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Abstract

The method of dual pair of Banach spaces is used to analyze the Kirkwood-
Salsburg equations for the reduced density matrices describing continuous systems
of particles obeying Maxwell-Boltzmann statistics. The existence, analyticity and

equality in the thermodynamic limit of the conditioned (by classical boundary
conditions) KMS states is proved for any value of the chemical activity z such that z~l
does not belongs to the spectrum of the corresponding Kirkwood-Salsburg operator.
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1 Introduction
One of the fundamental problem of the quantum statistical mechanics is the problem
of existence of the KMS states corresponding to a (locally) given dynamics [1]. More
interesting and important is the description of the whole set of KMS states provided they
exist.

Our knowledge about the content of the set of Equilibrium Gibbs states describing
continuous systems of quantum-mechanical systems of particles in high density (low
temperatures) regime of parameters is still very incomplete. (The same is true for classical

particles as well). The rigorous results which have been obtained up to now for such
systems are confined essentially to low density (high temperature) regime. The basic results
of Ginibre [2] combined with the methods of [3-7] give the existence of Dirichlet infinite
volume KMS states in the above domain of parameters. It is worthwhile to quote the

papers [8- 12] where the existence problem has been solved for a special class of systems
in the wider regime of couplings, see also [45].

The main aim of the present paper is to extend the Ginibre results using different
method of analysis of the corresponding Kirkwood-Salsburg equations. The method of
the dual pair of Banach spaces (invented in [13] and then improved and applied in similar
situations in [14-18]) will be used. This method enables us to generalize slightly the
Ginibre results. In particular the existence of the corresponding Dirichlet KMS states can
be proved for much wider domain of parameters. Additionally the method used gives the
possibility to discuss the eventual dependence of the limiting KMS states on the classical

boundary conditions that have been used to construct them. These results (partially)
solve the problem posed by Bratteli and Robinson in [1]. It should be stressed that the
influence of the particular choice of the boundary conditions on the phase transitions has
been demonstrated explicitly for some toy models [19,20]. This is one of our motivations
to study the influence of boundary conditions on the limiting KMS states. The second
motivation comes from the question concerning the uniqueness of the limiting KMS states.
Results of that kind for continuous systems seem to be very exceptional [1]. So far only the
possible influence of the classical boundary conditions on the infinite volume free energy
density was studied before [21-23].

In the first part of this work we will concentrate ourselves on the exposition of the
method of dual pair of Banach spaces and its applications. The restriction to the Maxwell-
Boltzmann statistics enables us to obtain existence results (modulo the difficult part of
the proof of Lemma 3-4 below) in a rather economic way. The case of quantum statistics is

more complicated and the corresponding results will be presented in the second part of this
work [24], see also [45]. In Section 2 of the present paper the Kirkwood-Salsburg equations
are formulated and some introductory discussion of the classical boundary conditions is
included also. The main result is formulated as Theorem J^-l. It gives the existence and
independence on all classical boundary conditions of the limiting KMS states on the whole
resolvent set of the corresponding Kirkwood-Salsburg operator. The complicated proof of
the difficult part of Lemma 3-4 is referred to another publication [24].
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2 Some preparations
2.1 Admissible boundary conditions
Let — Aa denote the Laplace operator —V2 defined on twice-continuously differentiable
functions in L2(A), where A is assumed to have a piecewise C1 boundary dA. The class

of self-adjoint extensions of — Aa can be described by the condition that <f> belongs to
the domain of such extension iff dn<f> <r<^, where a S C1(«9A) and dn means the inward
normal derivative. This corresponds to the so called classical boundary conditions and

corresponding extensions will be denoted by —A"K. The case of Dirichlet extension
corresponds formally to a +oo on dA and the case of Neumann extension to a 0 on dA.
The corresponding extensions will be denoted by — A%, resp. — Aj^• The infinite volume
(Friedrichs) Laplacian will be denoted by —A.

Let flp(A) x A where A is compact region in Rd with the boundary dA being

piecewise C1. Similarly we define tip x Rd (where the dot means one point
compactification of Rd) to be the space of paths.

Lemma 2-1.

For any classical boundary condition (cr, A), any x, y € A there exist uniquely
defined measure p"A (resp. px\y) defined on the Borei cr-algebra of
Çlp(A) (resp. Cip) such that for any cylindric function 4>(w) 4>(u>(tl),

u>(t2),... ,u(tn)) with 0 < <i < <2 < • • • in < ß we have

0/>(A)

where

J dxx... dxn(f>(xu ,xn)pah(x,xx\ti)...paK(xn,y\ß - tm)
A

(2-1)

rt(*.»l*) =(exp-tA%)(x,y),
(2-2)

p(x|<) (exp — tA)(x)

The corresponding conditioned by Dirichlet (resp. Neumann) boundary condition
Wiener measure will be denoted by p% (resp. p1^ •).

To some extent, the deviation of p"A from px, is measured by the compensating
Green function ApaK(x,y\t) p(x — y\t) — p\(x,y\t). Certain fundamental properties of
Ap" have been established in [1,21,22]. For the applications to the present exposition we
need

Lemma 2-2 [1,22]
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For each ß > 0 there exist constants C, d', c" > 0 such that (uniformly in cr

and t < ß

&PÌ(x,y\t) <C-e^-t-dl2

(2-3)f c" • (dist(x, dA)2 + dist(y, dA)2) \
eXp-{ At

«a(w)

for every bounded convex domain A C Rd, whose boundary is C3-surface.

It is important to note that the constants in (2-3) depend only on the mean curvature
ofdA.

Another, well known lemma expresses the expected fact that the measures p"A, and

px, differ on the boundary a-algebra <t(«9A) s a {w|30 <t<ß: w(t) £ dA} only.

Lemma 2-3 [1,22]

O O

For any Borei set B G fy?(A), where A means the interior of A, the identity

Ä»(«* • B) /xf|y(aA • B) (2-4)

holds, where
'

1 if u(t) GA for any te[0,ß]

0 otherwise

A (a, A) boundary condition is compatible iff there exists fix, -measurable function e"Ax,y :

Cip —> iïp(A) that

From Lemma 2-3 it follows that if the boundary condition is compatible then (e^ x, J

id on il(\). Therefore, the measure p, f eA X,A differs from px, on «r(«9A) only. Let us

decompose

«4 {{AAy (B)) r<£iy(B) + s'/My(B) (2 - 6)

where rAx, denotes the corresponding Radon-Nikodym derivative and sAxi the singular

part of the general decomposition of the measure pA x, with respect to px\y\<r(dA).
From the inequality s"^y (1 - aA) < Ap%(x,y\ß) it follows that locally n"Afx\y -+ px\y in
the weak topology, for (An)n=ii... being any monotonie sequence of convex bounded
regions whose boundaries are C3-surfaces with mean curvatures uniformly bounded. Taking
into account this observation we support conventional wisdom that only in the strongly
correlated state of the system the boundary condition could influence the thermodynamic
limit. The results presented below support this picture.
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Finally it seems worthwhile to point out that there are many mathematical papers
[25-28] in which great portion of a more detailed information concerning the conditioned
Wiener measure is still to be encoded.

2.2 Interactions
Two classes of interactions will be considered in this paper.
(SSR) superstable and strongly regular interactions defined by V € SSR iff

(SS)

3a>o :U(xn)= £ V(xi-xj) > £ (An"(r,xn)-Bn(r,xn)) (2-8)
l<i<j<n reZd

/P-I^^T1 - P>2 Hd>3, (2_9)\ p 2 if d < 3,

where n(r, xn) denotes the number of particles belonging to the configuration xn

(xi,..., xn) that are located in the unit cubes Or ix e Rd\ r — § < z; < r + ^j, z € TA;

and
(SR) there exists a positive decreasing monotonously function $ on (0, oo) such that
$(x) ~ xAd+c) for some e > 2 as x \ oo and moreover

\£{xn\ym)\ <\ E *(\r-s\)
r,s€Z" (2 _ 10)

.(n2(r,xn) + n2(s,ymj)

where
n m

£(*n|ym) ££n^-2/fa
i=l i=l

The second class is

RR - purely repulsive, strongly regular interactions defined by: V € RR iff

(R)i V is nonnegative measurable function on Rd and

(R)2 f V(x)dx < oo.

We impose also that for both of these cases there exists a closed set F C Rd of
(Newton) capacity 0 such that V is continous outside F.

We can hardly quote a reference in which (but see Reed & Simon [44]) complete
treatment of the self-adjointness preserving perturbation theory for the operators — AA
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is given. Several partial results can be obtained suitably by adopted standard technique
(presented originally for the operator —A^ only). For the following analysis we need to
impose also that the interactions V leads to the self-adjointness preserving perturbation
of — Aa for any classical boundary condition a. Then we have

Lemma 2-4 Feynman-Kac formula) [30]
Let V belongs to SSR U RR and such that —AA + V is self-adjoint in L2(A) for any
classical b.c. (a, A). Then the following formula holds

ß

(exp - ß(A"A + V))(x, y) J p"A%(dw) -exp- j dtV(u(t)). (2 - 12)

«0(A) 0

Notations and Abbreviations

A | Rd means always that we have a countable generated filter (Aa)a of convex bounded
regions that tends to Rd and such that for any a the boundary dAa is of class C3

and moreover the mean curvatures of the family (dAa)a are uniformly bounded (in
a).

wn (Wl,...,Wn)efì0(-)®n.
xn (xx,...,xn)€Rdn

fa1-1 (w2,...,w„)
etc.

W) tf(«")= E / dtV(wt(t)-uj(t)), (2-13)
!<•'<><" 0

n m P.

Uß(u"\um) U(u«\üm) E E / dtV(u%(t)-w3(t)). (2-14)
•=i i=io

2.3 Reduced density matrices and the Kirkwood-Salsburg equa¬
tions

The reduced, m particles, «7-conditioned density matrices p"m A are given by

P°m,K{*m\ym)= j dp^xmiym(^)pl(^m) (2-15)
n^(A)«'»

where

Pl("m) VIT1 ¦ E -^r J dlu™exp(-Uß(u»)-Uß(um)-U0(un\um))

(2-16)
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z expßp is the chemical activity) and

d°ACbm (g) I J dxiii"£.\x.(dû>;) j in the weak (2-17)

Here

zl E -x I d>n™v - ^K) (2 - is)
tlß(A)8»

is the «r-conditioned, grand canonical ensemble partition function in the finite volume A.
Let B0 be the space of all sequences </> (<j>n(wn)) of (dx ® Px\x)®n measurable

functionals <j>n defined on fi«®". Below we define the following linear operators in the space

where

(n(A)ftK) nn(A)(w,-)^„(«B),

n(A)(«)
1 if for any t £ [0, ß] : u(t) € A

y 0 otherwise

K (the Kirkwood-Salsburg operator):

(Ä»BK) =exp{-«71K)}-

S m! y d^w"1 Jb(w1|wm)^(w"l-1,wm), for n > 1,

n 8»

and

where

(Üty)i(wi) £ ^ / </«,«"*(«!|w")^,(â;")), forn l,
n>! 'r, ®n

"ß

"

i#> 0

*hû») n
-jf(i(V(u.(i)-ii,(t))

e « - 1

(2 - 19)

(2 - 20a)

(2 - 206)

(2-21)

(2 - 22)

(2 - 23)
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KA - the finite volume «j-conditioned Kirkwood-Salsburg operator:

exp{-Ul(un)}-

(ffjtf)»K) {
• E ~T J dl^k^lü"1)^'"-1 ,üm), for n > 1; (2 - 24a)
m^°m'n<,(A)®'»

Y, —, J <rKùnk(ui\Cbn)4>(ùn), forn l. (2-246)
o/i(a)®"'

KA - the finite volume, Dirichlet conditioned Kirkwood-Salsburg operator:

aK(un)exp{-U\^)\

Y,—, j d?«-,*(Wl|ûm)^(«*-1,û'»)
(#f*)„K) ^(a)®™

for n > 1, (2-25a)

«aME^T / d%Umk(Ul\wm)<i>(üm), forn l, (2-256)
r. ml J

">>1 n.rr.\am«„(A)®"

where now
d%u J dxaA(u)p0xlx(du (2 - 26)

J - the index juggling operator of Ruelle :

m
From the stability assumption it follows that fif™ U Ef j where £™ {u>m €

j=i
fi,j®m \Uj(um) > -2ßB). Let then rjj denotes the characteristic function of EJ1 and let

/ m

0J1 rjj J E'/i- lje*' ^* he the operator defined on functionals of m-trajectories f(u>m)
I /=i

as the cyclic permutation of fc steps on the arguments of these functionals. Then the
index juggling operator J is defined as:

m

(J4>)(um) Y.Si[®r-(um)4>{"m)] (2-27)
j=i

If all components of <f> are symmetric then the operator J reduces to the identity.
From the above definitions we have the following relations, cf. (2-19), (2-25),

a-ad n(A)/m(A),

Kl K° + 6K°A

(2 - 28)

(2-29)
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where the operator 6KA is defined as (on the symmetric functionals)

raWK) =eIp{-C/1K)}ElÊfj / W

¦ J «z00^n-'A;(a;1p'')n(ÔA)(«I>')n(A)(«n-') (2-30)
<"-')

(«,m-1,wB),

(2-31)

for m > 1, and

(6K'A4>)(»i) =E^E(") / dp'A(Ql) J d^-'
n>l • (=1 \ / ß/j(A)8, n »(„-,)

•iHw1|wn)n(M)(wOn(A)(wn-')

here we have introduced the operator II(ÖA) by

n(9A)(tf)(ü,") n n(ÔA)(uj)^(w»), (2 - 32)
i=i

where
f 1 ii3te[0,ß]:u>(t)€dA

n(ÔA)(W)
0 otherwise.

The following decomposition has been also introduced in (2-30): u>n (u\w""k) for
k — l,...,n.

If we now proceed with well-known arguments (see [2]) the following identities between
the correlation functionals can be obtained;

p"A zU(\)J7^n(AK + zAk
(2-34)

[zIl(\)JK°Il(\) + zII(A)JSKZIi(A)] Pa + zAk,

where

^A n(A)a with a (1,0,...,...). (2-35)
We call these identities the Kirkwood-Salsburg equations for the finite volume.

They have to be compared with the following ones

p zJKp + za (2- 36)
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that we call the infinite volume Kirkwood-Salsburg equations. In the next section we

provide a rigorous comparison analysis of (2-34) and (2-36).
The generic Kirkwood-Salsburg operator K can be decomposed in the following useful

for us way (see [13,43]):
K expS1 ok (2 - 37)

where the operator k is defined by

°° 1 r£ — J d^k^^w,^),+
(2 - 38a)

o ®""ß

for n > 1,

(^)(Wl)=£ iy J </00ûmfc(Wl|wmMÛ;n,), (2-386)
n *"

for n 1.

The operator expS1 is given by

i<t>(u>i),
for n 1

(2 - 39)
(exp - Ux(u)n))4>(wn), for n > 1.

3 Analysis of the Kirkwood-Salsburg equations.
Here the method of the dual pair of the Banach spaces proposed in [13] will be

improved and applied to the analysis of the Kirkwood-Salsburg equations for the Maxwell-
Boltzmann statistics. The Kirkwood-Salsburg identities with the Dirichlet boundary
condition cr D has been analyzed previously by Ginibre [2]. The work of Ginibre [2,3] is

entirely based on the contraction map principle. Our method reproduces his results as

simple corollaries.
Let B( be the Banach space defined as in [2], i.e.,Bç consists of sequence of essentially

bounded (with respect to the measure fdxpx,x functionals <j>m of m trajectories wm

equipped with the norm

IMk suPrme5s sup ^m(u/")|, (3-1)

where £ > 0 will be chosen later. The space B^ (*B{)* is the dual to the Banach

space *Bç which is defined as follows. It consists of sequences of LX(J dxpx,x) -integrable
functionals equipped with the norm

*ii*ll{ Er / «"Viv-mK1)!. (3-2)
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From the definition of B( and pA we get

1 oo |r|m+s
K(«m)l < ~ ¦ EZI %> »!

[exp(m + s)ß ¦ B}[ j d°Aw

(3-3)

L [|^fl]m«p(^.M-C-|A|)

uniformly in cr. Here the monotonicity of the kernels pA (2-2) have been used. The best

possible value for the constant C is given by

C-\h\ jdu j dpNAMu(<L>)

a n^(A)

(3-4)

as it follows from the mean value theorem.

Similarly one can show that ZA is an entire analytic function of order at most 1) of
z and is uniformly in a bounded:

\Zl\<exp{zepBC-\A\) (3-5)

It follows from estimate (3-3) that pA £ B^ for any £ such that |z| • expßB < £ with the
norm

IIPaII« < l^r1 «tp (|*|e^-B - |A| • C) (3-6)
Now we show that the operators JK, J (as defined in §2c) are bounded operators in

the space Bc.
From the stability of V and definitions (2-24) and (2-27) we get

|(JA^)„>m)l ZMheW-r-1
oo pn

xE^ICaW,
n>0

(3-7)
nl

where

CKß) sup Jdx j dfif^idw) exp -jv(w(t)-û>(t))
a n„(A)

<ße20B.\\V\\ySup\p"A(x,x\ß)\

</3e2'3-B.||^|1sup|p^(x,x|/9)|.
A,x ' '
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The quantity
sup supp%(x,x\ß) ee C(ß) < co. (3 - 9)

A

Therefore, we have

\JK'A\U < C1exp(2ßB + i ¦ ße2ßB ¦ \\V\\xC(ß)) (3 - 10)

uniformly in the boundary data a and the constant C(ß) may be chosen to be equal to
(*.ßy/>.

We shall concentrate on the Dirichlet-conditioned Kirkwood-Salsburg equations (2-34)
which will be compared to the infinite volume one (2-36). The following theorem generalizes

some of Ginibre's results [2].

Theorem 3-1
Let us denote the spectrum of the operator JK in the space Bç as a^(JK). There

exists £ > 0 such that for any z_1 ^ a^(JK) there exists a unique solution p<x, of (2-36)
and moreover pA tends to /><» component-wise and locally uniformly as A \ Rd.

Comparing with Ginibre's results included in [2] the novelty of Theorem 3-1 is in the
absence of an a priori restriction to the small values of the chemical activity z, cf. [13].
The proof of Theorem 3-1 is based on the following sequence of lemmas.

Lemma 3-2.
There exist bounded linear operator "J, *K in the space *B^ the duals of which are

equal to J, resp. K i.e. (*J)" J, resp. ("K)m K in the dual pair (*B^,B().

Lemma 3-3.
Let *n(A) denotes the corresponding predual of the operator n(A). Then the strong

convergence in *Bç
*n(A) "K*J *n(A) -? *K*J (3-11)

takes place as A f Rd.

Lemma 3-4.
Let V 6 SSR U RR. There exists a number <f > 0 such that, uniformly in a, the net

(PAa)ot C Bi (where all Aa are as in Lemma 2-3) is pre-compact in the weak-* topology
of the space B^.

Note, that for V g RR we immediately get the estimate sup\pAa(u>n)\ < \z\n, uniformly
in cr and a, to our disposal. As a consequence one gets IJ/'AalU < 1 providing |z| <
Then application of the Banach-Alaoglu theorem gives the proof of Lemma 3-4. For a

general V G SSR the proof is more complicated [24], cf. [13] and [12,45].
Before formulating the next lemma we need some preparations. It is well-known that

the iteration of the Kirkwood-Salsburg equations leads to the Mayer-Montroll equations
[31]. Therefore, if p"A (resp. poA) fulfills (2-34) (resp. (2-36)) it fulfills also the following
identities

p"A U(A)M(z)ElH(A)pl + A"A(z) (3-12)
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and

Poe M(z)poo + za.

Here the Mayer-Montroll operator M(z) is defined by the formulae

(M(z)<j>)m(um) zmexp - Uß(um)

SißlR*)®"

where the Mayer-Montroll kernels are given by

+ EA / ^û"M(wm|w"WB.H»(wm,ûB)
„'s... Tl. J

M(u>n\ûm) n
3=1

andA (n(A)Z,0r..,0,...).
The operator M(z)z.A is defined by

/ " \n -fdtV(Mt)-MA*))
Ue ° -1
1=1

\

(M(z)E°A)(<t>)m(u>m) zmexp - Uß(u,m)

i + E"! / dlünM(wm\ün)4>n+m(um\un)
«„(A)®»

(3 - 13)

(3-14)

(3-15)

(3-16)

Standard application [3] of the Mayer-Montroll equations gives.

Lemma 3-5.
Let assume that pA —> p^, as A î Rd, in the weak-* topology of the space B^. Then

/>a ~* P°° component-wise and locally uniformly.
Having postponed proofs of the listed sequence of lemmas we outline the proof of

Theorem 3-1.

Proof of Theorem 3-1.
Let (Aa)a be an arbitrary net as described above. Then from Lemma 3-4 it follows

that the set of accumulation points of (/>£»)« is non-empty. Let />£, be any of them. It
follows from Lemma 3-3 that p£ fulfills the equality (2-36). By the assumption about z

it follows that equation (2-36) has a unique solution poo- Therefore, it must be p^, poo-

Additionally from the very definition of p^, it follows that pAa —* poo in the weak-*
topology on B%. Application of Lemma 3-5 concludes the proof.

Now, we show the validity of those lemmas. The proof of Lemma 3-4 for the case
V € SSSR as the most technical, lenghtly and complicated will be presented in [24]. It
is based on the adaptation of the probability estimates of Ruelle [31, 32] (see also [33])
with the fluctuation estimates of Park [12]. For d < 3 and a D the proof of the Lemma
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3-4 is contained in [45].

Proof of Lemma 3-2.
The explicite calculation done in [13] gives the following expression for the predual

operator *k in *Bç:

m 1 r r
(*W)m(u™) £ - J dX J d^|r(û)*(W'|ûWl+m-l(* V K ')) (3-17)

Rd «B

which is bounded by

C^)m(W'»)i|L. < E Ïïc'(^)||^m+1_,||L1,
:=o

C(ß) sup J diu expl-] V(u(t) - «&(*)) - 1

Therefore,
T*ll< < e*PtC(ß). (3 - 18).

The existence, boundedness and the explicite form of *J follows from the definition of J
and the dualisation in (*B^, B{). The chain rule for pre-dualisation, cf. [13], and formula
(2-27) proves the existence of *J"K S L(*Bç) providing V is stable and integrable.

Proof of Lemma 3-3.
It is application of 2 — e argument. The finite-length sequences forms a dense subset in

*B( and moreover for any n we have L^fijf", <i£,wn) lim Li(Qfn(A), dßAwn) as it follows

from Lemma 2-2 and Lemma 2-3. Therefore, for any tp E *B(_ and any e > 0 there exists
a bounded A£ C Rd such that *||V> — n(A£)^||{ < e. Then we get the result by estimate,
cf. [13],

*\\(('JKa<)- *(JKoo))ni

*||(n(A£) (*k expS1 V)n(Ae)- *k exp E1 * J)tp\\i

< \\k\\t Kexp,?1 V)n(A«) - expf1 V)0||t + ||(1 - n(Ac)) *k expS1 *J^\\i

< 2PIU HJexp^lk -||(1 - n(A£)^|U

because by definitions of *|| ||^ and the operator n(A) we have: n(A) —> 1 strongly.

(3-19)

Proof of Lemma 3-5.
For each fixed wn € fi^ ®" the map

[k\ M(ujn\ùk) (3 - 20)



Vol. 64, 1991 Gielerak and Zagrebnov 1239

takes values in the space *B^. It is consequence of the previous estimates. From

iiM(W"i^)i<e2^nn
.=ii=i j dtV(u>,(t) - û>j(t) (3-21)

it follows

Therefore,

J diû,kM(u,*\û,k)

<e^Bßnk\\V\\Ll-p(Q\ß)k.

•|i/*!M(w»|ö*)|4

<e2"B"exp(^||I/|Uip(0|^)-O-

(3 - 22)

(3 - 23)

uniformly in wn € fi^®".
Straithforward comparison of the both sides of Mayer-Montroll equations (3-12) and

(3-13) gives the final argument.
We proceed to the general case of an arbitrary classical boundary condition. The

result is formulated as follows.

Theorem 3-6.
Let cr be an arbitrary classical boundary condition and we take £ > max{\z\expßB,£}

where <f is given by Lemma 3-4. Then, for any value of z-1 which do not belongs to the
spectrum (in the space Bc of the operator JK we have pA —* poo as A | Rd where the

convergence is component-wise and locally uniform.
The new additional arguments necessary to supply the proof in the spirit of the proof

of Theorem 3-1 are listed now.

Lemma 3-7.
Let A | Rd. Then for any classical boundary condition a and any £ > 0

lim \\JSKl\L 0 (3 - 24)

Lemma 3-8.
For any £ > 0 and any classical boundary condition the operators JSKA are weakly

continuous on the space B(.

Proof of Theorem 3-6.
According to Bourbaki [34] the weak continuity of 6KA on Bç, given by Lemma 3-8,

is a sufficient condition to assure the existence of the pre-dual bounded operator *(SKA)
G L("B^). Then by Lemma 3-7 it follows that *(SKA) —> 0 in the uniform topology and,
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thus, strongly on *B( as A f Rd. The remaining arguments for supplying the complete
proof can be given as before.

Proof of Lemma 3-7.
From the stability assumption it follows that

\expl-JdtV(w(t)-ü>(t))\-l\

<e2B-/3 f\V(u(t)-û(t))\dt.
0

Using the shift transformation, together with Fubini theorem, we get

/ <rAwU(dA)K(ù)\û)

MA)
w

<
<W)

<ße2VB -\\V\U- j dp°AMQ(ù)Tl(d\)(û:)

<Oß(l)Apl(0,0\ß).

Therefore,

\(J6Kl)(4,)m(^)\ <Uh-C-l-e2PB

where

Thus

xYr^t(l)Oß(l)k -TTa- ßn~k ¦ e2ßBk
n>0 n- fc=l W

*\m\rk -a < uk • r-v"-B.p^x^i),

V°A Apl(0,0\ß).

\\JSKl\\,< 0'>(1).V>A

Application of Lemma 2-2 gives lim T)°A 0 uniformly in the boundary data.

Proof of Lemma 3-8.

(3 - 25)

supe2"5 J daA^U(dA)(u) J \V(w(t) -ü(t))\dt (3-26)

(3-27)

(3 - 28)

(3 - 29)
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Let M„ be the space of all countable additive set functions on fi^8"1 which have

bounded variation and vanish on the zero sets of the measure / dxpx,x)®n. Then the

space (B(M.„ J3| equipped with the norm

\\p\\l j:CVar(pn) (3-30)
n<0

is the dual space of the space B^ (see [35]). Let <j>N be an arbitrary sequence in Bç

converging weakly to <$>. We have to show that for any p € ß*, p(6KA(<f>N)) converges to
p(6K°A(<j>)).

To this end, let A4„ be the space of all countable additive set functions on fif" which

have bounded variation. Then the space ffifA4„ J3| is the Banach space in the norm
ll^ll^ — Z) tnVar(pn) and moreover £?£ is the closed subspace of B%. For a given p (pn)

n<0
let us define

(Ql(p)Um(û,n,wm) pn(dun) (-LtfMu."1)

x«p{-l/V)}(E(™)n*(»A)) (3-31)

xTlm-k(A) (jdxp°AiX]x(dum)\

From the stability assumption it follows that QA(p) € B£ for any p € B£ and, moreover,
we have the following estimate

IIÖaMIIä. < IHI«; ¦ expie20BOA(ß), (3 - 32)

where now
0A(ß) Apî(0,0|/9)(1 + 0,(1)). (3 - 33)

Finite length sequences form a dense subset in B£. Taking /i £ B£* of the form p
(<5nm • Pn) and noting that

\p((J6°AK)(<t>)" - (JSK°A)(t))\

\Ql(Pn)(4>N) - &l(pn)W\ - o,

as N t co, we finish the proof.

4 Existence and properties of the KMS states
Let L2(A) be the building space for the associated Fock space T(A) describing states
of the system in a bounded region A C Rd. The total hamiltonian HA © HA°

n>0
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given in terms of n-particle hamiltonians HA" — \ Ë Af +U(xn) defines then a local
i=i

dynamics on the local C* algebra 11(A). For defining 71(A) let a(f) and a+(f) be the
annihilation and respectively creation operators defined on .F(A). Then operator $(/)
77Ö (a(/) + a+(/)) f°r real / ha-s a self-adjoint extension which is $(/). The Weyl operators

W(f) expi$(f), f G L2(A) then generate C*-algebra and let TC (J TC(A) be the
Acfid

corresponding quasi-local algebra of observables. The finite volume Gibbs state uja is

given by
<4(") (Zi)'1 TrHA)(-)e-^~"N, (4 - 1)

Zl=TrT{K)e-ßH^"NA (4-2)
where NA is the particles number operator.

The finite-volume Gibbs state u>A on the local algebra 71(A) is fully determined by the

corresponding finite-volume ^-conditioned Green functions GA:

Gl(A0, Al,...,An;t1,...,tn)= uKAoctfiAi) -.. aff(An)), (4 - 3)

where A0, Ai, ¦.., An G TC(A) and the local dynamics is given by

aA"(A) exp[it(Hi - pNA)]Aexp[-it(Hi - pNA)\. (4 - 4)

Using the arguments and the methods of refs. [4-6] and the result of the Theorem
3.6 one gets the existence and the independence of the classical boundary condition a
of the limiting Green functions Goo limGA- The limiting Green functions determine

A\Rd
the infinite-volume state u^ on the quasilocal algebra TL. Using the GNS construction
we define finally the physical Hilbert space Woo, the limiting unitary dynamics Ut acting
on 7ioo and the cyclic vector fioo S Woo which defines a vector state ò>oo that appears to
be KMS state with respect of the dynamics ât implemented by Ut as a group of autor-
morphisms of (^^(TC))". (For an instructive discussion of the problem of the existence
of the infinite-volume dynamics (in the weak sense) on the quasilocal algebra 7£ see [46]
and references therein).

Let us denote by Ac(z,ß) the set of all possible limiting KMS states that can be

obtained from {ü;a}a, as o varies over all possible classical boundary conditions and
A 1 Rd, via construction outlined above. The set of all limiting KMS states describing
the systems under consideration will be denoted by A(z,ß). The results obtained in this

paper can be summarized as the following statement
Theorem 4-1.
Consider the interacting particles for which V G SSR\JRR. There exists £ > 0 such

that #Ac(z,ß) 1 for any value of z exp(-ßp) such that z_1 ^ cr^(JK). Moreover
this unique KMS state, denoted as uJoo(z) is (weakly) analytic in z, entire analytic and

locally normal state over the algebra TZ.
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5 Concluding remarks.
To apply effectively the results obtained in the previous sections the spectral analysis
of the (Ruelle)-Kirkwood-Salsburg operator is necessary. In the classical statistical
mechanics some spectral properties of the operator H(A)JKH(A) are known [36, 37]. It is
rather straightforward to extend the arguments of those papers to the case with Maxwell-
Boltzmann statistics. However, the actual problems are: the extension of these results
to the case of particles obeying Bose-Einstein or Fermi-Dirac statistics and the control of
the flow of the finite volume spectral set as we pass to the thermodynamic limit. These

problems are now under consideration [38].
The next intriguing question concerns the uniqueness of the corresponding infinite

volume KMS state i.e. the question whether Ac(z,ß) A(z,ß). In the classical statistical
mechanics a constructive description of the set of all equilibrium states is given by the
celebrated DLR equation [39, 40]. From the general theory [39, 40] then follows that
any solution of the corresponding DLR equation can be obtained manipulating suitably
(allowed) boundary conditions. This fact enables us to prove certain uniqueness theorems
known as Dobrushin uniqueness theorems. Only for a class of lattice systems similar
constructive description of the limiting KMS states has been given [41, 42]. Uniqueness
of the KMS states is known sometimes for the lattice systems [1] but the corresponding
proofs are based entirely on the intrinsic operator algebras methods.
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