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Quantum Logic Requires Weak Modularity

By D. J. Moore

Département de Physique Théorique, Université de Genève
CH-1211 Genève 4, Switzerland

(26. III. 1993)

Abstract. The spirit of quantum logic cannot be extended to systems, such as separated quantum
entities, which do not satisfy the axiom of weak modularity. This is because the implication
relation has no definite equational characterisation in such systems.

1 Introduction

There are many different approaches to the foundations of quantum mechanics. Here
we are interested in just two, namely the axiomatic approach of Piron and Aerts and the
quantum logic approach. Loosely speaking, the former is based on what one can do to the
system, namely the (not necessarily ideal) experiments that one can perform. The latter,
however, is concerned with what one can say about the system and to what extent one
can treat the resulting algebraic structure as a logic.

Our aim is to show that the quantum logic approach suffers sever difficulties if one
tries to apply it to systems of separated quantum entities. These systems, first discussed

by Aerts in 1982, violate what is known as weak (or ortho-) modularity. Weak modularity
was first postulated as a way of trying to recover the usual Hilbert space formalism of
quantum mechanics and is a weaker version of the property of modularity considered by
Birkhoff and von Neumann in their pioneering work. Here we show that no further weaking
of the set of axioms is possible if one wants to consider the physical system in terms of a

genuine logic. Hence no quantum logical interpretation of systems of separated quantum
entities is possible.
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2 Properties

In this section we will briefly outline the "Geneva school" approach to the axiomatic
foundations of quantum mechanics. More details can be found, for example, in Aerts
[1982] and Piron [1990]. We start with the idea that the essential feature of the physical
system which we wish to model is what we can do to that system, that is the experiemental
projects that we can perform. There is no loss in generality in just considering eperimental
projects with two possible outcomes "yes" and "no"; we simply choose the result desired
in a given experiment and assign the response "yes" if we obtain it. For example we

may assign the result "yes" if there is a darkening of a photographic plate in a certain
pre-defined region and "no" otherwise.

The approach followed here is explicitly realistic, the elements of reality being those
experimental projects which we are certain would give "yes" in a given state if we were
to perform them. Such projects are called certain. It is then natural to regard two
experimental projects as equivalent if they are certain for exactly the same system. The
corresponding equivalence classes are then the properties of the system. A property is
called actual if the corresponding experimental projects are certain, otherwise it is called
potential. This leads to a canonical partial order on the set of properties; a < b if b is
actual whenever a is actual. It is this implication relation that will allow us to model the
physical system mathematically. Note that the set of properties is a complete lattice under
this partial order.

We can define an orthogonality relation on the set S of states of the system in the
following manner; £\ _L £2 if there exists an experimental project a for which the result
"yes" is certain in the state £x and impossible in the state £2. That is orthogonal states
are those that can be separated by an experiment. If we then postulate three physical
axioms1 we find that the states are just the atoms of the lattice of propositions (that is the
minimal non-zero propositions) and that each property is represented by a biorthogonal
set A of atoms ((A A, where A is the set of states orthogonal to all states in .4.).
We note that J_ is an orthocomplementation, (A±)± -4., ^l n A± 0 and .Ai Ç A2
implies that A2 Ç A1 so that the lattice of properties is in fact an ortholattice.

Many systems of interest, such as a single particle, satisfy two further axioms, known
as weak modularity and the covering law. An ortholattice is called weakly modular if a < b

implies that a V (6 A a') b. A weakly modular lattice is often called an orthomodular
lattice. On the other hand a lattice satisfies the covering law if whenever p is an atom and

aAp 0 then a < b < a Vp implies that b a oi b — a\/p. Such systems have been called
entities by Aerts [1982]. These five axioms have been shown to be (relatively) consistent
by the explicit construction of a model in which the experimental projects are represented
by certain operators on a Hilbert space [Cattaneo and Nisticó 1991].

The last two axioms are much less intuitive than the first three, however they provide a
fundamental representation theorem for systems such as the single particle. In fact we find

1 We do not have space to discuss these axioms in detail, they can be found in Piron
[1990]. Physically they correspond to the following two tenets; (1) if a property becomes
actual another must pass into potentiality, (2) every property is the inverse of another.
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that all entities, as long as their property lattice is big enough, can be described in terms
of a set of generalised Hilbert spaces indexed by the set of minimal classical properties
[Piron 1976]. Note that a property A is classical if for any state either A or A is actual.
The minimal classical properties are often called superselection rules. This motivates the
habitual use of Hilbert spaces to describe at least simple systems in quantum mechanics,
as well as allowing rigorous descriptions of two-body systems and the Mössbauer effect,
where the centre of mass of the system must be treated as a superselection rule and not
as a quantum variable.

It is a mistake however to think that all physical systems must satisfy the last two
axioms. For example, Aerts [1982] has clearly shown that a composite of two separated
quantum systems cannot satisfy either axiom. In particular, one cannot describe two
separated quantum systems by the tensor product of the corresponding Hilbert spaces,
even with the addition of superselection rules. Hence Bell's inequalities will be violated
whenever the system is broken into separated systems; that this can occur in classical as
well as quantum mechanics has been shown by Aerts [1985,1991].

3 Propositions

We now turn to quantum logic. The difference in philosophy between this approach
and that of the "Geneva School" is that, while Piron and Aerts start with the idea of
what one can do to the system, in quantum logic the emphasis becomes what one can
say about the system. More explicitly, the set of propositions that can be made about
the system is considered to be a weakly modular ortholattice £. As the lattice operations
A, V and ' are at first sight reminiscent of the logical connectives "and", "or" and "not"
one is then tempted to try to treat this lattice as a kind of logical structure, a so-called

quantum logic2. On such a logic a state is defined to be a generalised probability measure,
that is a map s : £ —> [0,1] such that s(l) 1 and if {ai} is a set of mutually orthogonal
propositions .s(V;ai) J2is(ai) [Ptâk and Pulmannovâ 1991].

Of course not all realisations of such structures will represent physical systems in the
sense we have used here. For example Greechie [1971] has constructed weakly modular
ortholattices which do not have any states. This in itself is not an objection to the use of
quantum logics as we merely seek a framework in which to work. Our objection is that the
axiom of weak modularity is absolutely essential to the spirit of such an approach, which
can then not deal with, for example, separated quantum entities.

To be able to consider such an algebraic structure as a genuine logic one needs an
implication and a semantics, that is notions of "deduction" and "truth". As our structure
is algebraic we would like to define the implication as a binary connective, that is as a map

2 It is important to note that a study of physics from this perspective leads naturally
to more general logico-algebraic structures such as orthomodular posets [Ptâk and
Pulmannovâ 1991] and orthoalgebras [Foulis et al. 1992]. In all such structures the notion of
weak modularity is retained while other axioms defining the set of propositions are relaxed.
More discussion of the differences between these approaches may be found in Piron [1993].
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—>: £ X £ —* £. However Hardegree [I981a,b] has shown that any such connective that
satisfies the three minimal deduction conditions entailment (a —+ b means that a implies
6), modus ponens (a and a —> b entails b) and modus tollens (V and a —» b entails a') leads
to a weakly modular structure. Hence implication connectives are not available in the
non-weakly modular case. We note that even in the weakly modular case the implication
connectives do not satisfy all the classical conditions desired. Some authors have tried
to remedy this problem by redefining the connectives A and V [Finch 1969, Roman and
Rumbos 1988]. However the new connectives, defined in terms of the left adjoint of the
implication, do not satisfy such conditions as commutativity. In our opinion this approach
then causes more problems than it cures.

The lack of an implication connective is not necessarily fatal to the extension of
quantum logical ideas however, as we can retreat to the idea of an implication relation.
Such an approach has also been used in the weakly modular case [Pavicic 1987]. The
motivation there was that the implication connective is not unique in non-distributive
ortholattices, a fact first noticed by Weyl [1940]. Pavicic showed that the weakly modular
ortholattices are precisely those where the possible implication connectives reduce to the
implication relation.

As implication in the lattice of propositions defines the partial order <, it is clearly
this relation that we must take in the general case. However for the partial order to be an
implication relation in the usual sense it must satisfy the minimal condition of testability.
Here testability has the usual intuitive meaning of allowing us the possibility to falsify a
statement about which properties imply which others. This condition is minimal as the
existence of a Kripkean (many-world) semantics requires the knowledge of the possible
worlds in which an implication is true. We show that even this minimal requirement is not
satisfied in the non-weakly modular case, making the extension of quantum logical ideas

extremely difficult, if not impossible.

Now the implication a < b is equivalent to the equation o a A 6 and so a < b if and
only if s(a) s(a A b) for all states s. However this does not provide genuine testability
as it is a relation between two probabilities and so can, at best, be supported statistically.
There is no way to falsify such a relation. For this stronger requirement we need a definite
equational characterisation of the partial order, that is a two-place function I : £ X £ —* £
such that I(a, b) 1 is equivalent to a < b. In this case a < b if and only if s(I(a, b)) 1

for all states s, a condition that does lead to testability in the usual intuitive sense.

We now show that such a definite equational characterisation exists if and only if
the lattice of propositions is weakly modular. We first need the following lemma (see for
example Kalmbach [1984]).

Lemma Let £ be an ortholattice. Then £ is weakly modular if and only if a < b and
a' A b 0 implies a b.

We can now prove the main result of this section.

Theorem Let £ be an ortholattice. Then the partial order has a definite equational
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characterisation if and only if £ is weakly modular.

Proof: If the ortholattice £ is weakly modular then it suffices to take I(a, b) a' V (a A 6).
We now show the converse, namely that weakly modular lattices are the only ortholattices
that allow such a characterisation. Let us write T2 for the set of two-place functions
/ : £ x £ —> £. Imagine that the ortholattice £ is not orthomodular. Then by the lemma
there exist distinct elements x and y of £ such that x < y and x' A y 0. Now as x < y
we have that y' < x' and so x A y' < x A x' — 0. Thus x Ay' =0 and one can easily see

that the subalgebra of £ generated by x and y contains only the elements x, y, x', y', 0

and 1. We write Ai {x,y}, A2 {x',y'}, A3 {0} and A4 {1}.
We proceed by showing that for any element I(a,b) of T2 with I(x,y) 1 we must

necessarily have that I(y,x) 1. Hence such an equation cannot represent the partial
order as x < y but y jt x. Let p and q be arbitrary elements of {0,x,y,x' ,y', 1}. Then
one can show that the subsets Ai to which p A q, p V q and p' belong depend only on the
subsets to which p and q belong. Hence by recursion I(x,y) and I(y, x) must belong to the
same Ai. In particular, we can have that I(x,y) 1 if and only if I(y,x) 1, completing
the proof. ¦

Thus one cannot generalise the spirit of quantum logic, that the system is described
by propositions that one can treat as a kind of logic, to non-weakly modular systems. Even
in the weakly modular case we must take care, as the function / must necessarily invole the
orthocomplementation. However this is only given implicitly once the entire order relation
is known. Hence we can at most test whether the entire ascription of the partial order is
correct.

Finally we note that the Kripkean semantics of the weakly modular case are not
straightforward either. This is because the axiom of weak modularity cannot be expressed
as a first order formula in the orthogonality relation. Hence the standard approach to the
Kripkean semantics of a modal logic, namely the use of a frame (X, R) for some relation
R on the set X, is not available. This argument is due to Goldblatt [1984].
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