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Abstract

It is proved that in the one component plasma, the macroscopic dipole and current

fluctuations behave dynamically as the canonical observables of a harmonic oscillator with

frequency u>p y Te PB, the plasmon-frequency.
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1 Introduction

In [FMV] correlation inequalities were used to determine the value of the bulk momentum

fluctuations in a quantum mechanical system of density p in thermal equilibrium at

temperature T. It was shown that the mean square momentum fluctuations per unit volume

equal mpkT whenever the potential is short-ranged and the correlations have a sufficiently

fast decay. This result coincides with the classical equipartition law for quantum systems

and is clearly only valid in the absence of phase transitions.

In [MaO] this analysis is extended to the quantum mechanical one component plasma

of particles with charge e and mass m in a neutralizing background of density p; i.e. the

jellium model in thermal equilibrium. Again using correlation inequalities, characterising

thermal states of infinitely extended systems [FaV], they considered the current and the

dipole fluctuations and obtained : if J £\ —p, and D ]jT^ exi, then

(J2) 4(°2)

where u>^ " f is the square of the plasmon frequency.

In the one component plasma, D and J are respectively proportional to the coordinate

X Y^rixi and momentum P Y2iP< °f 'he center of mass of the whole system. Since

the center of mass decouples from the relative coordinates, it will only be subjected to

the harmonic force —mu^X due to the charged background. Therefore X and P should

behave as the canonical observables of a quantum harmonic oscillator at a macroscopic

level with energy :
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All this follows from the results of [MaO] for equilibrium states.

At this stage it is natural to ask whether one can induce a macrodynamics on the

subsystem of J and D and close this dynamics on this subsystem.

In the present paper we prove rigorously that these variables behave dynamically as

the position and momentum operators of a quantum harmonic oscillator with a frequency

equal to wp.

The theoretical setting that will be used is the same as in [BrV], where a soluble model

is considered in which the same phenomenon appears. Here we treat an unsoluble model.

This is a serious complication and forces us to make several assumptions on the states; in

particular we will assume that a central limit theorem, analogous to that of [BrV], holds.

In view of [GVV1,2] this means assuming enough clustering of the states.

Another important fact of the model is that it is a model with long range forces. So

we are in a situation that goes beyond the Goldstone theorem [Gol] where it is possible to

have an energy-gap in the density excitation spectrum. We will show that indeed we get

a finite frequency w / 0 at k 0. In fact u>(k 0) will be the famous plasmon-frequency

up- v ™ ¦

Our work relies very much on results in [MaO] and our techniques are influenced by

[MoS] where the plasmon-frequency is discussed in the frame of the breaking of the Galilei

invariance for the jellium model.

For a discussion of our main result see section 5.
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2 The Model

We consider an infinite system of particles (bosons or fermions) moving in the three-

dimensional space IR3, with Coulomb interaction and in a background of uniform particle

density ps- The microscopic algebra of observables A is assumed to be build on the formal

(fermion or boson) creation and annihilation operators 0+,0 '¦ for x,y £ IR one has

[0(x),0(y)]± O

[0(x),0+(y)]± 6(x-y)

0+(x) 0(x)*

The dynamics of the model is governed by the following formal Hamiltonian :

H — /<fcV0+(a.)V0(i) (2.1)
2m J

+ - // dxdyi>+(x)i>+(y)V(x-y)il>(y)il>(x)

dxdytj)+(x)xj}(x)V(x — y)peIh
where V(x) r^ and ps is the background density.

In order to define rigorously the dynamics, one has to replace the potential V(x) by a

regularised potential Vi(x) V(x)f(^), where / is any C°°—function which is one inside

a sphere of radius one and vanishes outside a sphere of radius 1+a [MoS].

The full dynamics is then described by the following regularised equations of motion:

—rp(x, t) [HL, xp(x, t)] —0(1, t)-VL*(p- PB)(x, O0(x, t) (2.2)
lot lm

where

p(x,t) 0+(x, t)i[>(x,t)
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VL * (p - Pß)(x,t) / dyVL(y - x)(p(y, t) - pB)

These equations yield the continuity equation :

^-tep(x,t) + Vj(x,t) 0 (2.3)

where j(x,t) ^{V0+(x,i)0(x, t) - 0+(x,<)V0(x,2)}

A state u> of this system will be described in terms of its correlation functions :

w(0+(xi).. .0+(x„)0(ym)... 0(t/l)).

We will restrict ourselves to a family of states which are :

1. gauge invariant :

m^n^r w(0+(xi)... 0+(xn)0(ym)... 0(yi)) 0

2. The states are L —» oo limit states of time invariant states w/, for the Hamiltonians

HL:

VXe.4: limu>L([HL,X]) 0
L—»oo

3. translation invariant :

Va € R3 : w(0+(x, + a)... 0+(xn + a)^(yn -fa)... 0(yi + a))

a;(0+(x1)...0+(x„)0(yn)...0(yi))-

4. rotation invariant :

VA e 0(3) : w(0+(ßx,) - -. 0+(Äxn)0(Äyn)... 0(Äy,))

w(0+(x,)...0+(x„)0(yn)...0(yi))
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5. time reversal invariant :

VX £A:u(a(X))=u(X')

where a is the time reversal operation.

These five properties of the system can hardly be considered as conditions. The main

assumptions appear in the next section.

3 Cluster-properties and sumrules

As in [MaO],[MaG], we will assume that the correlation functions of the state can be

expressed by the reduced density matrices p^n\ with kernels formally written as :

(yi, • • • i yn\p(n)\xn, ...,XX)= Uj(xp+(XX). 0+(x„)0(yn) 0(yi))

We make a first assumption on the clustering of the state :

(y1,...,yn,x|p("+1)|x',y;,...,y;)-pB(y1,...,yn|p(")K,...,y;) 0(|x|-(3+£))

for x' x + a, a fixed; e > 0.

For notational convenience, we introduce the density and momentum correlations :

(p<n)p^...pr;)(x,,...,xn_,) (x1,...,xn_1,o|/0<nVî1'...p:;|0,xn_1,...,x1)

dyx... / dyn(xx,..., xn_,, 0|p(n) |yn,..., yi)(yi,..., yAiP?, p,r; |0, x„_i,... ,«i)

where rj 1,2,3; ij 1,... ,n; s 0,1,2,...

Only homogeneous phases of the one component plasma having good screening

properties which satisfy the assumptions on the clustering as in [MaO], will be considered.

This means :
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• the density-density correlations have fast cluster properties as in the classical case :

f dx\x\2\(p^)(x)\ < oo (3.4)

jjdxdy\x\\(pf)(x,y)\ < oo (3.5)

where the p^' are the fully truncated n-point functions, defined in the usual way.

• the momentum-density correlations are integrable :

J dx\(pWp\)(x)\ < oo (3.6)

jdx\x\\(pWp\P\)(x)- pB(p^p\p\)\ < oo (3.7)

• The momentum-momentum correlations have, however, a slow clustering of the type

(pVp\p'2)(x) Cl^_(|x|-i) + 0(|xr<3+£)) (3.8)

(Pi2)(p\)2(Pl)2)(x) ^ + <*a^(H~1) + 0(M-(3+E>) (3-9)

with C\,c2, Cz some constants.

We also need some additional cluster properties :

•

Jjdyxdy2^\{p^)(yx,y2)-pB(p^)(y2) + 2(p^)(y2)S(yx)-

PB(pm)(yi)-PB + Hyi)p2B\ < oo(3.io)

JIdyidy2W2 M3^'^1'^ - p2B(p{2)pkpk')(y^)+

(p{2W2'Ky2)S(yi) + (pmpkìPÌ')(y2)S(yi)-
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PB(p{2V2P2)(yi) - p2B(PWphpk') + PB(p(1)pkpk')S(yi)\ < 00(3.11)

Jdy3 L (l>+(o) j dyxdkV(yx)(p(yx) - pB)i>(o)

^(Vs) j dyxdkV(yx)(p(y3 + y,) - pB)ip(y3) j < oo(3.12)

These cluster properties are not rigorously proven in the quantum case, but it is

generally believed that they hold in the high temperature regime.

We shall also assume that a set of sumrules hold and refer to [MaO],[MaG] for their

derivation, where one proves that these sumrules are a necessary consequence of the time-

invariance equations obeyed by the reduced density matrices of a state having suitable

cluster properties, such as a high temperature equilibrium state. One has :

• charge sumrules :

Jdx((pW)(x)-p2B)+pB 0 (3.13)

Jdx((pW)(x,y)-pB(pW)(y))+2(pW)(y) 0 (3.14)

the dipole sumrules :

and :

Jdxx((pW)(x-y)-p2B)+ypB 0 (3.15)

Jdxx((pW)(x,y)-PB{pW)(y))+y(pW)(y) 0 (3.16)

Jdx({p(2\p\)2)(x)-pB(pV\p\)2)) + (pV\p\)2) 0 (3.17)
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4 Dipole and Current Fluctuations

With the help of rather specific cutoff-functions, we define in this section the local fluctuations

of the vector-fields which describe the momentum and position of the charge center

of the system.

These vector-fields are respectively given by :

;r:E3-»>(:iH. jr(x)

D^Rfai:!« xTp(x)

where r 1,2,3.

As in [MaO], we choose smoothened characteristic functions of a cylinder A of radius R

and length 2L along the r-axis (r= 1,2,3) as cutoff-functions to describe the local volumes

or the boundary conditions and we define :

Jl := -1=L=Jdxg(j)xR(x^)j'(x) (4.18)

Da :=

V2L\

¦jdxh(j)xR(xXT)xrp(x) (4.19)
v/2l\ArR2

where the vector x is split up in a part xr along the r-axis and a part xLt orthogonal to

the r-axis. The functions appearing in the local fluctuations need to satisfy the following

restrictions :

1 iff |xXr| < R
X«(x±r) {

0 iff |xXr|> fl+1

h(s) £ C°°(R) and has compact support;

h(s) h(-s);
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A(i) i;

IJ ds{±(sh(S))}2 \

g(s) ^s(sh(s))

Note that by time-reversal invariance and space-reflection invariance we have

w(JJ) oj(DrK) 0 for all L, R. For short we denote A for the cylinder (L, R).

Consider now the two-dimensional real linear spaces HT spanned by the fields Jr

and Dr (r 1,2,3). It is an easy calculation to see that under a state u> as specified

in section 3 :

lim lim -\bltR,JlR) pBt„; (4.20)
L—»oo ti—»oo %

where the limit is a weak-operator limit in the state u>. The order of taking the limits

is important. The local volumes are cylinders in the direction in which the fluctuations

are considered. Technically, taking first the ß-limit and then the L-limit means that

one considers the fluctuations between two infinite planes — approximated by disks with

increasing radius R — orthogonal to the r-direction.

This limit provides us in a natural way with a two-dimensional symplectic space

(Hr,a), where cr is a symplectic form determined by the commutator (4.3) : a(Dr, JT)

PB-

From [GVV1] and [GVV2] it follows that we can give a mathematical meaning to

limA_0o Dr a and limA-,00 JT a as operators by a central limit theorem. We denote these

limits respectively by Dr and J'. Note that (4.3) then reads as

-[Dr,J'r] PBt (4.21)
1
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In this paper we do not aim at proving this central limit theorem; we will on the basis

of the results in [GVV1] and [GVV2] - i.e. assuming enough clustering - assume the

existence of the following limits : for all X, p £ R,

lim lim u (e^A+^A exp{-L<\Dr + uJT, XDT + pjr)} (4.22)
L—»oo R—»oo V / 2

where

su(XDr + pJr,\Dr +tiJr) \\mu([XDrA + pJrA]2} (4.23)

Of course, w is a state belonging to the family specified in section 3. Formula (4.5) is a

non-commutative central limit theorem and although we do not prove this theorem, the

resulting formula is proved to be meaningful in [MaO]. There it is proved that the limit

in (4.6) exists and hence the right hand side of (4.5) is well defined.

Therefore, one can consider the central limits as a representation of the Weyl algebra

build on the symplectic space (Hr,a) [BrR] and determined by the quasi-free state ù

which is defined by

w (ei{xt>r+"Jr)^ exp{-]-su(XDT + pJr,XDr + pJT)) (4.24)

The macroscopic fluctuations DT and Jr are then the two generating boson fields on the

two-dimensional symplectic space (HT,a) satisfying (4.4).

Note that s„ is a bilinear form on the real space H*.

From (4.6) one gets :

ü((Dr)2) sUDr,Dr) (4.25)

à((JT)2) *UJr,Jr) (4-26)
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In [MaO], it is proved that the time-invariance of the state ui yields the quantum virial

theorem :

Q((j')2) u2pü((D')2)

where u>p
4" p, with u>p the well-known plasmon frequency of charged systems. It is

also proved in [MaO] that the macrosopic fluctuation operators DT and JT are distributed

as the canonical observables of a quantum harmonic oscillator in equilibrium at inverse

temperature ß if the microscopic state w is an equilibrium state at the same temperature.

They proved :

^((Ór)2) Ì^COth(2A"p)-

This means that on the fluctuation level, the macroscopic variables DT and JT split off

from the other variables of the system.

So, the macroscopic state w (4.7) defines a representation of the OCR. algebra

generated by the fluctuation operators DT and Jr. Let H be the G.N.S.-representation space

of ù [BrR] and Q the cyclic vector in H, then

Q(P(DT)P'(Jr)) (Û,P(Dr)P'(Jr)Û) (4.27)

for any polynomial P and P'.

H is the closure of the set of vectors (p(Dr)P'(Jr)Û | P, P' polynomials j.

The next question that immediately arises is whether the dynamics also closes on this

subsystem of DT and J'. This is the subject of this paper. We will prove rigorously

that these variables behave dynamically as the position and momentum operators of a

quantum harmonic oscillator with a frequency which is exactly the plasmon frequency u>p.
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Theorem 4.1 The microdynamics generated by the derivation S [H,.] where H is given

by (2.1), induces on the macroscopic level a dynamics, generated by 8 :

8DT lim 8D\ =' lim (8DT)A (4.28)
A—»oo A—»oo

8Jr lim 8JrA "= lim (oJ;)A (4.29)
A—»oo A—»oo

Moreover we have the following operator equalities :

8Dr JT (4.30)

6Jr -uj2pDt (4.31)

i.e. DT and JT behave dynamicallj/ as the canonical observables of a quantum harmonic

oscillator.

Note that the plasmon frequency appears as a discrete point in the spectrum of the

fluctuationdynamics.

Two important remarks need to be made at this point. First of all, the definition of 8 is

only meaningful if the right hand sides of (4.11) and (4.12) are well-defined operators. This

is not trivial because we treat a model with Coulomb-interaction,which is a long range

interaction. For instance we have that 8JT is highly nonlocal and taking fluctuations

of nonlocal observables may cause problems. For short range interactions it is proved

in [GVV1] that the way (4.11 )(4.12) of inducing a macrodynamics on the algebra of

macroscopic fluctuations is successful for all strictly local microscopic observables.
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The second remark is that it is also not trivial that the macrodynamics generated

by 8, closes on the subsystem spanned by the fluctuations Dr and Jr. Technically, it is a

priori not clear that 8Dr should be in the G.N.S.-representation, described above.

Proof of theorem 4.1 :

If we can prove that :

limw
A

([(«*)A-(J')A]a) 0 (4.32)

lirnW([(^)A+W^)A]2) 0 (4.33)

then it is clear that first the definitions (4.11) and (4.12) of the dynamics on DT and

Jr are consistent and secondly, that also formulae (4.13) and (4.14) hold. This is true,

because (4.15) and (4.16) mean that the macroscopic fluctuations of 8(DT) — Jr and of

82(DT)-\-ui2Dr have exactly the same distribution as the zero-operator, because the central

limit distribution is completely determined by the second moments. This means that the

fluctuations of 8Dr and 82DT are in the operator sense the same as the fluctuations of Jr

and —u)pDT respectively.

• The first equality (4.15): limAW I (6£>r)A — («/r)A 0 is a simple consequence

of the continuity equation (2.3).

limo, (J(c^)a - (•/-)*]

1 im ui
£-.K-°° \[\/2L

L= J dxh(j)xR(x^)xT8p(x) - -jJ= j dxg(j)xR(x^)Jr(x)
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lim ur
L,R—oo .V2Lwh^^-'^-vewIJ= J <,«,CTh„y}y)

Using the Gauss-theorem (J dxV(f(x)j(x)) 0 for functions / with compact

support) and the translation and rotation invariance of the state, one gets :

>¥r

lim
L,R-rx, 2LnR2

And this is also equal to :

JJdxdyx'h(j)y'h(yT) Y d,xR(x±r)diXR(yLrMJ'(* - »)j>))

BW)\fc^/<<* (ir'M^x^'))' (4-34)

+ £Ä^/*/ (»'M^X.^))1 (4-35)

+ E z,fc §7^ jdy^Hvi) dy2

yr2h(yj-)diXR(y^W2 + y\)h(^^)diXR(yr + ytr) (4.36)

+ EiL™ I^W /^^Mf )(y2r + yî)M1{^1)

Jim Jdyfif^ÄÄM, yir)^ JdytrdixMT)diX(y^ + yf) (4.37)

Remark that :

Hm4ä /VrxR(ylr)x(yXr + far) 1 VaXr
/î—oo % ri J

(4.38)

and if there is one or more partial derivatives of xR in the integral, then (n + m > 1)

1

< -^(x(ä+i)2-ä2)

(4.39)
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By this remark and cluster property (3.1) and by dominated convergence, it is trivial

that (4.17),(4.18) and (4.19) are zero in the limit, since one first has to take the limit

R-*oo.

Under the assumption (3.5) on momentum-momentum correlations, one sees that

(p(2'(p,)2(p2)2)(y[,yjLr) is integrable in yxr for fixed y\. Moreover since

jdy^^(\y\-') -4^(yr)

0 for yr / 0

the integral

Jdy? (pWp\f2)(y\,y?)

is integrable in yj*. Thus, one obtains that also (4.20) tends to zero by dominated

convergence.

• The second equality (4.16): limAw (<52£>r)A +uj2(Dr)A J 0 or equivalently :

lim {w> ([(^)J2) + <#, ((^)A(F)A) + u,p2a, ((F) '8W%) + co ([(6W')A]2) }

0

is much harder to prove.

1. The first term yields :

u,*, HmW((F)A(i?)A) ^ps„(D\D') u,*pü{{Dr?)

2. The second and third term give the same contribution. One gets :

2W2limu,((^)A(^)A)
2uj2e2 ft xr ?/r

tfc^r? JJ<fa*'*,fc(j)»T*(7-)xJ,(*Xr)xJ,(»1,M«8W*)]^(y))
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—2w2e2 ft rr itr

zfc^k jj^^^rMj)/Mj)xR(xXr)xÄ(y±r)^(%(x)]^(y)])

by the time-invariance of the state;

-2w2
lim

L,R—oo 2L-^ Udxdy xrh(j)xR(xL')yrh(yj)XR(yLrMVj(x)Vj(y))

where we plugged in the continuity equation (2.5). Using again the Gauss-

theorem and the rotation invariance of the state and the same arguments as

for (4.20), one gets :

-2w*
l,r-<x> 2LnR?

/fc=l

-2u>2psur,jr)

-2co*su(DT,DT)

3. What remains to prove is :

Lemma 4.1

fjdxdy Y dk(xrh(j )xR(xlT))dk(yrh(yj)xR(yLT) )u(jk(x)jk(y))

l\mu,((6*Dr)A(8WnA) u;S„(D\ D')
A

We calculate :

(62Dr,82Dr)„= (4.40)

,,fc ïêir SSdyxdV2 y[h[yi>*"^r^f )**<>&

W ({-ÌIAV(»i)-0(Vi) - 2A0+(y,)A0(y,) + 0+(yi)A20(y,)] +
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^[0+(y1)V(V*[p-pß])(y,)0(y1)]}

j-^[A20+(y2)0(y2) - 2A0+(y2)A0(y2) + 0+(y2)A20(y2)] +

^(0+(y2)V(V * [p - pfl])(y2)0(y2)]})

The only term in (4.23) contributing to the limit, will be :

,fcé^JJ^yWj)*«^r)^(f)^y^
u (^ 1++<*WV * \p - p*>])(yi)Hyi)] ^ [V>+(y2)v(v * [P - pfl])(y2)0(y2)])

r e
lim

L.H-oo 2L7TÄ2
dy3dy4u 0+(y3) / dyxVf(yx)VV(y3 - yx)[p(yx) - pB + pB]ip(y3)

V>+(y4) / dy2V-y(y2)W{y4 - y2)[p(y2) - pB + ps]0(y4)

where we used f(y) yrh(^)xR(yLr), to shorten notation.

^Hm^ 2LnR? JJdysdyiw 0+(y3) / dyxV1(yl)VV(y3 - yi)pB0(y3)

**(y<) I dy2V~/(y2)VV(y4 - y2)pB0(y4) J (4.41)

+ L1™oo2LirR? IIdy3dy4 \w [^(y^ J dyiVt{yi)W{y3 -yi)[p(yi) -pbMvs)

0+(y4)I <fy2V7(y2)W(y4 - y2W(y4) J + cc. I (4.42)

+ Lfc 2LirW JJ dy3dy4u (0+(y3) / dyiV7(yi)W(y3 - yi)[p(yi) - pB]0(y3)

0+(y4) / dy2V7(y2)W(y4 - y2)[p(y2) - ^s]0(y4) j (4.43)

Consider in the first term (4.24) of this expression, the following integral :

I dyV1(y)VV(x - y)pB
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- / dy-/(y)AV(x - y)pB

4we2pB / dy~f(y)8(y - x)

4ne2pBf(x)

So (4.24) becomes :

Lfc,2LitR2^ m^^ //dy^y*T(y3)7(y4)w(p(y3)p(y4))

^pSu,(Dr,Dr) m

We want to stress that it is exactly at this point where the long-range of the

potential plays a fundamental role.

The other terms (4.25) and (4.26) are zero, as will be proved below.

4. We now proceed to prove that all the other terms in (4.23) vanish in the limit,

(a) We deal first with :

tfc 2^m JJdyidy2 ^(^)7(y2)(2m)-4

w ([A20+(y1)0(y1) - 2A0+(y.)A0(y,) + 0+(j/l)A20(y1)]]

[A20+(y2)0(y2) - 2A0+(y2)A0(y2) + 0+(y2)A20(y2)])

By applying several times the Gauss-theorem, we see that this last expression

simplifies to :

lim „,L.R—oo 2L
^(2m)-4 jjdyxdy2 A2^(yx)A2-f(y2)u(p(yx)p(y2))
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—4 lim r(2m)-4 JJdyxdy2 Re[A27(y,) £ 52,,7(y2)
l,r-<x> 2Lit R2

k,k'

e2
+4 lim

« (/'(yi)(V'+(y2)^,0(y2) + ^,0+(y2)0(y2)))]

(2m)-4 /7dy,rfy2 £ ^%,7(yi)92y7(y2)
JJ k,k',j,j'

L.R-oo 2Z,7TÄ2

<" ([V-+(yi)^,0(yi) + a2,,0+(y1)0(y,)]

[V'+(y2)^,0(y2) + Ö2J,0+(y2)0(y2)])

This can be written in the following way :

-Jdyx((p^)(yx)-p2B + 8(yx)pB)
(2m)

Lfc -^-fii jdy2A21(y2)A21(y2 + yx) (4.44)

- E jêy fdVi (fo(W)(Vi) - Pb(p(X)pV) - %i)(a»(1)pV >)

k,k' { ' J

lim /<iy2^,7(y2)A27(y2 + y1) (4.45)

+ Ä5L (£fZ Ç, {//<^^ i//<^2'
dlMy2)dlk,-f(y2 + y,)(p(2)p1PÎV2pJ2')(yi) (4.46)

+ Jdyr Jim -L Jdy^d]Jiy(y)dlk,i(y)(pWpkpkVV") (4-47)

+ integrals with higher order derivatives on the testfunctions}

We already remarked ((4.21) and (4.22)) that in order to contribute to the

limit there must not be any derivatives of xR- This means that for (4.27)

we only need to analyse the limit :

We make a limited Taylor expansion (0 < 0 < 1) of (yr2 + yrx)h(^jf^-)
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ylKyi) + y\(yT2 + WM^t*) and obtain :

lim \l-6 Jds^(sh(s))^(sh(s) + y[(s + °-f)h(S + °-f)) L-^ 0

So by dominated convergence, (4.27) does not contribute since the remaining

integral is nothing but sumrule (3.10).

By analogous arguments—a finite Taylor expansion, rotation invariance

and sumrule (3.14)—one verifies that also the second term (4.28) is zero

in the limit.

The third term (4.29) is slightly more complicated. Only the case k k'

j j' r needs to be studied;the other cases are trivially zero as we first

take lim R —» oo. Under the assumption (3.6) on momentum-momentum

correlations, one sees that (/>'2'(Pi)2(P2)2)(!/i>2'iLr) is integrable in yxT for

fixed y\. Moreover since

/
0 for yr jt 0

the integral

Jdytr(p{2)(pTx)2(pr2)2)(ylytT

is integrable in y[ Thus, one obtains that

tends to zero by dominated convergence.

The other terms (4.30) in that third term are trivially zero.



176 Broidioi and Verbeure H.P.A.

(b) The second term is :

Ä 2^R2 jjdyidy2-I^^Û
{u ([A20+(y,)0(y,) - 2A0+(y1)A0(y1) + 0+(y1)A0(y1)]

V (0+(y2)V (V*[p- pB])(y2)0(y2))) + c.c.}

It is straightforward to see that this is equal to :

e2^
4m2

2e2^2

4m2
fc,*'

J dyx (</>(2)) -p2b- 6(yi)pB) Lfc /dy2l(y2)A21(y2 + y,) +

Y /^ ((pmMKvi)-PB(plW) + s(vi)(Wf))
k,k' J

.fc2Ì/<fm(ì'2)^'7(y2 + J/l) +

£ Idy2Ù Idyì ({p{3ì){yuy2) - to^to) + 2(p(2))(y2)^(î/i)

-^[^(2))(y,)-P2B + %iH)
'I"1 or P2 / rf!/3A7(y3)V7(y3 + y2 - yi) +

Y S /*»iä* /d!" (g^Wk*. ») - p2B(P(1Vpk')

+ (p{2)Pk2P^(y2)8(yl)(p^pkPÎ')(y2)S(y1) - PB(pmpM')(yi)

-pl(p{l)Pkpk') + PB(p{1)pkpk')8(yx))

i fc 2LwR2 J <fj/3ÖM'1'(J'3)V7(2/3 + y2 ~ yi

By the cluster properties (3.1) to (3.4) and by dominated convergence one

can take the limits R —? oo and L —? oo. All the terms yield zero : the

first, the third and the fourth by taking the limit and for the second term

we get zero by sumrule (3.14).
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(c) We now turn back to the terms (4.25) (4.26) to prove that they are zero :

fc> 2LirR2 // dy3dy" i W ^+(y3i / rf!/iV7(yi)VV(y3 - yi)[p(yi) - pB]0(y3

0+(y4) I dy2V1(y2)VV(y4 - y2)pB0(y4) J -feci

-4?re
m22LvkI^ Ûh {(p(3)){y^ ' PB{P{2))M+

2(^(2))(yi)%4) - pb [(p(2))(y.) - p2b + pbHvi)])

lim / dy3V7(y3)7(y3 + y4 - yi
L,R—»oo y

By the cluster properties (3.1)(3.2) and by dominated convergence, this is

^IdyiÛ3Idyi (^(3)>(y"y4) - t">(pmHy*)+

2(p{2))(yl)S(y4) - pB [(p(2))(y,) - p\ + /»u%i)])

which is zero by sumrules (3.11) and (3.10).

The second term (4.26) was :

Lfc>m22L7rfl2 dy3dy*u hß+(y3) dyxS7-y(yï)S7V(yl - y3)[p(yi) - pB]0(y:

^+(y4) / dy2V7(y2)W(y2 - y4)[p(y2) - ?fi]0(y4)

&E idy^ (^+(°) /*> WïiMvi) - pbMo)
m

k,k' J \ J

^+(y4) / <^y2^fc'V(y2)[p(y2 + y4) - ps]0(y4) J

t fi-oo 2Lx/?2 / rf!/3 ^*7^1 + y3)dk'^y3 + y2 ~ y4)
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(^)2 jdy4u (^l>+(o)jdyxdrV(yx)[p(yx) - pB]0(o)

Tn fy+(o) Jdy2drV(y2)[p(y2) - pbMo) J

One can show that this expression is zero, as a consequence of (3.9) and of

the space-reflection-symmetry of the state. We make a simple substitution

xi := —yx and we get :

(m")2 Jdyi /^1 fep^ (0+(o)p(-x,)0(o) jdy2 -^p(y2 + y4)0(y4))

Substitute x4 := —(y4 + y2) :

-(-)2
m

u> (0+(o)p(-Xi)0(o)0+(-x4 - y2)p(-x4)0(-x4 - y2))

u (0+(o)p(x,)0(o)0+(x4 + y2)p(x4)0(x4 + y2))

(by the space-reflection invariance)

0

5 Discussion

In this paper we explained for a large class of boundary conditions the mathematical role

of the plasmon frequency : it is an eigenvalue of the dynamical system generated by the
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fluctuation operators. In particular we proved that the average position and momentum

fluctuations — at least at high temperatures and low densities — generate a dynamical

system, dynamically independent from the other variables of the system. These variables

behave dynamically as the momentum and position of a harmonic oscillator with frequency

equal to the plasmon frequency.

Technically a first indication towards our results can be found in [ALM; eq.2.34],

where dynamical independence of some correlation functions is derived. Earlier work

[JLM] revealed heuristic arguments for this.

Furthermore, this paper gives a rigorous and explicit formulation of the plasmons as

boson fields and particles. It is explicitly derived that this plasmon field is the average

position fluctuation of the center of mass of the system, whereas the conjugate field is

the average momentum fluctuation. We showed that there is no need for an artificial

supplementary construction or quantization-procedure in order to obtain the quantum

plasmon. Our work shows that this macroscopic quantum character is a consequence of

the microscopic system.
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