

wxw2 is also called the Coxeter element. In each class pick a representative.

Outer automorphisms are generated by the automorphism D of the Dynkin
diagram

D : aj <-> a2 (3.3.4)

or by a reflection
R : a- —> -as

(3.3.5)
R w1w2w1D

We give some details for the principal automorphism P. We choose for w the
Coxeter element, defined by

wpai a2 wpa2 ~a3 -ai - a2 (3.3.6)

This is a rotation of 120 of the root diagram. In the space spanned by a1 and a2,

(3.3.7)

w is the matrix

(?:!)
Notice

det (1 - wp) det A (3.3.8)

This is a general property of the Coxeter element.
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Obviously

!% 0 (3.3.9)

j£ =C(-r-1a1+a2) (3.3.10)

^ C(-r-2a1+a2) (3.3.11)

We used r - e~2*i/3 and 1+r+r2 0. From (3.3.9) also follows that 1+w+w2 0,
in agreement with (3.3.6).

The projections on hn are :

Pitei) (r - r2)~1(-r-1a1 + a2)

P2tei) ~(r - r2)_1(-r-2a1 + a2)
(3.3.12)

Pi(a2) A2Pi(«i)
p2(a2) - r~lp2(ax)

For the outer automorphism R

wR(ai) ~ai ,t l,2 (3.3.13)

w*=(~0 -i) 'det(l-«fl) 4 (3.3.14)

lh °> à.i Ä' (3.3.15)

The mixed case u>M, wM 1 is defined by

wAf(ai) _ai ;wAfa2 a3 (3.3.16)

The matrix representation is

Wm V î ; det (1 " Wm) ° (3'3-17)

The eigenspaces are

h^ C(ax + 2a2) ; fcj Caj (3.3.18)

The projection are

PoK) ° ; Pitel) ai
j (3.3.19)

Po(«2)= 2tei+2a2) ; Pite2) -2ai
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3.4. Twisted Vertex Operator

When a closed string moves on an orbifold (see eq.(3.1.2)), the boundary
condition for the (modified) Fubini-Veneziano operator will be

X(ze2") wX(z) + a (3.4.1)

where w is an automorphism of Q of order to

wm 1 (3.4.2)

The corresponding condition on the (twisted) vertex operator requires
a) oscillators with fractional indices
b) generalization of the Klein factor c(a)
c) generalization of the Hilbert space.

We immediately give the resulting vertex operator, which generalizes (3.1.7)

U(a,z) zM<*)V2a(a)z{Po(<*),p)eiX-{<*,*)-eiX+(ct,z) (3-4-3)

p0(a) is the projection of the root a on the w-invariant subspace h^. p is the
momentum operator, and

X±(a,z) =i ]T ha(n)
—n/m

Z ' TO

±n>0

M») P(n)(#J ® <n/m, te) nmodm
(3.4.4)

so that the ha(n) obey the commutation relations

[ha(n),hß(n')\ ^(Pn(a),pn.(ß))Snt_n, (3.4.5)

We coxdd also have started from a CSA basis { hn\ hn £ h^}, such that (hn, hn,)
Sn+nt mS '

; one would then consider the twisted Heisenberg algebra generators

hi mod m 9 tn/m ee hi (3.4.6)

and

K(n)= Pinchi (3.4.7)
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Thus defined, X±(a,z) satisfies the boundary condition (3.4.1), since

-n/m
oX±(a,z) i 22 wha(n)-

±n>0
(3.4.8)- —n/m V Ii -2*i\ -i —

» E M«)
±n>0

It is also clear that for w 1, (3.4.3) reduces to the homogeneous, untwisted,
F.K.S. construction (3.1.7), with p0(a) a and

erta) ca ei(«,a)caK > a a (3.4.9)
ha(n) (hn,a)

Another interesting case is the principal, twisted construction, when w is the Coxeter

element
l

w Y[wi (3.4.10)
»=i

where wi is a Weyl reflection about the simple root at of the Lie algebra g with
rank 1. Then p0(a) 0 and cr(a) is no longer necessary (this will be justified in
his general setting later, paragraph 3.6). In this case

U(a, z) V(a, z) j*-(<*,*)eix+(a,z) (3.4.11)

Going back to the general case, our plan will be to show first what are the
algebraic properties of the operators <r(a) necessary to get the commutation
relations of the twisted Kac-Moody algebra. The next point will be to describe the
Hilbert space on which u(a) acts. It is clear that the oscillators will act on a Fock

space.

It is convenient to change the variables :

xm z (3.4.12)

The Laurent coefficients of the twisted vertex operator

U^m(a) =~l —xiU(a, xm) (3.4.13)
27TI J X

will realize the generators Pu)(Ea) 9 t of the twisted Kac-Moody algebra.
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A problem arises when we try to calculate the commutator [U'(a),U3(ß)]
because, as is well known the product U(a,x )U(ß,y is singular for x — y.
This is specially true for the oscillator part V(a,x The cure is to introduce the

non singular normal ordered product, using the Baker-Hausdorff formula

V(a, xm)V(ß, ym)=--V(a, xm)V(ß, y™):

xexP[iX+(a,xm),iX_(ß,ym)} '

Lemma [16]

[X+(a,xm),X_(ß,ym)\ Y, In (l - -f) Ivi < M (3-4-15)

One knows [24] that in the F.K.S. construction (w 1) the products
U(a, xm)U(ß,ym) and U(ß,ym)U(a,xm) differ only by the range of a; and y. Hence

we shall choose o~(a) in such a way that the same is true in our general case.

Using (3.4.3), (3.4.11), (3.4.14) and (3.4.15) we get for |x| > |y| :

"»-1 / j \ (a,w*0)
U(a,x™)U(ß,ym) Z(a,x,ß,y)l[ U - — 2(a,M,v) (3-4.16)

3=0 ^ X '

with

(3.4.17)
Z(a,x,ß,y) x:?\ro(°)\ ,ÏW«I V(a,xm)V(ß,ym) :

Z(ß,y,a,x)

Z(a,z,ß,y) - <r(a)im(po(a),p)a-(/3)ym(po(Ä'J>) (3.4.18)

For |xj < \y\ we get similar expressions after the change a *-+ ß, x «-* y. We want
to symmetrize the last two factors on the R.H.S. of (3.4.16). Notice that

m—1 / g \ (a,ii)#^) m—1

Y\(l-r-JL) JI (x - r'y){a'w'ß)x-m(po(-)-po(/3)) (3.4.19)
,=o V z ' ,=0

This follows from
m-l
Y w'a mp0(a) (3.4.20)
,=o

Indeed, the L.H.S. is invariant under w and hence is proportional to p0a. The
factor to results from counting. Compare the example su(3) in Paragraph 3.3.



x™(M<x)tP)atß\ — (r(fl)j;m(Po(o)>P) j.">(Po(or),Po(/3))

ym{po{ß),p)f\ _ ra\ m(po(ß),p) m(po{ß)<M<*))

Hence, with (3.4.18)

T,(a,x,ß,y) a(a)a(ß)xm(po(-a)'p)ym'-Mß)'J')xm<-Po(-a),Po<-ß))

E(ß,y,a,x) ff(ß)ff(a)y^rtß)tP)xMM<*),p)ym<Po(.fl)srtc<))
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Next one finds, using (ß,wa) (w~ ß,a),

m—1 m—1 m—1

n (y-r'x)^-^=n (_r-)W.--«) n (—r-,)^^
'=° '=°

mi
'=° (3.4.21)

S(a,ß)l[(x-r'yfa'v',ß)
3=0

where the so-called symmetry factor S(a,ß) is given by

m-l
S{a,ß) J] (_r*)^-'°) (3.4.22)

«=o

m-l
J] (_r-)(a'"'« (3.4.23)
•=o

- (_i)"»(j>o(«),po(j3)r- Er="0l <a'w'^ (3.4.24)

(3.4.23) shows that
S(a,ß) S-1(ß,a) (3.4.25)

In analogy with the relation, true in F.K.S. construction :

x(«,p)e*i,ß) _ eKi,ß)x(<*,p)x(a,ß) (3.4.26)

we require

(3.4.27)

(3.4.28)

Putting (3.4.19) and (3.4.28) into (3.4.16), we see that the factor xm(*>(a>'*><0»

cancels.

Taking (3.4.21) into account, it follows that (3.4.16) becomes completely
symmetric provided

<r(a)<r(ß) S(a, ß)a(ß)a(a) (3.4.29)
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This is the fundamental relation which together with the condition (3.4.27) and the
expression of S given by (3.4.22) specifies the algebraic properties of o~(a), which
will be used in the discussion of the Hilbert space on which o~(a) acts.

We now can write the commutator for the Kac-Moody generators in the
following way

[u^),uHß)]='i j -f j dÌdi
(27ri) \4, rJM x y (3-4-3°)

xxV C(a,xm,ß,ym)

where

C(a, x, ß, y) Z(a, x,ß, y) J] te - r-yf'w'a)
^

x<r(a)a(ß)xm(-Po<-a)'p)ym(-Po(-ß)'p)

It is also interesting to apply formulas (3.4.22) to (3.4.24) for S(a,ß) in several

cases. For u> l,ro r lso

S(a,ß) (-l)(-a'ß) (3.4.32)

Using (3.4.9) this agrees with (3.1.20) and (3.4.29).

For hq 0 (no w-invariant subspace of h) (3.4.24) gives :

S(a,ß) r~ Sr=V •(«»•'•'« (3.4.33)

If w is the Coxeter element Eq. (3.4.10), h^ — 0. In addition det(l — w) detA
(see Eq. (3.3.8)) where A is the Cartan matrix of g. Then one can show [18] that

m-l

^ jtü.tc'jS) e 0 mod m (3.4.34)
j=0

Hence

S(a,ß) l Va,ß £Q (3.4.35)

In this case, cr(a) is not necessary and the vertex operator is U(a,x
y(a,xm)(cfEq. (3.4.11)).
Example : g su(m) Am_1. There are to — 1 simple roots at. The Coxeter

element is realized by wat ai+1, i 1,... ,m—2 and wam_l — ]C«=i a« — — &•

One verifies that w(—0) a, so that wm — 1. Putting a{ 2, it follows that
(a»>a»±i) —1 and (ai'aj) 0 for t ^ j, j ± 1. Then one easily verifies (3.4.34).
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3.5. The States and the Commutation Relations

Recall Eqs (3.4.3), (3.4.4), (3.4.13), to write the generators of the twisted
Kac-Moody algebra as

Vi'm(a) l-ij>~xiU(a,xm) (3.5.1)

U(a,z) ;E™P»(°0VV(a)xm(p°(a)'?V*-(a,*mVx+(a':'!m) (3.5.2)

Acting on the vacuum (with p 0) one sees that the residum in (3.5.1) will be non
zero for a positive n such that

m o

»+j|Pote)r+n' 0 (3.5.3)

Since m(p0(a),p„(a)) Y^?=o (w3ata) 6 ZZ, it follows that [17]

i £ ZZ or i £ ZZ + - (3.5.4)

To study the spectrum created by U (a) acting on the vacuum, consider the
derivation operator d equal to minus the Virasoro operator L0 :

r&nkg

E
/=1 n'€Z

Io |lPote)l+ È E --hn-n'hif. (3.5.5)

then one finds
[d Un/m(a)} -Un/m(a) (3.5.6)

TO

Starting with d 0, U'' m(a) creates states with d i/m. From (3.5.3) it follows
that i + (m/2)|p0(a)| < 0 so that the states are limited by the paraboloid

d=-\\pa(a)\2 (3.5.7)

To compute the commutation relation (3.4.30) one has to look for poles. The
behaviour of the integrand is dictated by the factor

m-l
Y[(x-r'y)^'ß) (3.5.8)
»=o
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If a and ß are roots of a simply-laced finite Lie algebra, (a,w ß) can take the only
values ±2, ±1, 0. Hence (3.5.8) can have simple and double poles for x rny.
Then, by deforming integration contours

[U^(a),U^(ß)] -Ì-jE / - / T *V'C(a,«-,/9,y")
(2«) %J Vr/ « (3.5.9)

/(-1,-2) {n| (a,tün/3) € {-1,-2}, 0 <n< m-l}
Example : For su(3) and the principal construction, wax a2, u>a2 —al — a2.
Hence, for a ß one gets simple poles for n 1,2 and for a —ß a double pole
for n 0.

After a lengthy calculation one finds [17],

m—1 k

[Ui'm{a),Ui'm{ß)]= E r}(a,-s)ew(w-'a,ß)ri'l[(l-rk)(atW 'ß)

»6/(-l) *=1

x Uii+i)/m(w—a + ß)
Tn—1

+ E rK«,-s)ew{«,-«y'T[{l-r><)-(a,Wa)
»6/(-2) fc=l

x [^i+;,o - mhß(i + j)]
(3.5.10)

where we have used (a,w'ß) —2 implies w'ß —a ; ew(a,ß) will be defined in
Eq. (3.6.2), and r)(a,s) in Eq. (3.6.8)

To this one should add the commutator

[h[,U^(a)] p_k(a)IU'^L(a) (3.5.11)

For the to-invariant subalgebra g0 see Refs [17],[26],[25]. See also the example su(3)
(paragraphe 3.8).

3.6. Extension of the Lattice Q and the Hilbert Space

Taking into account the algebraic properties of <r(a), we can discuss the Hilbert
space on which it acts. But first we need the two notions of central extension Q
and group algebra \Q). Recall Eq. (3.4.29), with 5 given by (3.4.22)

a(a)a(ß) S(a,ß)<r(ß)a(a) (3.6.1)

In analogy with (3.1.19) we write

a(a)a(ß) ew(a, ß)a(a + ß) (3.6.2)
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where ew(a,ß) satisifes the cocycle condition (2.1.8), but (2.1.9) corresponds now
to

ew(a,ß) S(a,ß)ew(ß,a) (3.6.3)

(3.6.2) can be considered as a projective representation of the abelian group Q.

Call Q the extension of Q by the cyclic group T generated by (—)mr, r e~ m'm.
An element of Q is denoted by the pair (a, a), a £ Q, a £ T. Multiplication is

defined as

(a1,a1)(a2,a2) (a1 + a2,ew(a1,a2) a,a2) (3.6.4)

The extension Q is actually uniquely fixed by a choice of S, which in turn, in our
context, depends on the automorphism w of Q. On the other hand, if ew satisifies

(3.6.3), and / is some map f : Q —? T, then s'w ewfafßf~lß ewcf(a,ß)
also satisfies (3.6.3), so that, for a given extension, one gets a class of 2-cocycles,
differing by the (exact) 2-cocycles c* generated by /. This allows to normalize ew
to

ew(0,a) ev,(a,-a) l (3.6.5)

The group algebra \Q) was already introduced in Eq. (3.1.9) : it is an infinite-
dimensional vector space spanned by elements a £ Q such that \a) £ \Q). Similarly
one defines \a,a) £ \Q). Let a be a map which associates to each a £ Q a
representative in Q : cr(a) (a,fa), fa £ T; then

\a,a) =<r(a)|0) (3.6.6)

Then, with (3.6.2) and (3.6.4)

0-(ai)l«2./«2) Sw{ai,a2)faJaJäl+aiWi +«2»/«!+«,)
(3 6 7)

£w(ana2)Cf(aHa2)(T(al +»2)l°)

in accordance with (3.6.2). One can also check that (3.6.1) is valid. This slightly
more abstract but equivalent language avoids the explicit use of the position operator

q which is ill defined when, for instance, hg 0 (no w-invariant subspace).

The automorphism w : Q —> Q can be "lifted" to an automorphism of Q [17]
such that uio a, a £ T and

wn((cr(a)) n(a,n)a(wna) rj £ T (3.6.8)

The boundary condition X(ze xt) wX(z) mod Q becomes, for the vertex operator

:

U(a, ze2ni) wlf(a, z) (3.6.9)
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and, using (3.4.3) and (3.6.8)

ij(o, n)cr(wna) ff(a)r AV2)Hpo(o.)lJ-nm(po(<>),p) (3.6.10)

This relation is usefull in expressing the commutation relations (3.5.10).

We also need a feature which was trivial in the F.K.S. construction : the subset

L (Z Q which is not invariant under the automorphism w

^1 (3.6.11)^ E^
«=i

Call L the image of L by cr. Now we are in a position to discuss the Hilbert space
Ti on which the twisted vertex operator acts. This difficult problem was solved by
Kac and Peterson [13] and independently by Lepowsky [14]. We give here without
proof a simplified version [17,18]. The result is

H Jr®\Q)®fi)V (3.6.12)

T is the Fock space of the oscillators (3.4.6). Q has been defined previously and V
is a new space yet to be defined. The meaning of the tensor product in (3.6.12) is
the following [17]

*te)|o>®\L)t |o)«|i)¥>tete))* Voei,(ev (3.6.13)

<p is a projective representation of L or a linear representation of L (so that V is
its carrier space), and will be explicited in Paragraph 3.7. This amounts in fact
to induce a representation of Q from that of L, ip, on V. One can show [18] that
Q/L Q0, the projection of Q on h^ so that, in view of (3.6.13),

\Q) ®\L) V 0 V;. - |Q0) 9 V (3.6.14)

One can interpret it considering that shifts in momentum along the invariant
Indirection change the state in |Q0) (see (3.1.12)), whereas those corresponding to L
act on V through <p. In order to further characterize ip, introduce [14]

R {a£L\S(a,ß) lVß£L} (3.6.15)

R is a subgroup of £ such that S(a,ß) is non degenerate on the quotient N L/R.
Since S 1 on R, R is an abelian subgroup of L and hence its irreducible
representations are one-dimensional. The order of L/R can be shown (see paragraph
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3.7) to be a square \L/R\ cw.
The dimension of the representation ip has then to be equal to cw and to solve the
problem one has to find the projective representations of N. The reader will find a

complete justification of this statement in [18] while we will give in paragraph 3.7

only the final result.

One can also show [18] that if h^ =0, det(l — w) \L/R\ detA, A the
Cartan matrix. If det(l — w) detA, as is for example the case for the Coxeter
element (see Eq. (3.3.8)), then \L/R\ 1 and V is trivial, in accordance with
S(a,ß) 1. Hence cr(a) is not necessary (see Eq. (3.4.35) and the example su(m)
which follows).

3.7. Projective Representations of N L/R

Altschüler et al. [18] have given an algorithm which allows to calculate the
irreducible representation of the finite abelian group N. We consider N, a finite
abelian group with a bilinear form S : N x N —? C* such that S is alternating,
i.e. S(x,y) S~ (y,x) (see Eq. (3.4.25)) and non degenerate : if S(x,y) 1,

Vx £ N then y 0 (see comment after Eq. (3.6.15)). S is bimultiplicative, that
is S(x + y,z) S(x,z)S(y,z) and S(x,y + z) S(x,y)S(x,z) (this follows from
formula (3.4.22)).

Theorem 1 : For such an N we have the structure of a direct product

NxxN2x x NT (3.7.1)

Each factor N, is the product of two cyclic groups ZZ ¦ and ZZ.- of the same order

ni
JV. - ZZj x ZZ\ (3.7.2)

such that
S(xj,x)) ej (3.7.3)

is a primitive n — th. root of unity where x ¦ resp. x,- is a generator of ZZ t, resp.
ZZ i and

S(Ni,Nj) liiiïJ (3.7.4)
2It follows that the order of TV is a square since the order of Nj is n •.

Theorem 2 : For each j 1,..., r, let the n • x n- matrices be defined by

Pi

/0100 0\
0 0 1 0 0

0 0 0 0 1

Vi o o o o/

(3.7.5)
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Qi

/0 £; 0 0

0 0 t) 0

0 0 0 0

Vl 0 0 0

if n ¦ is odd

/ o

0

Q;

s, o

0 6)

0 0 0

t2ni-l

0 \
0

¦?-',
0 /

0

sf'-3
o J

(3.7.6)

(3.7.7)

ysp-1 0 0

if n • is even, where S • is a primitive 2n ¦ — th. root of unity such that

S)=£j
Then the map tp : N -+ GLn(C) defined by

¥>tei) Pi i V(z'i) «i

where
Pi h
1i h

¦1^9^91^
•/<_! 8» Qi 9 /j+1 Ü/.

(3.7.8)

(3.7.9)

(3.7.10)

J\ unit n^ x n^ matrix (3.7.11)

is the unique, up to equivalence, projective, irreducible representation of N (with
respect to the extension of N defined by S).

Theorem 2 is a consequence of Theorem 1 and a theorem of Morris [27] about
projective representations of direct products of cyclic groups of the same order.
Example :

a) N ZZ2 x ZZ2, n 2, N has 4 elements

?te) p=(J J) ;?(*') «=(°« o) '
and

ip(x)ip(x') iip(x + x')
<p(a) are the Pauli matrices.
h) N ZZ3x 2Z3, n 3

0 10 '0 e

vte) p= [ 0 0 1 Mx') q= 0 0 e2

.10 0/ Vl 0 0

p(2W»)

(3.7.12)

(3.7.13)

(3.7.14)
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3.8. Example of su(3)

For various automorphisms w of the root lattice Q we list a few useful
properties

1) w 1 (untwisted, homogeneous) S(a,ß) (-)(a,/î); Q0 Q; L 0; N 1;

aoV;

2) w : cüj —> —djj a2 —+ Oj + a2; w 1 (twisted, mixed) S(a,ß) — ya'p'
which is a general result for automorphism of order 2 ; L {naj; n £ ZZ;

R £; JV 1; no V;

3) ti; : a1 —> o2; a2 —> —ax — a2; w =1 (twisted, principal) S 1; Q L R;
N 1; no 1Q0), no V, no <r(a);

4) w> : a —> —a; io 1 (twisted, outer automorphism) S(a,ß) (—) ;

Q L; R 2Q; N Q/2Q : 4 elements. V has dimension 2.

5) w : a- <-v a2; to 1 (twisted, outer automorphism) S(a,ß) (—) ;

L {n(a! - a2)}; n e ^; Ä I; JV 1; no V.

We next discuss the commutation relations of the twisted constructions of the
Kac-Moody algebra based on the principal and an outer automorphism.
w principal : For the vertex operator we have U(a,x V(a,x (Eq.(3.4.11))
and from Eqs. (3.4.14-15)

V(a,x3)V(ß,y3) =:V(a,x3)V(ß,y3) :

2 / _«„.\ («•.»'« (3.8.1)
x nte¥

J=0 x '
For ß a, one gets two simple poles when x ry and x =: r y. For /9 —a,
there is one double pole for x y. The contribution of the simple poles to the
commutator (Eq. (3.5.10)) is

[Vi/Ste), f>/3te)] r*'(l - r)(a'u,Ja)(l - r2 )(<*.<*) ^»/"(Mr1 a + a)

+ r2i(l - r)(°'-D')(l - r2)(«."'<*V(i+»/'»(w-2a -fa)

Using a -I- wa + w a 0, and V*' (u>na) rn,V"' (a), with n 1,2, one finds

[*"•/»(«), Vi/»(o)] -(r2'+>(2r2 + 1) + r2<2^>(2r + 1))

xy(W(_0) l ' ' '
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The contribution of the double pole is

[V*'*(o0, V"»(-a)] 3(i6i+jfi + Zha(i+j)) (3.8.4)

It is instructive to compare this commutators with the abstract relations Eq. (2.3.7)
Now, according to (2.3.10), the structure realized by the principal construction
should be isomorphic to the untwisted affine algebra; in particular, we should be
able to exhibit the finite Lie algebra su(3) which is not explicit in the commutation
relations above because of the change of ^-gradation produced by the twisted
realization (see Chapter 7 of [23]). Notice that this problem, the solution of which
will be outlined in the following, can be entirely investigated at the abstract level.
The lifting of the automorphism w is easy because h^ 0 : we can choose all
phases ij>a 1. Acting on the generators Ha and Ea one gets

rHai Ha2\rHa2 #-on-a,» T-H-ai-a, Hax
(3.8.5)

«1tE E ¦ tE E ¦ tE E

Hence su(3) can be divided into 3 eigenspaces. We give the eigenvectors

E±ai + E±a2 + ET{ai+a2) 3p0(±Eai) £ ^ (3.8.6)

so that
ff0£«(l)©u(l) (3.8.7)

n l,2 (3.8.8)

E±ai + r-nE±a2 + r-2nE^{ai+a2) £ g_n

Recalling the correspondance V(a,z) «-> ^,Pn(Ea) 9 tn'mz~n, we shall identify
V (±a) with the generators of g0 and choose them as the new basis vectors for
the C.S.A. of .su(3), say H1 and H2. This is of course consistent with (3.8.4) for

i,j 0:

[V°(a),V°(-a)} 0 (3.8.9)

The next task is to identify the new step operators E±a.. To achieve that, one
should somehow "diagonalize" the commutators (3.8.3) to (3.8.4) with respect to
the new C.S.A. : [Hi,Ea] a(Hi)Ea. The closure of the algebra constitutes here

an important constraint guiding the actual identification: the powers of t have to be
matched carefully. For instance, E_a _a should be chosen as some combination

of operators corresponding to t~ ' E_a. as some combinations with t ' Ea.
Sn

would be expressed in term of operators V ' (a) etc. The commutation relations
of su(3) ensure then that we do not "propagate" indefinitely with powers of t.
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Outer automorphism a —> —a

We can again set all the phases tp'a 1 so that rEa Ewa. The 3 eigenvectors
in the subspace a are then,

Ki + E_ai, Ea2 + E_a2, Eai+a2 + E_ai_a2 (3.8.10)

This is isomorphic to the algebra su(2). The 5 eigenvectors in g are :

HaO 5oS> Eai - E-<xii Eai ~ E-a2 >

E — E
a\-tct2 — ai—ai

(3.8.11)

They form a representation of su(2). The vertex operator is

U(a,x2) V(a,x2)<p(a) (3.8.12)

V(a,x acts on the Fock space and <p(a) on the 2 dimensional space V on which
the Pauli matrices cri together with the unit matrix form a projective representation
of the group N Q/2Q (see Paragraph 3.7.). A natural choice of representatives
for the cosets of Q mod 2Q is {O,^,0^,0^ + a2} and we assign <p(aA cr^

The generators U ' (a) of the twisted Kac-Moody algebra obey

Ukl\-a) (-)kUk/2(a) (3.8.13)

To get the commutation relations, one looks at the pole structure of

(x - y)<-a>ß)(x + y)^a'ß) (3.8.14)

Since (a1,a2) (a2,—ax — a2) (—ax — a2,a1) —1 all these pairs will yield
simple poles. Hence one sees that, for example,

[U°(ai), U°(a2)} 2iU°(ai + a2) (3.8.15)

This and the other commutators build up a structure isomorphic to g0 su(2).
On the other hand, g1 forms a representation 5 of su(2) and one can see that there
is no way to get su(3) as a subalgebra. Hence, the operators U ' (a) belong to
a twisted Kac-Moody algebra different from the affine su(3) A2 This one is

called A2 The lower index 2 means that one started with A2. The upper means
that the Dynkin automorphism is of order 2.
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