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Abstract

Due to recent results in solid state physics the theory of quasi-crystals has experienced new impetus.
First, in the absence of strict mathematical results for the spectrum of the discrete Schrôdinger
operator, computers were applied to plot it using a recursion formula. An error analysis is presented
for this equation, which may be very unstable numerically, to estimate a sound bound for the
number of iteration steps given the resolution of the graphical device. Further, a technique is

introduced to calculate all periodic points of low orders (< 6) to present some examples and
counterexamples. Cycles of lenght 12 and 24 are given.

Keywords: quasiperiodic potentials, quasi-crystals, Fibonacci number, Fibonacci string, error
analysis for the discrete Schrôdinger equation, discrete Schrôdinger operator.

Introduction
During the last two decades, the theory of quasiperiodic potentials has attracted renewed
attention. The investigation of the characteristic properties of materials in solid state physics
has increased the interest in this subject. It has been discussed partly in terms of the theory
of dynamical systems and partly using the notion of chaotic sets. For a comprehensive
treatment of this field and an extensive bibliography see [1].

A widely used approach consists in the application of the discrete Schrôdinger equation
to describe the potential between two adjacent points of a one dimensional lattice using a

Fibonacci sequence

0n+1 + Vv-l + Vnr/>n Erpn, nGN, n > 1, (1)

where E denotes the energy and the potential Vn assumes its values from a set consisting of
two elements only according to the construction scheme of the infinite Fibonacci string. (1)
is equivalent to the matrix equation

Ä.+! M(n)jn. (2)
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There is a close relationship between the representation of an irrational number as a continued
fraction and the potential of a quasi-crystal which is introduced in the sophisticated proofs of
[2]. In a sense which becomes clear in the cited paper, the golden mean, the limit value of the
quotients of two consecutive Fibonacci numbers, determines a very simple quasi-crystal. It is

this special structure which is widely discussed in the literature on quasi-crystals ([3],[4],[5],
ect.). However, nearly all the assertions proved in the special case hold in the general case

as well. The proofs draw heavily upon number theoretical arguments.

Up to now, a representation of the spectrum of the discrete Schrôdinger operator has not
been given in a closed analytical form. There are, however, many attempts to represent the
spectrum graphically using a recursion formula for the trace of the matrices Mi, which are
defined using the matrices M(n). In this paper an error analysis for this equation will be
done. It is applied to estimate the maximal number of iterations after which the calculation
should be stopped. This should be done when the discretisation error due to the machine
arithmetic is large enough so that the stopping criterion can no longer be applied sensibly.

This paper further suggests a method to calculate all periods of lengths < 6, which is used to
plot an example. It shows the spectrum in the neighbourhood of a periodic point. It further
provides an example where the modulus of a number in the iteration process is greater than
one, and where the iteration sequence does not diverge to infinity.

Definitions and Notations
The aim of this section is to introduce the definitions and notations used in the subject.
In the literature, Fibonacci strings and sequences are the main tools used to define
quasicrystals and to describe their properties. The present paper joins this tradition: Fibonacci

sequences and strings are used to define a quasiperiodic potential.

Definition 1 Setting S0 B and Sx A, one defines 5,+i 5;S,-_i, i > 1,

i G N. The string 5,- is called the i-th Fibonacci string.

Let jP; denote the length of the string 5,. It is immediately clear from the definition that
F0 Fx Ì and F,+1 F; + Fi-X The numbers Fi are called Fibonacci numbers
and the sequence (-FfaeNn is called the Fibonacci sequence. For i > 2, the string S,-

contains F{_x occurrences of the letter B and F;_2 occurences of the letter A. One

can show that " lm -ïr1 exists using induction. This number is called the golden mean.
i — oo ri ^

It is the smaller root of the quadratic equation a2 + a 1. In the following the notion of
quasiperiodicity is introduced following the lines of [5]. For the purpose of this paper the

one dimensional case is sufficient.

Definition 2 A sequence (&n)neN0 *s called quasiperiodic if bn nuj mod 1,

with u) G R\Q.
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Now the relationship between Fibonacci strings and quasiperiodic sequences is explained.
The most commonly used irrational number in this context is u a where cr again
denotes the golden mean.

Definition3 With I := (—a, a2} one defines

ff:I—»'{-1,1}, x^
1 : for —w < x < —lj3
1 : for —lj3 < x < u2.

The extension of g from I to R is

V:R—»{-1,1}, x*-*g(x-k),
where k G No is chosen such that x — k G I.

Definition 4 Setting bn no for n G No, one defines the sequence (an)neN0 by

an V(bn). With So ao —1, Sx ax 1, Si — (afj_j,...,ao) the string 5,- is the
i-th Fibonacci string.

The assertion is proven by induction using the construction of the Fibonaccistring
f>i+i — SiSi-i o,_j5,-_20i_i.

The one-dimensional quasiperiodic lattice is investigated using a tight-binding model. The
potential incorporates the quasiperiodic assumption. It is described by the Hamilton operator

H acting on l2(Z).

H Y,(Vn\n><n\) + £(|nxn + 1| + |n + 1 ><n|) (3)

The first summand represents the local energy, the second one the transition between two
adjacent vertices in the lattice.

Stressing the Hilbert space aspect, the discrete Schrôdinger operator may be represented by
an infinite tridiagonal symmetric matrix

fVo-E 1

1 Vx-E 1

1 Vn - E 1

\

•• /
where Vn denotes the Fibonacci potential, and E the energy.
Stressing the dynamical system aspect of the discrete Schrôdinger operator, the difference

equation tpn denotes the amplitude of the probability)

0n+l + V"n-1 + Vnipn Elpn, n G N, n > 1 (4)
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is written as an iterated matrix equation

ipn+x M(n)ipn, (5)

with

«m=(v--0'). - M fa
Setting Mi := M (Ft) ¦ ¦ ¦ M (0) one defines the /-th Fibonacci matrix. Substituting the
matrices M(0) and M(l) for the letters A and B in the definition of the Fibonacci string
Si, Mi may be interpreted as the /-th Fibonacci string. The following lemma holds for the
traces of the Fibonacci matrices.

Lemma 1 With xi 1/2 Tr Mi the equation xi+x 2z/X(_i — xi-2 holds for I > 2,

with xo I, xi 1/2 a, and x2 1/2 6.

Proof: The matrix Ali satisfies its own characteristic equation

Mf - 2xiMi + ld 0.

As detMi 1, this implies

Mi -(Mi - 2xild)~l 2x,Id - Mr1,

Ml+X M,_XM, 2x,M,_1 - M,_iM,_1 2x,M,_1 - M,z\.
One obtains the assertion by taking traces on both sides.

For the general case of quasiperiodicity the proof may be found in [2]. The spectrum of the
quasiperiodic Hamilton operator is often represented graphically. It consists of those values
of E for which the sequence (x/)/gNn is bounded. The next lemma introduces a criterion for
when to stop the numerical iteration process. It is easily proven by induction on k.

Lemma 2 Let /u denote the unique minimal I, for which \xi\ > |£/_i| > \xi-2\ > 1

holds. The sequence (\xi0+k\)keN grows exponentially.

Error analysis for the recursion formula
X[+i 2xixi-i - Xi_2

Two types of errors must be distinguished in the following analysis. The first one is due to
the fact that the computer uses floating-point arithmetic with a finite precision. The relative
error is denoted by e. To represent the spectrum on a graphical device, which usually has a
limited resolution only, a maximum of 300 dots per inch on the plotter table is commenly
used. This second type of error is not fixed but depends on the scaling. It is denoted by ti.
tj. is usually large in comparison with t.



Vol. 64, 1991 Hollmann and Gleissner 1251

Theorem 1 The relative error of x/+1 is denoted by £/+1.

«i+i
lXlXl_x

xi + l (ti + £,_! + 3e) +
X,_2

Xl+l
(.1-2 + t.

Proof: We begin with the first term. Following the notation of [6] and [7], the symbol t
overlined or with subscript denotes the relative error of the term immediately to the left of
it. For the relative error £2/ of 2x;Xj_j one calculates:

2x,x,_1 (1 + êM) { 2(1 + ea) [x,(l + e,)x,_1(l + £/-i)] (1 + ?/) } (1 + ê,)

« 2xjX;_1 (1 + t2 + tt + £(_! + £; + tl).

With t2 « ei « ti ss t this implies t2i ti + £/-i + 3e.

We now examine the whole expression:

xi+i (1 + ti+x) (2x(X,_i (1 + t2i) - x,_2 (1 + e/-2)) (1 + hi)

(2X(X(_! -x,_2)(l +
2x;X;_i

Xl+l
(e, + e/_i + 3e) +

X/_2

Xl+l
£,_2 +1). a

Corollary 1 Defining for a cycle of length d

2xi+kXt+k-i
m := max

Kk<d Xl+l+k

Xl+k-2

Xl+k+l

the estimate reads

ti+l « m(e, + £;_! + £;_2).

Note that £ is small in comparison with £j after a few iterations. This estimate is used to
calculate the number of iteration steps after which the numerical process should be stopped,
i.e. when the criterion of Lemma 2 can no longer tested sensibly because of the accumulated
rounding errors. This occurs when

£/-2 \xi-2\ > 1 V £;_2 |x;_2| > ||ar/_2| - |x/_i|| V £|_i |x/_2| > ||x(_2| - |x;-i||

V £(_! |x,_l| > \\xi\ - \xi^\\ V £( |X,| > ||X/| - \x,-l\\.

Considering the period (1, 1/3, 1, -1/3, -1, -1/3) of length 6, one obtains m 3, and the
iteration should be stopped after 26 steps. Using the individual propagation error for each

step, this estimate can be improved to some 48 iterations. In this analysis double precision
arithmetic of 14 digits accuracy was assumed.
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A useful tool to produce examples and counterexamples is possibly to employ cycles of low
orders. Lucky guesses provided three cycles of order 12:
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We now show how to calculate a cycle of length 5 efficiently. Defining

T : R3 —> R3, T

the conditions are
(i) X2 X-j XqXs — X4 XiXn — X4

(u) xj x6 X5X4 - x3 x0x4 - x3
(ZZZJ Xo —- X5 — X4X3 — x2.

Eliminating X3 and x4, one finds

x2
(iv) 1x\xx — X2 — 3xj 0 => X! ¦

4x2 — 3

(v) 8x|x! — 4x2 — 3xj — 2x2X! + 1 0.

As x2 ±V3/2 is not a solution, one obtains, substituting (iv) into (v)

(vi) -8x1 + xl + 9x2 - 3 0.

As x2 1 is a fixed point, one may divide (vi) by x2 — 1:

3
4x^ + 3x2 -

/hich has the solutions

4 f (JJ - 1) « 0.34, and xj J(Jy + l)«-0.61,
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4 ^y - 3) «-0.14, and x^ -\(\jy + 3) « -1.09.

This shows that the sequence (xj);6n does not diverge exponentially if one xj has a modulus

greater than one. In the literature this was used as a criterion for (s/)/gN0 to diverge
exponentially. Instead of this Lemma 2 should be used.

The same example shows that it may happen that the machine arithmetic yields a perfectly
periodic cycle of length 5. This holds true for a Tandon AT Computer with a numeric

coprocessor using Turbo Pascal and double precision real numbers, whereas with single and
extended reals the cycle does not show because of rounding errors.

It is still an open question whether there exist sequences (z/);eN0 which are bounded,
but where traces of the general transfer matrices M^n\ with n G No (where M^
M(n)...M(0)), are unbounded. Note that x, 1/2 Tr Mi 1/2 Tr MF'.

Using the results derived above, a plot (fig.l) was prepared on a NEC P6 printer showing
the values (xi,x2) for which the sequence (z;)'eNn possibly does not diverge as black dots.
For the reasons mentioned above it does not make sense to use more than some 48 (fig.l)
iterations. However, to show more than some specks of dust, the iteration process was

stopped after 20 steps in fig.2, after 25 steps in fig.3, and after 30 steps in fig.4 Fig.2
is a part of fig.l near the periodic point (-0.61, -1.09) just calculated, as seen through a

magnifying glass. It shows a square of length 0.2 on both axes around the periodic point.
The following fig.3 and fig.4 each are a magnification by a factor of ten in the vicinity of
the center of the preceding one.

The above mentioned cycle of length 6 provides an example where (1/2 Tr Mi) with / G No,
is bounded, but where (1/2 Tr MF'-A with / G No, seems to be unbounded, as the rapidly
increasing values suggest. The comparison between the theoretically (using Lemma 1)
and the numerically (using (5)) calculated values shows that the result is not impaired by
rounding errors.

It is not known whether the black dots in the neighbourhood of the periodic point correspond
to periodic points of sufficiently high order, or to quasiperiodic (i.e. not diverging) points, or
to points which do not diverge after until 30 iterations. A computer with an arbitrary but
finite arithmetic is fundamentally inadequate for solving this problem. It is, however, a good
tool to obtain sophisticated guesses and hints, which are worthwhile trying an analytical
proof.

Summary
This paper is a short and concise introduction to the theory of quasi-crystals using the
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notation of Fibonacci theory. Stressing the numerical aspects, it gives an error analysis of
the basic recursion formula of the theory for the traces of the Fibonacci matrices. Thus it
shows on one side the fundamental limitations in the use on computers in this area, and
on the other side their unsurpassed help to obtain intelligent guesses and to prove or refute
them.
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The following plots show the energy levels (a, b, for which the sequence (xi);€n0 possibly
does not diverge as black dots. The sets are calculated in the same manner as Mandelbrot
sets.

¦fig.l: 48 iteration steps for the recursion
formula 2;+i 2xjX/_! — x;_2- As the initial
values of the iteration process, one takes the

energy levels a and b in the interval [-2.6, 2.6]
respectively.

s&^.Wfe.

®ü
& && %>&J%

«o£»»̂̂WI s:

fig.2: Part of fig.l near the periodic point
(-0.61,-1.09) showing a square of length 0.2

on both axes. One derived the number of
iteration steps previously to be 20.
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fig.3: Magnification by a factor of ten in the
vicinity of the center of fig.2. Number of
iteration steps: 25.

a."
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fig.4 Magnification by a factor of ten in the

vicinity of the center of fig.3. Number of
iteration steps: 30.
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