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Abstract :

We give a proof of the semi-classical expansion of the thermodynamic limit
which works also for the double well case. This permits also the study of the

splitting between the two first eigenvalues and a partial proof of a conjecture of

M.Kac and C.J.Thompson [Ka-Th],
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SO Introduction
This article is motivated by a course of M.Kac [Ka] (see also [Br-He]) and

completes the study started in [He-Sj].
Let us first recall the origin of the problem in statistical mechanics. M.Kac

proposes to study the following model (called Model A in 87 in [Ka]) whose

hamiltonian is given by :

^(N.M)^ "2(P,Q)eVxV VP,Q °P°Q
with :

V(N,M) [1 N]x(Z/MZ)in Z2, op€{-l, + l}, j€ R+*,yelR+*
Vpp 0

and

VpiQ Jyexp (-7lk-k'IHôe,c +Ü/2) (Se, ^+o^g.^if P (k,e)* Q (k',e').

M.Kac observes that the free energy per spin in the thermodynamic limit :-¥/kT
can be computed (see formula (7.ll)) as :

-T/kT ln 2 - vy/2 + Lim„, (In A (m)/m)• m«-°o max
where Amax(m) is the largest eigenvalue of the m-dimensional integral operator
K given by :

K exp (- Q(m)/2) exp (-y(-A(m)) exp (- Q(m)/2)

with
Q(m) (y) (tanh(y/2) / 2) 2k™ ,yk2 -Zk™ ,ln cosh(vÇy2" (yk+yk +

and v J/kT.
As y tends to zero, the operator is well approximated by
exp(-Y(-A(m))-Q(ffl))
(see [Br-He] for rigorous results in this direction or [He]) and it is consequently

1/2natural (see (7.17) in [Kac]), after a scaling argument xk =y yk, to study the

problem of the existence and the properties of the limit of 31, (m;h,v) /m where

î., (m;h,v) is the smallest eigenvalue of

(0.1) P(m)(x,hDx;v) =-h2A(m) + V(m)(x;v)

with
(0.2)V{m)(x;V) (l/4)2k™lxk2 - 2k"1lncosh(Vv72 (xk+xk + 1)),

with the convention (xm +, =x,
h is essentially equivalent to y as y tends to 0 and we finally arrive (after some
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approximation) to the usual semiclassical problem for a Schrôdinger operator.

Moreover, the splitting between the second eigenvalue 3L2(m;h,v) and the first
one appears to be strongly connected (see for example formula (7.32) in [Ka])
to the behavior as r tends to oo of the behavior of the correlation function of two

spins in a row separated by a distance r.
Of course all these connections are not mathematically rigorous but this gives us

the motivation for our study of the Schrôdinger case.

As already mentioned this study was started in [He-Sj]. More precisely by
completing results of [Sj], 2 we treated completely the case where the parameter

v (which in the corresponding statistical problem is the inverse of the temperature)

is less than 1/4, assumption which implies the convexity of the potential.
Let us recall the three results which were obtained in this case

Theorem 0.1 (Cf [He-Sj], [Sj]3)
For every v in R+ the limit A(h,v) Limm_>00 X{ (m;h,v) /m) exists

Theorem 0.2 (Cf [He-Sj])
If v<l/4, A(h,v) Limm_(00 a., (m;h,v) /m) admits a complete asymptotic
expansion :

A(h,v) -~ h2j>0 Aj(v).h' as h tends to 0.

Moreover, if we denote the corresponding semiclassical expansions for
ï., (m;h,v) /m by:
(*., (m;h,v) /m) ~ h^fan Aj(m,v).h\

there exists &0 (v > 0 s. t. for each j, there exists a constant C (v s.t.

|Aj(v)-A,(m.v)|$ Cj(v). exp(-fe0 m).

&0(v) and Civ) can be chosen locally independent of v

Theorem 0.3 (cf [Sj]2, [He-Sj])
If v<l/4 then the splitting between the two first eigenvalues 12 and Xt is

controlled by
(h/Cv) <:|2l2(m,h,v) -Xx (m,h,v)| ^ Cv .h

for some Cv > 0 which can be chosen locally independent of v.
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The purpose of this paper is to complete the description of the properties of the

thermodynamic limit and of the splitting in the case where v >l/4.
More precisely we shall prove the following theorems :

Theorem 0.4
// v>l/4, A(h,v) Limm_>oo (m;h,v) /va) admits a complete asymptotic
expansion :

A(h,v)~ A°(v) +hZj>0 AjM.h' as h tends to 0.

Moreover, if we denote the corresponding semiclassical expansions for
?v, (m;h,v) /m by:
(X, (m;h.v) /m)-~ A°(v) + h2j>0 Ajfcn.vJ.h',

there exists fe0 (v > 0 s. t. for each j, there exists a constant C (v s.t.

|A,(v)--A,(m.v)|* C,(v). exp(-fe0 m).

&0(v)and C(v) can be chosen locally independent of v

Remark 0.5
With the corresponding statement of Theorem 0.2 we have the complete answer
outside the critical value.

Theorem 0.6
If v>//4 and let us consider the set in Nx R+ defined by
(0.3) m< CfrN°

(we write shortly m 0(h
~

o)

for some C and N0 ;

then there exists Cv hvand ev > 0 such that for all the (m.h) in this set

satisfying 0<hghv, the splitting between the two first eigenvalues 12 and Xt is

controlled by
A.2(m,h,v) -?., (m.h.v) $ Cv exp- (ev. m /h).

Remark 0.7
Here we observe a very different behavior in comparison with the

case v < 1/4 (Theorem 0.3) but we have unfortunately a restriction on m This
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is probably a technical difficulty. We were hoping to prove simply that (first
conjecture) :

Limm^0O (X2(m,h,v) -X, (m.h.v)) 0.

This property will be a sign of a " transition of phase" in the following

sense. If we assume (second conjecture!) that Limm_>00(X2(m,h,v) -X, (m,h,v))

always exists and that (third conjecture) it is analytic for v< 1/4, then we get

from Theorem 0.3 that this limit is not analytic around 1/4.

In the proof of Theorems 0.4 and Theorem 0.6 we shall follow the

same strategy as in [Sj], 2,[He-Sj].
Let us recall that the basic idea in order to analyze the thermodynamic

limit was to compare a formal expansion of the eigenvalue (divided by the
dimension) (deduced from the WKB approximation whose construction with
control with respect to the dimension m was initiated in [Sj], 2 of a one well
problem and the first eigenvalue (divided by the dimension) of our problem We

can distinguish three parts.

In the first one, one compares the WKB approximation of the one

well problem and the first eigenvalue of the Dirichlet problem in a sufficiently
small c -ball around the point where the minimum of the potential was

attained.

In the second one we compare the first eigenvalue of the Dirichlet
problem in this small I - ball with the global problem.

In these two steps we work modulo m.ON(h (for any N) but the dimension is

controled by m 0(h~N°).

The last part is to eliminate the restriction on the dimension and is

identical to the convex case due to the control of the convergence in the

thermodynamic limit).
In fact we shall prove a more precise result permitting to analyze the

splitting between the two first eigenvalues. To understand what is needed recall
the following classical formula for the splitting (see for example [He-Sj], §3) :

(0.4) VX, =InV [tflhV*!2 (u, m)2(x)dx)/J|*|2 (u, m)2(x)dx)],
<D<gC~J«J> (u, m)2(x)dx o}

Here u, m
denotes the first normalized eigenfunction.
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The estimates about the splitting are then deduced from the choice of
«t» and of information on the decay of u, in suitable domains.We observe that
under the assumption v> 1/4, the potential admits two minima and that there
exists 8 s.t. the region Q(8) defined by :

(0.5)Q(8)= {x€Km,-0 ^ EjXj ^ 6}

does not contain these two wells. Let us recall also that according to the

symmetries of the problem we have :

(0.6)u,m(-x) ulm (x)

Letx(t)be aC function s.t.

(0.7), X(t)= -X(-t)
(0.7)2 o^x(t)^i fort £0.
(0.7)3x(t) l fort 5:1.

Taking

(0.8)<D8(x)= X(Zx/8)
(0 is not with compact support but the argument can be easily completed by
density), we deduce from (0.4) the following estimate :

(0.9)X2(m.h)-X,(m,h) ^Cv.m. h2. (a(m,h)2/(l-a(m,h)2)
with
(0.10) a(m,h,8) ||u, ||

Theorem 0.6 will be a consequence of the following theorem which will be

proved in section 3 :

Theorem 0.8
There exists C, h0 and 8>0 s.t.

(O.ll) a(m,h,ô) $ Cexp(-m/Ch)
if (0.3) is satisfied and 0<h<h0

Sl. WKB approximation in a I -ball
As mentioned in the introduction, one first step corresponds to the study of the

problem in a small neighborhood of some minimum of the potential.
The remark is the following : what we have made in [He-Sj] (adapting previous
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results of [Sj], 2) works also for v >l/4.
For this we return to the verification in §6.2 of [He-Sj] of the conditions

given in §4 of the same article to obtain the Theorem 4.4 and the assumptions
in [Sj], 2 to compare with Dirichlet problems in some ball.

If v >l/4, let us observe that we have two wells. Let us start by recalling briefly
what we shall get from the study of the harmonic approximation at the bottom

(see §2).

We shall see that we have two equal minimas at ± x°(m,v) with x (m,v)
(t /2)(l l) and let us now work in a small 6 -neighborhood of say x (m,v).

Let us verify carefully the different assumptions following section 6 in [He-Sj].
We shall verify the following properties for the potential V V

(1.1) There exist d and k (independent of m) s.t. V is holomorphic in Bj.xc,ó)

with|VV(x)|oo=0(l),
(1.2) V"(x D+A,whereD is diagonal (positive definite) and

||A||gm>p£P)^r, "^o^min^) for all p s.t. l^p^ooand for all p with :

(*) exp(-fe5 s p(j + l)/p(j) « exp (ft).

(1.3) HV2V||^(eP;eP) 0(1)

uniformly in Bjx ,d) for p satisfying (*).

(1.4) V(m) "(x) ;> ((l-4v")/2 Im forxinBR (xc,d)withv'<v"<l/4.
Here (l-4v')/2 is the smallest eigenvalue of V

m (xc) (which appears to be

independent of m, see (2.8)).

With W™ V(m)- (V(n)Ì V(m"n)) (!N<np-l) we must have :

(1.5) For all m, for all n ((l$n§m-l)), for all p defined on {1 m} and

satisfying (*) and

(**)p(j) =iforj^n+i, andp(i) i,
we have uniformly with respect to p, m, n :

IV0^V° 0(1) in a complex ball B(x°,d).

(1.6) V1in) and more generally (1-t) (V(n)© v(m_n)) + t V(m) for O^t^l
satisfy (l.l)-(1.2) uniformly for thep satisfying (*) and

* *) (more generally *) and

exp(-fe) $ p(n)/p(l) $ exp(ß)

exp(-fe) ^ p(m)/p(n+l) ^ exp(fe)
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Here

(V(n)©V(m-n))(x, xffl) V(n)(x, xn)+V(m-n)(xn
+ xm).

(1.7) For every m, V satisfies :

v^m' v i - v'm'( \V lXm'Xi Xm-l'_ V Wl xm'-

The verification of (l.l) is easy. We first observe (always with the convention
that x„ =x, that :

m + 1 .1 '
(l.8)9X|V<m)(x)

(Xj/2) -Vv/2 th (Vv72 (Xj+xj + |))-Vv72"th (VvTi'tXj+Xj,,))
and that if |x-x°|00is $r,
|Vv72 (Xj+Xj + ,-tc)| $n/2v

According to the analyticity of t -»th t in the neighborhood B(t d0) of t we

just choose d s.t.

(1.9) dV^v <dn/2
and under this condition 6„ V (x) is bounded independently of m.

Let us observe for future use that :

(1.10) 02xV(m))(x)

(1/2) -v) + (v/2)[th2(Vv72(xi+Xi
+ + th2 (VvT^Ui+Xj

(i.n)ax.ax+)v(ffl)(x)
' =-v/2 (1-th2 (Vv72 (xj+xj +

-v/(2cosh2 (VvTMXj+x^,)))
(1.12) dv dv V(m)(x) 0 if Ij-kl *0,-l,+l modulo m.

Xj xk

For (1.2) we deduce from §2. :

(1.13) D ((1/2) -v')Iffl
where Imis the identity in R so we have :

(1.14) r0=Xmin(D) =((1/2)-v').
If we denote by t. the operator on Rm defined by: (tx); =x; _,, we can write :

(1.15) A -(v'/2) (t. +t"')
The eigenvalues of A are easily computed as -v'. cos(2rck/m) for k 0,1 m-1.

It is then easy to verify that for p satisfying to (*) :

(1.16) HAllc^p^v'.expCfc)
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Because v' < 1/4, we observe that one can choose % such that :

(1.17) r, v'.exp(H) <((l/2) -v')
and we shall make this choice now.

The proof of (1.3) is immediate if we observe that all the second derivatives are

bounded and that we have (1.12).

(1.4) is a consequence of (l.ll)- (1.12) by choosing d small enough :

(1.18) 0<d$ d,(v',v")

Let us now verify (1.5). We just observe that :

°&9™= ln cosh(Vv/2 (xm+x, ))+ln cosh(Vv/2 (xn+xn +

-lncosh(Vv/2 (xn+x, ))-lncosh(Vv/2 (xm+xn +

The only j for which dx °CÄn are not 0 are j l,n,n+l,m
and using l.ll one has for each of these terms :

lax.^(x)| $ 4vW2Supt6B(tc4 ^tMv^t)
r

'
.r.m I Ci j 0

forxe C Ix-x l^d.
According to the (**), the property (1.5) is clear.

Let us verify (1.6). We first observe that :

r\'m) t. .1 nW»ji(|n"nl rvto)
Dt (1 -1) D ©D + t D

and :

a to) /. t\ A^faxto-n) (m)\ - (1 -1) A ©A + t A
All the properties we need are stable by arithmetical means, so it is sufficient to

treat the case (V(n) © v(m"n)) for p satisfying ***) and

*) which can be reduced by separation of variables to the study of V - V for

p satisfying *).

We now observe that Xmin(D) (l/2)-v' and that ||A|| ^v'.exp(K).
Because v' < 1/4, it is easy to choose k >0 s.t :

v'.exp(K)<(l/2)-v')
Finally (1.7) is clear from the definition.

Conclusion

If we take d satisfying the two conditions (l.io) and (1.18), we have a
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complete analysis of the first eigenvalue of the Dirichlet problem modulo 0(h
but under the condition (0.3).

We shall need the same properties for V replaced by
-(m).N=v(m)_2_(Xj_(tc/2))2N
By symmetry we have also the same properties near - x (m,v).

§2.The harmonic approximation in the case v>l/4
Following Kac, we observe that :

(2.1) V(m)(x) (l/16)2k",(xk-xk +
,)2 +

+ (l/16)2k™ ,(xk+xk + ,f -2k™ ,ln cosh(Vv72 (xk+xk +,)).
(with the convention x =x,

(2.2) V(m)(x) (l/16)2k!,(xk-xk +
,)2 +

and we can write
V(m)(:

+ 2k"1q((xk+xk + 1),v)

with
(2.3) q(t,v) (1/16) t2 - ln cosh(\/v72~t)

To find the minimas we observe that :

(2.4) V(m)(x):»m.minq

If v>l/4,
(2.5) q admits two equal minimas at ± t (t >0)

where t satisfies

(2.6) t° =4-v/2v~th(V/v72tC).

It is then easy to see that there are only two points in R s.t. we have equality
in (2.4) and we get the

Lemma 2.1

If v > 1/4, the minimum of V is equal to m.min q

and is only attained at the following two points:
(2.5) x^(m,v)=±x°(m,v) with xc= (tc/2) (1,1,1 l).

Approximation at the bottom.
At x this approximation is given by :
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(2.6)Q0(x) (l/4)2k",xk2 - (v74)(2k!,(xk + xk + ,)2)
where we have written :

(2.7) x x + xc

and

(2.8) v'= v(l-th2(Vv72 tC))

Here we observe that v' <l/4, and that the quadratic approximation
is the same as for v <l/4 but with v replaced by v'.
This is well analyzed in [Ka]. We shall prove later (see also manuscript [He])

that the harmonic approximation is valid and in particular that the first eigenvalue

of the Schrôdinger equation is approximated modulo 0(mh by

m.Minq +h(l/2ii) J* fa^4v'.cos2e de

§3. Exponentially weighted estimates for the eigenfunctions.

As a preparation we consider f(t) ln(ch (\/(v/2) t)) so that f(t) is an even

strictly convex function with the asymptotic behavior

(3.1) f(t) « V(v/2) t - ln 2 + 0(exp(-t/C), t ^ + 00.

If x.yeiR, wehavef(x-y)-f(x+y) f(|x-y|) - f(|x+y|),
and we first assume that :

lyl ^ |x| and xy <ç0.

Then |x+y| $ |x-y| and |x-y|-|x+y| 2|y|.

Hence

f(|x-y|) - f(|x+y|) ^ |y| |x-y| / (l + |x-y|)

- lyl.max (|x|,|y|)/(l + max (|x|,|y|))

Here we have the convention that a ^ b with a and b >0 (depending of

different parameters), if (a/b) and (b/a) are bounded uniformly.

In the general case, we then get :

(3.2) f(|x+y|)-f(|x-y|) ^ sgn (xy) min(|x|,|y|).max (|x|,|y|)/(l+max (|x|,|y|))
and if we assume that max(|x|,|y|) % Const. >0, we obtain :

(3.3) f(|x+y|) - f(|x-y|) ^sgn (xy). min(|x|,|y|).

We shall use the fact (see §2) that
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(3.4)V(x)= (l/16)2k°,(xk-xk + 1f +

+ 2k™, v((xk+xk + ,)/2) (l/4)(lk \)-l^ f((xk+xk + ,)/2)
with
(3.5) v(t) q(2t,v) (1/4) t2 - ln cosh(V2v t)
and recall that for v >l/4, v has a double well with two minimas at ± t0(v)
with t0(v) >0.

Cv)o
7>

Let 0 < e0 < < 80 < < l and consider two types of intervals in R:

Tvoe 1.

I L=[tn
1 1

o

[-t,
60,t0 + 80]or

These intervals correspond to neighborhoods of the wells of v.

Tvoe 2

I [t-£0,t+£0] with |t-t0l 5=80-£0 and |t+t0
If I is of the second type then ±t0 £ I.

s8„

Let us remark also that one can cover R with intervals of this type.

We want to estimate the lowest eigenvalue of the Dirichlet realization of -h A+V
in ß n, L where I. is of type 1 or 2 for every j. We write :

Ij >e0° if IjC]e0,oo[, l.j.eo if IjC]-2e0,oo[. We say that (j,k) with j,k€ Z/mZ
is a change of sign for a given ß if I,>, 0, It<„ 0 or L<f 0, Iv>f 0 and if lva 0

(that is Iv meets [-e0,e0]) for all v€]j,k[ def{j+l,j+2 k-l}.
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(We define similarly [j,k[, ]j,k], [j,k] and write for instance j<v^k if ve]j,k]).
Let us observe that the number of changes of sign is even.

Let (j, Jc, and (j2 k2 be two consecutive changes of sign so that

j <k, ^j2 <k2 ^j,. Then consider the map k from R into R :

x -» x k(x)
with

xv -xv for k, $v $ j2, xv =xv for all other v.
For xe £2, we consider

V(x)- V(k(x)) [-f((xk|_ ,+xk| )/2)+f((xki. ,-xki )/2)]
'+[-f((xJ2 + XJ2+,)/2) + f((xJ2-X. + ,)/2)]

=3,+32-
If j, =k. -1, then either L ,<f0, L >. 0 or L ,>f 0, It <P 0, and the % can

be bounded (using 3.3) from below by (l/C(e0)) ß0 e0 where ß0 >0.

If j, *k, -1, then Ik ,3 e0 and £J, £- ß, £0 for some constant ß,

(we observe here that f is globally Lipschitzian).
The same discussion holds for £)2 where we distinguish between the cases

k2 =j2 + l and k2 *j2 + l.
Let us call the change of sign (j,k) strict if k j+1.

Applying the same procedure several times, we get a map

k:«^^-- n|"ifaß
x-»k(x) x with x, ±x., L ±Ij
such that L %CQ and such that for x e fl :

(3.6)V(x)-V(k(x)) > (ot+(ß)/C(£0)) -ct0(ß)ß,£0.
Here a +

(ß) is the number of strict changes of sign and oc0(ß) is the number of

Ij's meeting [-e0,e0]. Notice that <x0(ß) a0(ß).
Now consider Q=ILL with I,^E0. Let x, be the midpoint of L and set
n a a, ' ' ' '

x =(x, xm).

Let k: ß-»Q+ =(I+ )m be the translation with k(x x +.

Using (3.4), we see that for xe ß :

(3.7)V(x)-V(k(x)) ^ (ß(ß)/C(80))
where ß(ß) is the number of I. which do not contain t0 (or -t0). Notice that

ß(ß) is unchanged by the first "k".

We now compose our two maps, notice that <x0(ß) ^ß(ß) and choose £0 so
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small that£0 < < C(80)" We then get a new map k(x) being the composition of

reflexions in 0 in some of the coordinates and a translation such that

k: ß -» ß+ (n is the original box)

k(x x + and

(3.8) V(x)- V(k(x)) ;>(l/C)(a+(ß)+ß(ß)),x€ß.
C is here a strictly positive constant, independent of ß, once we have fixed £0
and 80 conveniently as explained before.

Let Pn denote the Dirichlet realization of -h A+V in ß and let p+ denote the
2

lowest eigenvalue of PQ Let \i0 denote the lowest eigenvalue of -h A+V on
R By the minimax principle, we have

(3.9)|i0«p+
and recall from section 1 that, under the assumption m 0(h" o), we have a

good knowledge of the asymptotics for \l+ deduced from WKB constructions.

(3.8) shows that :

(3.10) Pa-ji+ £(1/C) (a+(Q) +ß(ß)).

Since all our maps take the mid point of the boxes into mid points of the

image-boxes, we also get (cf [Sj], [He-Sj]), under the assumption
m 0(h~N") :

(3.11) Pn-Z>j-xJ)2M-n^(h)^(l/C)(a+(ß)+ß(ß))ifß^ß±.
with a new constant C>0, where

(3.12)p>)-p+(h) 0(hN(M))

with N(M) tending to oo with Me IN and h>0 sufficiently small.

From this point we can imitate the argument of [Sj], 2
and we only recall the

00 '

main steps We have a C positive function \|/nwith
(3.13) |VVn(x)|2 s (l/2)E™(Xj-xp2M,¥n(x") 0,

Xn inC^(ß) and a measure p.(dß) such that
(3.14) Jxn(x)2. exp (-2\|/Q(x)/h) |i(dß) 1 + 0(exp(-l/Ch))
where 0 is uniform with respect to x.
We first show that :

M
(3.15) iC « |i0+Oai

Let \s.< \i +
; we have



762 Helffer and Sjöstrand H.P.A.

(3.16)((P-p)Xn exp(-yn/h)u|Xn exp(-vn/h)u)
(Xn exp(-vn/h)(P-p)u|XQ exp(-yn/h)u)

+ ((hV(Xnexp(-x|/n/h))2u|u)
which can be written as

(3.17)((P-p-|VvJ2)xnexp(-\|/Q/h)u|xnexp(-\|/n/h)u)
(Xn exp(-vQ/h)(P-(i)u|xn exp(-yQ/h)u)

+ ((h2|VXn|2-2hXnVXn.VVQ)exp(-^Q/h)u|exp(-\|/n/h)u).

Combining with (3.12) and (3.13), we get :

(|i"-p)||xnexp(-vn/h)u||2 $(xQexp(-\|rn/h)(P-p)u|xnexp(-\|/n/h)u)
+ ((h2|Vx/-2hXnVXQ.VVn)exp(-Vn/h)u|exp(-Vn/h)u).

Integrating with respect to p(dß) gives :

(p%)(l + 0(exp(-l/Ch))||u||2 ^
$(l+0(exp(-l/Ch))).(P-li)u|u) -t-0(exp(-l/Ch)||u||2.

We then take n n0 and get (3.15) and finally (playing with arbitrary M and

using (3.9) and (3.12)) :

(3.18) n0 [i++ 0(h (under the condition m 0(h~ o)

We next look at exponentially weighted estimates. Let Y+ (t) be a positive
function with the shape :

I*I.
H * >

So that T± 0 near I,
¥ + a > 0 near I.

and ¥ +
has a small constant slope (in absolute value) outside.

PutT_(t) T+(-t),
(3.19) *(x) Inf (E>+(Xj),E>JXj)).
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Then <t>|ß =0 and

(3.20) |V<>(x)|2 s (l/3C)(ß(ß) if x € ß.

Let u be the positive normalized eigenfunction associated to u0 :

(P-n)u=O.Put<Dn(x) 0(x)-Tn(x).
Then

((P-ji0)xn exp(<l>n/h)u|XQ exp(<Dn/h)u)

(|hV(xnexp(On/h)|2u|u)
which we write as

(3.21) ((P-p0 -|V<tg2)xnexpfon/h)u|Xnexp(<j>a/h)u)
((2hXnVXn.V<t»n+h2| VXn|2)exp(^)n/h)u|xn exp(<J>n/h)u)

Here|ViJ»n|2$ 2|V<D|2+ 2 IVtJ2 and combining (3.13), (3.20), (3.14), (3.21)

and (3.16), we get when ß x ß+ :

(3.22) ||XÖ exp(«J>n/h)u||2

«C ((2hXnVXn.V<t>n+h2|VxJ2)exp(<Dn/h)u|Xn exp(<»n/h)u)
and integrating with respect to ji(dß), we get :

(3.23)J(l+ 0(exp(-l/Ch)) exp(2(D/h)|u|2dx
2 2 2

$ LHexpi-i/cnjjiiexpw/njull +llu|ln + llu||n
which implies :

(3.24)||exp(<t»/h)uf= 0(1) (under the condition m 0(h"No)

Let x e Rm. Let " 2l+ " and "2l_" denote the intervals with the same mid

points as I+ and I_ but with double lengths. We notice that for some ot>0 :

¥+(t) ;>adist(t,2l+) >a (|t-t0|-280).
HenceEj"xj zJ"(Xj -t0) + mt0^- E^IXj -t0l + m t0

;>- l"(|x, -t0|-280) + mt0-2mô0
5- ïJBï+(xJ)/à +¦•( t0-280 ).m.

So

Z™Y+(Xj) ^a(t0-280).m-à|l™Xj|.
The same estimate holds for 1° ¥ _(x) so

Min(E>+(Xj),E>_(Xj))^a t0-280 ).m-alE^Xj |.

We have t0 - 280 > 0 and for m large enough we have finally
(3.25) Min (ï"t+(x,).ïJ"ï_(x,))5i (I/O m
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(3.26) EfXj €[-l. + l].
Then, according to (3.19), and (3.24), Theorem 0.8 is a immediate consequence
of (3.25).
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