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Abstract

In the framework of the weakly-coupled ÏP((p)2 models we summarize some of the problems

raised by a new method for finding bound states, called the variational perturbation method. To

show first its interest, we present a result of this method, from which the existence of a bound

state follows simply by solving a Schrôdinger equation, and which allows to find time-zero

eigenvectors at first perturbation orders. The main part of this paper is devoted to the review of
the problems encountered by the restriction to zero-time vectors (existence of zero-time vectors in

the domain of the Hamiltonian, asymptotic series of zero-time vectors approaching any vector,

and particularly those of the one-particle subspace). Lastly we present a new quantum and almost-

relativistic model for the two-particle system at low energy, deduced from the ^(9)2 models by

these considerations.

Introduction

The first construction of Quantum Field Theory models, the weakly-coupled 2>(<p)2 models, by

Glimm, Jaffe and Spencer [1] in 1973, was a capital step in the history of Physics, showing that

the concepts of Relativity and Quantum Physics are not mathematically incompatible.

Unfortunately the weakly-coupled 3>(<p)2 models describe a Utopian world of massive, spinless,

chargeless and weakly-coupled particles in a two-dimensional space-time. Since then many efforts

have been made to find other models, more closely related to the observable world, in order to
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make comparisons with experimental measurements. Even though this goal has not yet been

reached, the models already constructed [1] are encouraging and make this subject, called the

Constructive Quantum Field Theory, an important branch of modern mathematical physics.

Meanwhile it would be an error to neglect the study of the 3>(<p)2 models only because they are

too simple. Their construction is indeed not trivial, so we must take advantage of their existence.

They can be used as a laboratory to test many ideas or questions about relativistic and quantum

system behavior. Some important problems have already been solved, such as the existence of
diffusion and bound states [1]. But many other questions have not been treated, at both

mathematical and physical level.

Here we are interested in the two-particle phenomena at low energy. In that domain, among

many others the following questions arise naturally :

Physical questions. What is the two-particle phenomenology at low energy Is it governed by

the Schrôdinger equation at first approximation If it is the case, what is the "effective" potential

And what are the deviations to the Schrôdinger previsions Are they supported by some

underlying relativistic kinematical laws

Mathematical questions. We know that the representation of the state space by the fields acting

on the vacuum state is not injective, which sometimes causes difficulties. Can we find a dense

subspace with an injective parametrization, in which the dynamics of the two-particle system is

easily described, in a natural way

More generally, these two questions can be summarized as follows : does there exist a simpler

theory for the two-body system which gives the same predictions as the weakly-coupled 3>((p)2

models at low energy with a precise error estimate

This approach, which emphasizes the role of the vectors of the state space, is generally

neglected in Quantum Field Theory (Q.F.T.). We try to take a step in this direction and give a

tentative of answer to some of the above questions. This paper summarizes other publications

(except §3), to which we will refer for the detailed proofs. The presentation, sufficiently detailed

for non-specialists, will follow the order of the problems listed just above. § 1 gives a result for
the two-body system, obtained by a new method for finding bound states, called the variational

perturbation method, initially proposed by Glimm, Jaffe and Spencer. An equation is given,

which connects two Rayleigh quotients, one of the Q.F.T. and the other of its non-relativistic

limit. From this equation it is easy to deduce the existence of a bound state, by simply solving a

Schrôdinger equation. Moreover by comparison with the literature we conclude that we have
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obtained the eigenvectors at first perturbation order. In §2 we discuss the subspace of the state

space in which the calculations have been done, the zero-time subspace 30. The restriction to this

subspace is sufficient for our purpose, because all vectors can be approached by an asymptotic

perturbation series in 30. Moreover 30 contains vectors in the domain of the Hamiltonian, and

the orthogonal projection of any vector on the one-particle subspace can be also approached by an

asymptotic perturbation series in 30. All these results need an analysis of the Schwinger

functions in momentum space, that we deduce from a new programme, the WTI Programme. In

§3 we present a new, simple, quantum and almost-relativistic model for a two-particle system at

low energy, deduced from the above considerations, and for which the research of the bound

states leads to the same equation as in § 1.
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1. An equation for the two-particle system

A weakly-coupled 3>(9)2 model is an example of the Wightman Quantum Field Theory in a

two-dimensional space-time, describing massive, spinless, chargeless, identical particles with

weak mutual interaction. Such a theory is given by four quantities (<%", V, 9, Y), that is a Œ-

Hilbert space SP (the state space), a scalar, unitary and continuous representation V in SŒoî the

Poincaré group of the two-dimensional space-time, a dense subspace r in SP and a field 9,

mapping ^(E2,K) in the self-adjoint operators with domain T and range in T, all these objects

satisfying the Wightman Axioms [1].

We denote by H (Hamiltonian) and by P (momentum) the infinitesimal generators of the

temporal and spatial translations respectively. The Mass operator M is given by

m=Vh2-p2.

The problem of the existence of bound states concerns the discrete part of the spectrum of M,
which is expected, for such models, to be as follows :

0 m 2m

• • o fc

m.B

discrete

continuous

where the eigenspace associated to 0, called the vacuum subspace, is one-dimensional and

belongs to T, and the eigenspace corresponding to m>0 (the one-particle mass), called the one-

particle state subspace, carries an irreducible representation of the Poincaré group. Above 2m,

which is not an eigenvalue, the spectrum is continuous, and corresponds to the states with more

than one particles.

The eigenvalue mB, whenever it exists (depending of the model), is interpreted as the mass of a

two-particle bound state. Its existence suffices to prove that the model describes really interacting

particles.

The set of these models is parametrized by three quantities (m0,9>, X), where mo>0 is the one-

particle free mass, 3> a positive-valued R—>R polynomial called the interaction polynomial, and
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The set of these models is parametrized by three quantities (m0,CP, X), where mo>0 is the one-

particle free mass, 9> a positive-valued R-»R polynomial called the interaction polynomial, and

X>0 the coupling constant. The weak coupling refers to X, which is taken small. A,=0 describes

models without interaction (which we call free models). In the following we consider families of
models which differ only by X, that we note &= {(<%\, Wx, <px, rx), Xe [0,Xmax]} for some

Xmœp>0 (we put a X-index everywhere). The set of these families can be parametrized by tn,, and

ÎP. In such a family there exists a vector f\ in the vacuum subspace of <%\ for each X such that the

scalar products (iix ; 9x(f)n£ix)™ are C° functions of X on [0,A,mai], for all ne N* and all fe

^(R2).

The complete information on the discrete part of the spectrum of M has been obtained by the

Bethe-Salpeter method (see the references in [3] and [9]), which can be compared to the method

of analysis of the resolvent-operator used in Quantum Mechanic (Q.M.), as much for the

functional analysis technics involved as for the quality of its results. This method confirms the

general structure of the spectrum pointed out above, where m^ is a C°° function of X on [O.À^^J

with m>_0=mo for each family J?*7 Moreover this method gives necessary and sufficient conditions

on the polynomial U> for the existence of a bound state. If it exists, it is unique, and the corresponding

eigenspace carries an irreducible representation of the Poincaré group. Its mass mB^ is a C~

function of X on [0,Xnuix) converging to 2m,, (which is not an eigenvalue) when X—*0.

An other method, called here the variational perturbation method, initially proposed (in a

simpler version) by Glimm, Jaffe and Spencer [2, p. 175-7], has been explored. Let us suppose

that we know all about the spectrum of M, except the existence of a bound state. Thus we are only
interested to know if the spectrum of M is empty or not in the open interval (mx, 21%). This

method is adapted to this question. It works in a given family 3r={(<%'x, Xe [0,.]} and

combines three ideas.

First mB is defined by the minimum of a Rayleigh quotient (we drop now the X-index

whenever it is not necessary for the understanding) :

2 (y;M2y)
mR inf

rW<E r ¥ ; ¥

where 5^is the intersection of D(M), the domain of M, and the subspace (l-Eo-Em)<%*, E^ being

the orthogonal projector associated to the eigenvalue u of M (we take the Rayleigh quotient of M
rather then of M because it simplifies the calculations). Here (.;.) is the SP scalar product. The

interest of the Rayleigh quotient lies in its capacity of regularization : if *¥x is an eigenvector for



572 Frochaux

mB^ for all X, then it must be singular when A,—»0 (because the eigenvalue disappears), while the

quotient ()VX ; M2*PX)<<^/(*I'X ; f))^ (mB x)2 is continuous in this limit (even C°°), as we have

just seen. Thus it allows a perturbation development in power of X.

The second idea consists in a good choice of test vectors. We restrict ourselves to vectors of
the following kind :

N MI V Z e[(fj) ax € sex
i=0 j=0

for all N, Me N and suitable functions fj, where ©x(f) 1 and 0^(0» j6 N*, are the zero-time

fields, formally given by

ei,(f) JRJdjx f(x„ ....Xj) icp^O.xO-^O.Xj):.

The double points :.: denotes the Wick polynomials (see §2, where the existence of such vectors

is discussed). This choice of zero-time fields avoids the use of too many variables. The particular

X-dependance of the test vectors is not necessary, but it help the calculation. Note that X plays here

a double role: it indicates to which Hilbert space §£x the vectors belong, and it is a small parameter

which allows perturbation expansion. Because of the weak coupling, the solution of the

minimization problem approaches that of the free model. Thus the term with f^ is expected to play

a dominant role, while the functions fj, j*2, will be suppressed.

The restriction to 30, the set of zero-time vectors, tends to approach the picture of the

Q.M.. This can be understood as the choice for which the momentum operator P is diagonal,
because it acts on 30 as follows :

PS^fi e^PfJQ,

where Pf denotes the usual action of the momentum in Q.M.. While the operators H, M or L
(Lorentz generator) are expected to act on 30 in a more complicated way (see §3).

The third idea consists in introducing the singularity at X=0 in ^ before the calculation. We try

to guess it, by the help of the following argument : the localization of the bound state (in the space

of the relative variable) must vanish when the interaction disappears. We introduce a scaling for
the relative variable of the function f£ (which play the main role), replacing xrel by Siret, where 5

is a function of X which goes to 0 when X—*0.

We give here a result of this method, after having minimized the Rayleigh quotient in varying
5(X) and the functions f], but not the function f f£ (that is, the functions fj are given in terms of
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f). To simplify, we give the result for some families of weakly-coupled 3>(9)2 models, as in [3]

(where the interaction polynomial U> is even and has a non-zero fourth degree term ; these

restrictions are removed in [4]). The analytic part uses some quotient of norms q(f) (quotient of
some Sobolev norms), well defined for example if fe S^(R and f#0.

Theorem. For all fe L2(R2) with well defined q(f) there exists a vector *Ff satisfying :

i) <FfeD(M)n(l-E0-EJ<r,

ii) P*Ff «Ppf,

m) &Ù**jL (2m)* + 4m-3,2 <f;H^i)f> + x„
(^f;*f) <f;f>

aw/ f/iere «cisf K.K'e (0,°°) such that, for all X<[K'q(T)]'1 :

|j?(f,X)| < K
q(04

1 - XK'q(f)

Here <.;.> is the L (R scalar product and H^X/m2)) is the relative part of the Hamiltonian of

the non-relativistic limit, obtained by Dimock [5].

The proof of the theorem, and the precise form of *Ff, H^J and q(f) are given in [3] and [4].

Note that in the theorem, the speed of light is a fixed constant. The effective non-relativistic

limit comes from the scaling in the relatives variables. But the center of mass system is always

treated as relativistic.

The problem of the part of the spectrum of M in (m, 2m) is now reduced to a problem of
Q.M., i.e. if the spectrum of H^jJ has a negative part.

Corollary. If there exist fe L2(R2) with well defined q(f) and E>0 such that :

<f;H^(l)f>/<f; f>=-E, then the spectrum ofM is not empty in (m, 2m- mT^E].

If we assume that the spectrum of M is purely discrete below 2m, as pointed out above, the

corollary states that a bound state exists when some conditions on H^J are satisfied (this turns out

to give conditions on the interaction polynomial 3> Moreover its mass mB is bounded by : mB <

2m-nf4X2E.
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The comparison with the precise results given by the Bethe-Salpeter method is surprising. The

conditions on the interaction polynomial 9> for the existence of a bound state are the same, and the

value for mB is exactly the bound given above, at first perturbation orders. Thus we have actually

reached the bottom of the spectrum of M on 1 -E0-Em)<%', and {*Pf, f as in the corollary} can be

seen as the eigenspace (given by zero-time vectors), at first perturbation orders.

This surprise allows a new view on the formula iii) of the Theorem. It gives not only a new

connection between the Q.F.T. and its Q.M. non-relativistic limit, but also a new interpretation in

terms of particles of some (zero-time) vectors of the state space in Q.F.T..

The theorem allows two interesting developments (passing over the adaptation to other

models). We can calculate the next perturbation terms, minimizing over the functions f2, fj, etc...

This could lead to the relativistic corrections to the Schrôdinger equation (at zero-time), proposed

by the weakly-coupled 3>(9)2 models [6]. The second development leads to the creation of a new

theory, by halting the calculation at an intermediate step, before doing the 5-expansion, that is

before taking the non-relativistic limit. We obtain in that way a new model for the two-particle

system, quantum and almost-relativistic (not exactly relativistic because of the perturbation approach),

which has the property to have the same non-relativistic limit as the CP(9)2 models (see §3).

The proof of the theorem can be divided into two parts of different nature. The first part
constructs a zero-time vector 4*f in (l-E0-EJ)ffî, which satisfies the formula iii) up to 0(X3) (see

[3] or [4]). Here the analytic difficulties are neglected, and the expansions in powers of X are

taken as formal series. So this part is rather "algebraic". It can also be done, with suitable

modifications, for other Q.F.T. models. The second part (the "analytic part"), concerns the

control of the remainder ^(f,X). It is specific to models with rigorous mathematical construction.

The method given here works for the weakly-coupled ^(9)2 models, but is certainly not strong

enough for other models. To obtain the formula iii), expansions in power of X have been

performed at three stages :

developments of the scalar products (ei(f)ii;M2ei(g)n), (ei(0ß;(l-Eo)ei(g)n)

development of the Rayleigh quotient,

development in the scaling parameter 5 (taken as a function of X).

The control of the remainders of the last two expansions is easy but tedious. It is given in [3] and

[4]. The control of the remainder of the first expansion is more difficult and we need to go back to

the details of the construction of the models. It is obtained by combining [3], [4], [7], [8], [9]. In

§2 we present an outline of these works.
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2. Analysis of the zero-time subspace

We present here the analytic problems encountered in the use of zero-time vectors in the theorem

of §1. More generally, let us go back to the presentation of the variational perturbation
method. A subspace ?^of J^is required, which, for the convenience of the calculations, should be :

1) contained in the domain of M, with scalar products (.;M2.) C°° in X,

2) orthogonal to the vacuum and one-particle states,

3) large enough (dense in (1-E0-Em)^,
4) small enough (parametrized injectively by a space of functions),

5) convenient (the operators P, H, M, L should act on it in a simple way).

The aim of this paragraph is to show that some suitable subspace of 30, the zero-time

subspace, could be an acceptable candidate for such a subspace.

About question 1): the zero-time vectors are given by some limits, so the question of then-

possible presence in the domain of M (which is an unbounded operator) makes it necessary to go

back to the basic definitions. After having exposed the main points of the construction of the

!?(9)2 models (§2.1) we can state the problem (§2.2). The difficulty consists in the control of the

asymptotic decrease of the Fourier transform of the so-called Schwinger functions and of their

derivatives with respect to X. A new programme, the WTI Programme, is established to

investigate this problem (§2.3). It allows us to prove (§2.4) that there exist zero-time vectors in
the domain of M and M2, and that for two such vectors %, Ç, the scalars product (%, Mv Ç),

ve (0,1,2,3,4), are C~ in X.

About question 3): we do not prove that 30 is dense in <%fi, but § 2.5 states that it is "almost

dense", in the sense that all vectors of St? can be approached by an asymptotic series (in power of
X) of vectors of 30. Then the restriction to 30 has no consequence for any investigation

involving a perturbation calculation. The orthogonalization with respect to the vacuum and one-

particle states, (question 2)), is studied in § 2.6. The projection (1-Eq-E^ of any vector Ce 30
can be approached again by an asymptotic series (in power of X) of vectors of 30.

About question 4): let us recall that we have chosen the zero-time vectors subspace especially

for this property to hold. We do not need to prove it, because we do not encounter difficulties by

having too many variables in working with 30.

About question 5): 30 is satisfying for the free models (§ 2.2). For the interaction case, we

discuss this problem in § 3.
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2.1 Construction of the weakly-coupled 7(9)2 models :

the main points

The construction of the weakly-coupled !?(9)2 models by Glimm, Jaffe and Spencer [1] uses a

large detour, passing by the so-called Euclidean Field Theory (i.e. with imaginary time). We

expose first this theory (for more details see [7] and [8]). The basic tool is a probability space

(Q,L,H), where

Q ^"(R2,R),
Z is the Borei o-algebra of Q (given the weak topology),

|i is a probability (i.e.normed, positive) measure on L satisfying some conditions.

The conditions on p. are the Probability Axiomsfor Quantum Field Theory, stated below. By the

Minlos theorem there is a one-to-one correspondence between the probability measures on £ and

the functions Sf : 5^(R2,R) -> Œ satisfying :

i) Normalization : <i?(0) 1.

ii) Continuity : ^ is continuous.

iü) Positivity : for all ne N* and fe ^(R2)n, let Ajj ^(f; - fj). Then A is a semi-positive

definite matrix.

In this correspondence S? is the characteristic function ofp, that is

J<Wo)
<<?(f) J e1**™ dji(q) for all fe^(lfalR)

qeQ

where 9 (the Euclideanfield) is the map from J^(R2) to the random variables on (Q,£) defined by

(t>f(q) q(f)forallqeQ.

The Minlos theorem generalizes the Bochner theorem for infinite dimensional integration

spaces. It gives an easy way to obtain probability measures on L. For example f H> F(fc(f,f))

satisfies i), ii), iii) if F is any continuous, positive-valued function on R satisfying F(0) 1 and if
ft(f,g) is any semi-positive definite bilinear form continuous on 5^(R2) (this statement follows

from the proof of proposition 1.1.2 of [6]).

Let^ be the Euclidean group on R2 (rotations, translations and reflections), acting on J?"(R

in the usual way. We single out a particular direction in R which we call Euclidean time ; a point
in R will be written as x (x, x), where x is an Euclidean time, and x is a space point. Let
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(T(x), xe R2} a'ß denote the subgroup of translations, and let 06^ denote the reflection in the x

=0 hyperplane. We also define:

^ {fe^(R2), f(x,x) 0 if x<0 }.

From now on, we write SP instead of ^(R2) or 5*(R2,R).

The Probability Axiomsfor Q.F.T. are the following conditions on n, in term of i? :

i) Euclidean invariance : ^(yf) ^(f) for all yeß, fe SP.

ii) Osterwalder-Schrader positivity : for all ne N* and fe (S"+)n, let Bi j <€(9f; - fj).
Then B is a semi-positive definite matrix.

iii) Cluster property : lim [V(f+T(sx)g) - ^(f)^(g)] 0 for all xe R2-{0} and f.ge SP.

iv) Regularity : for all fe SP, a i-Vi^af) is of class C~ in an R -neighborhood of, a=0 and

there exist a Schwartz space norm I.. .1 and finite positive numbers a,b,c with

|d^f(af)|a=0 | < abn(n!)clfln forallneN*

From the last axiom the moments of \i exist as tempered distributions :

S„(f) J <t>f,(q) - <Pf„(q) d|i(q) for all ne N* and fe SP«.

q€Q

As consequences of the above axioms, the distributions Sn satisfy the Osterwalder-Schrader

axioms [7], so there exists a Wightman Q.F.T. model (3£, V, (p, T) such that the Sn are the

analytic continuation of the distributions (ß;cp(f{)¦ -(p(fn)ß) ™ to imaginary time [10]. The Sn are

called the Schwinger distributions. Let us give the construction of the state space SP, the

momentum operator, P the Hamiltonian H and the Lorentz generator L.

Let ^ (the Euclidean Hilbert space) be the closure in L2(Q,|x) of the Œ-span of the following set

{l,(())f)n;neN*,fe^}.

Let ^ + be the closed subspace of ^ obtained by restricting the functions f to be in SP+ :

<f+ closure ofthe span of {l, (pf)n ; neN*, fe S^+ }.

We denote by E+ the orthogonal projector on &+. Following Klein and Landau [11] we introduce

the operator :

W= E+0E+.
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Note that ^"measures in some sense the "non-locality" of the measure \i. It is a bounded and

positive operator by the axiom i) and ii). The subspace W*€ can be seen as a pre-Hilbert space

with the scalar product (W\, WX,) i-> i.W\ ; £)&• for all %, Ce Y. Its completion is identified as

the state space SP. We denote by W : Sf-> <%°the canonical map generated by W.

The Euclidean group ß acts in a natural way in ^ (we write the same symbol for the group

elements and for the operators of the representation). The translations of space T((0,x)), xe R

commute with W, thus {WT((0,x))W_1, xe R is well defined on <%", and gives a continuous

unitary group. By Stone's theorem there exists a self-adjoint operator P, (the momentum) such

that

WT((0,x))W"1 exp (iPx) for all xe R

The translation of a non-negative Euclidean time T((t,0)), te R+ {s>0}, maps ¥A in Sf" and ker W
in ker W. Thus {WT((t,0))W~\ te R+} is well defined on 3£, and gives a continuous self-adjoint

semi-group. By the extension of Stone's theorem for semi-groups, there exists a self-adjoint

operator H, (the Hamiltonian) such that

WT((t,0))W~' exp (-1H) for all te R+.

Moreover WT((t,0))W~1 has norm <1 for all te R+, so H is positive. The square of the mass
2 2 _2

operator M H - y satisfies the formula :

(WÇ ; M2WÇ) lim A, (WÇ ; WT(x)W"1 WQ^
x-»0, x>0

lim A, (W% ; T(x) Ç)

x->0, x>0

for all %, Ce ^"for which the limits exist. We have just found that the scalar products involved in

the Rayleigh quotient of §1 can be obtained in the Euclidean framework.

Let R(a), ae ]-7t,7t], be the rotation of angle a in R2, respectively its representation in "€. For

all ae ] -j, j [ there exists a closed subspace ^ of if* such that R(a) : &a —* &*. Let Wa be the

restriction of W to ^,. Then { W_aR(a)Wa~1, ae]-^,|[) is a symmetric local semi-group

([11]), so by a generalization of the Stone theorem ([11]) there exists a self-adjoint operator L
(Lorentz infinitesimal generator) such that

W_«R(a)Wa_1 exp (-aL) for all ae ] - \, \ [.
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Thus all functions of the operators H, P and L can be studied in the Euclidean framework.

Note that le ^ (more precisely, the random variable Qaqi-»1), which is an invariant vector

under the action of the group *g'. The vacuum vector of SP (which generates the vacuum

subspace) is taken to be ß WI. It satisfies automatically :Pîi Hîi MQ Lî2 0.

We pass now to examples of such a theory, the weakly-coupled 3»(9)2 models. We begin to

expose the case where the coupling constant X 0.

Let mo>0 be given. The free model, describing non-interacting particles of mass m0, is

constructed from the following characteristic function ^ :

%(f) exp -ì<f;Cf>

for all fe J/", where C (-A+m0)fa Here <.;.> is the L2(R2) scalar product and A is the

Laplacian on R C is called the covariance operator. %, satisfies the hypothesis of Minlos'

theorem (see [7]), so there exists a probability measure n.0 on X with characteristic function %.
Moreover ^ satisfies the Probability Axioms for Q.F.T. (see [7]) so there exists a Wightman

Q.F.T. model with state space §£0, Hamiltonian H0, momentum P0, mass operator M0 and

Lorentz generator L0, constructed from ^ as mentioned above. We denote by W0 the canonical

map % L2(Q,n0) -><^, and by fi0 W01 the vacuum vector.

The fact that these models describe free particles is due to the gaussian form of %,(f). To obtain

models with interaction we must perturb ^(f) as much as to destroy the gaussian property. This

turns out to be a difficult problem, whose solution involves very singular operations.

First we must control local products of distributions (the so-called problem of the U.V. limit).
We introduce new random variables, the Wick polynomials of the fields, denoted by :<t>fn: for

ne N* and fe ^(R2), defined by the generating formula :

~ ,i i a. <(>f

X(^-:<t>f": ^^ .«S,S n! Vf
%(af)

with :<|)f :=1. We will use the algebraic notation :A+B: :A:+:B: and :kA: k:A: for k a constant.

Let SP be a R-»R positive-valued polynomial (the interaction polynomial). We take a C°°-function

g : R2-»R with compact support and satisfying j g=l, and for all ne N* we define g„ by : g„(x)
n2g(nx) for all xe R2.
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Theorem (U.V. limit, Nelson). The following limits exist in L2(Q,u.0) :

N N

i) II^ s-lim II | :(<t>T(x)gn)mi: fiW d2x
i=i ' n->~ i=i E4 W8n

for all Ne N*, me (N*)N, fe (^(R2))N.

2l2_li) e
XVa s-lim exp - X f :3>((|>T(x)gn): d:

for all X>0 and A compact set of R

x

J

This theorem is due to Nelson [12] (see [7] for other details). The maps :<|>m: from SP to % are

called the Euclidean Wickfields. For each X>0 and A compact set of R2, the probability measure

is well defined, as it follows from the theorem :

dHxA(q) ^ e~XWM dHo(q)

for all qe Q, where Zj^ is the normalization factor, and its generalized moments (or generalized

Schwinger distributions) are also well defined :

S^v(f)
r n

n
i=l
fl :*"% d^

for all Ne N*, me (N*)N and fe (^(R2))N. The goal now is to perform the limit A->R2. The key

for this, and for the answer of our further analytic problems, is given by the following estimates

for S™A which are uniform in X and A.

Let us introduce some notations. H is the Banach space of Lebesgue-measurable functions fon
R with the norm :

III f 111 £ HXAf HL2

where 3? is the lattice of R2: {(n,n+l)x(m,m+l) ; n,me Z} and xA is the characteristic function

of the compact set A. For f f,« • • • «fn with all f4e H we also note III f III III f, III ••• III f„ III. For

two set in H, f={f,,--,fn} and g={gi,--,gm), we denote by d(f,g) the smaller distance in R
between U{support fj; i=l,...,n] and U[support gj; i=l,...,m). For n,n'eN* and me(N*)n,
m'e (N*)n we write m+m' (m1,...,mn,m'1,...,m'n.) and lm= n^+'+nv
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Theorem (Uniform bounds, Glimm, Jaffe, Spencer). There exist K,2,,me (0,°°) (depending

only on <? and mj such that, for all Xe [02i and A compact set of R2 :

Ö IC^I < K"'-»1 lllflll>

«) C'(f»8)-SX(«) < K^-'/^J III fill III g III e "WK*«),

/or a// n,n'e N*, me (N*)n, m'e (N*)"', fe T?" and ge nf1.

The proof [1], which is very difficult, consists in controlling a series called the cluster expansion.

This is the crucial step of the rigorous construction of any Q.F.T. model. Note that the theorem

gives a continuous extension of the S™A, always written with the same symbol, from SP* to nf1.

It follows from the theorem that the S™A and the measure \iXA converge when A-»R2 (the so-

called thermodynamic limit). Let Bn be the ball in R2 of center 0 and radius n for each ne N*.

Theorem (Thermodynamic limit) Let Xe [0^].

a) Convergence of the generalized Schwinger distributions :for all ne N*, me (N*)n

and fe nf SXg (f) converge when n-x», and the limit S™(f) satisfies :

i) |s™(f)| < K"/m! III fill,

ii) S"+m'(f«g) - S"(f) S™'(g) < Kn+n' gi III f g III e-md^>,

for all n.n'e N*, me (N*)n, m'e (N*)"', fe nf and ge nf'.

b) Convergence of the measure :for aliasi,, nx$ (a) converges when n—»°°, and the limit

\ix(a) defines a probability measure \ix on £ which satisfies the Probability Axioms for
Quantum Field Theory.

a) is proved in [1] and b) in [7]. Let ^ be the characteristic function of \ix for Xe [0,XJ. It
follows from the theorem that a Wightman Q.F.T. model (S^x, Vx, yx, Tx) exists, with
Hamiltonian Hx, momentum Px and mass operator Mx, constructed from %^ as mentioned above.

We denote by Wx the canonical map % L2(Q,jix) —»<%£ and by ßx Wxl the vacuum vector.

These models, called the weakly-coupled U^<p)2 models, describe a quantum and relativistic world

of particles which actually interact ([13], [14]).
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2.2 The zero-time vectors; the problem

Let Xe [0,XJ be fixed. The combination of Euclidean fields <j>n (for ne N*) given by

<|>n(f) : 4>f, • • • <t>fn : for all fe (5^(R2))n

defines a continuous map <|>n : (^(R2))" —> % By the nuclear theorem it can be extended

continuously to a map (also called <|>n) from .5"((R2)n) to %.

The Fourier transform <j? of <|>n is defined by $?(f) <|>n(f) for all fe 5^((R2)n) where f is the

*~r _

ordinary Fourier transform of f. The map <(>n : S^((TR. —» ^ is also continuous.

To study the zero-time vectors we begin with the case of the free models (i.e. X=0), where the

situation is more clear. In that case the Euclidean scalar product of vectors :<|> :f, :p :g for

n,me N and f,ge S^(R is given by

v v f. y gJK a P %{a{) %m
hm n!<f;Cg>n,m ' °

o=ß=0

We obtain after some calculations, with now fe ^((R2)n) and ge y((R2)m) :

<(>n(f) ; T(g) V 8n,m n! J df(k) W) g(k)

where d£,n(k) 1 \ —2 !—f » ^d f8 is the following symmetrization of f :

i=i k; + m0

^(xj,...^) =^ X f(x7t(D'---'x"(n))' forali (x,,...,xn)e(R2)n,
7iecn

where on is the set of all permutations of {1,... ,n}.

Let JA be a Œ-Hilbert space. For all e N* we denote by J\ Sym SIS --SM (symmetrical n

times tensorial product), which is a Hilbert space with the scalar product deduced from (f® • • ®f ;

g8...®g)^ ((f;g)^)n for all f,ge JA. The Fock space over JA, denoted by S?~(JA), is the

Hilbert space ^?~(JA) ©0<n<~> ^*n> w^ere JA0 Œ, with the scalar product ((f0,...,fn,...);

(go.-.gn-))^^) S^no (fn;gn)j,n. where fn, gne J\ for all ne N.

We take JA L2(R2,^) ; we have just seen that the map j : J?~(JA) -» &0, given by
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X(f0,...,f„. •)) f0 + S 7= ?(f„s)
n=l vn!

*** 2 nis well defined and continuous (we have performed a continuous extension of $n from ^((R
to JA^, that we still write <|>n). We can say more about j.

Proposition, j : Jt?(JA) —> "€a is an Hilbert space isomorphism.

Proof. Let f (f0,...,fn,...) e ^{JA). From the above scalar product it follows that II /(f) IU

Il f H^^), so/ is an isomorphism from J?\JA) to its range, Ranj. By construction of %, {/'(f) ;

fe .5^)} is a dense set of %, thus Ran /' %. 0

LetneN*. The function ((£,£,),...,(&„,£„)) h+ f«^,^),...,^,^)) gfjc, £n) (that is,

constant in the variables Kj,...,^), belongs to J\ provided that g is Borel-measurable and

bounded in the norm :

Jd^OOlfOOl2 Qxf f drftÊ) |gs(fc*)|2

where dnn(ic) \\ —^— and co is the function on R : co(p) "\p2 + m02 ; ff is now the
i=i 20^)

complete symmetrization of g (in all variables). For such a function f we write : <|>n(f) 6n(g).

This defines a continuous map 6n : L2(Rn,nn) -» )ga Let OC be the Hilbert space generated by the

functions ge SPÇR) with geL^R.n1) (<x is a Sobolev space). The vectors 8n(g) Ó"(g) for all

ge 0Cn, are the Euclidean vectors at zero-time. They can be written formally as 8n(g) <t>n(8n«g),

where 8 is the Dirac generalized function. By application of W0 we obtain the zero-time vectors of

W^ghge^.neN*,

which, together with the vacuum vector Q0, generate the zero-time subspace 30. The zero-time

vector "ÖjJ^fjQo" introduced in §1 (by an imprecise definition) can now be identified with

W09n(f).

The scalar product of %£ is the same as of &0, but with <f;Cg> replaced by <0f;Cg> for

functions f,g with support property : f((x,x)) g((x,x)) 0 if x < 0. For such functions a simple

calculation [7] gives :

<0f;Cg> 27i Jdn'tf) 1 Çw&)£) gßa&)£)
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In particular <0f;Cf> 0 does not imply f=0. As a consequence the map W0°/ : SF{JÂ) —» §i% is

not injective. To find a isomorphism between <%£ and a Fock space of functions we must restrict

ourselves to the zero-time vectors. We define the map i : JPXöC) -> S^0 by

,((f0,...,fn,...)) w0fo + w0 £ -j= en(fns)
n=l Vn!

which is well defined and continuous. We can say more.

Proposition, i : ^\nc) -» a^ is an Hilbert space isomorphism.

Proof. For all f (f0,...,fn,...) e &~(fX) we have II j'(f) 11^ Il f H^i^), so j is an isomorphism

from JPlOC) to its range, Ran i. By construction of^, the span of the set

{ W0°/'(f) ; f0=l, fn=g®---®g (n times) for l<n<N, fn=0 for n>N, for all Ne N*
and ge ^(R2) with g((x,x)) 0 if x < 0 }

is a dense set of 3%,. By the above identity for <0f;Cg>, this set is not distinguishable in §%, from

the same set with now g is replaced by h, where h((k\k) g((ico(k),k)). Thus the zero-time

subspace 30 is dense, and Ran i £% 0

From the Proposition and its proof the following results are easily deduced.

Proposition For all n, ae N*:

i) P0a W06n(f) Woen(Paf), provided Pafe %,,

ii) H0a W09n(f) W09n(haf), provided hafe 0^

iii) L0 W09n(f) W09n(Lof), provided L0fe %,,

where for all (£„... ,En)e (R2)" :

?%&.-£,) (j?,+...+Oa f(f„...^n),

r?f(^„...,gn) (<a(21) + + Cû(Ên))a?(£„...,£„) and

Cf(k\,...,£„) -! (©(£,) Jr+ .- + o(Én) J-W,,...,^)
l 3*i 3kJ

From the last proposition the action of M2 H2 - P2 is easily calculated and we obtain :

M2no 0,
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M2W^f) m,,2 WJd\f) for all fe 3c,,

M2 Woen(f) W09n(M2f) for n>2, where M2f h2f - P2^ provided M2fe CK„.

The two first eigenspaces are the vacuum and the one-particle states subspaces respectively.
Moreover Wo0n(f), n>2, is in the domain of M ifM2fe DC„, which is realized if h2fe 3^.

Thus, to conclude, the following subspace of 30 :

{W06n(f), ne N*, n>2, ifre^}
is a good candidate for ^satisfying all the requirements 1) to 5) of the beginning of this section.

For models with interaction (i.e. X*0) the situation is more complicated, because we have no

explicit forms for the scalar products. Let us state the problem of the existence of zero-time

vectors in the domain of M. Because the action of P on such vectors is trivial (as in the last

proposition) we have only to look at the domain of H. A vector WA W<j>n(f) (for some n,f)

belong to the domain of Ha, and the scalar products (WA; H2a WA) is a C°-function of X, if

avxa2ax(a)
t=+0

is well defined for all ve N, where

-tH
X(t,X) (WA;e WA)^ Wh ; T(t,0) A \.

Without lost of generality we can take <t>n(f)e &* (this imposes only a support property for f) so

that (WA ; T(t,0) A) (0A ; T(t,0) A) Let us write x(t,X) in the following form :

X(t,X)
it(S Pj)

rfkrfp î(8k) f(p) sn,nA(k,p) e J=>

where Snj,,^ is the pseudo-function generating the Schwinger distribution : Snim)l(f,g) (<|>n(f);

<t>m(g))r (for suitable m, g) and snmx is its Fourier transform (in the distribution sense). We

speak about a zero-time vector if the function f does not depend of the k\ variables ; in that case,

we separate these variables from the "momentum variables", which cut the problem in two steps :

3l3t°X(t,X)
t=40

d{ df1 J d"£ cfp f (Ê) ~f(p) cx(k\p ,t)
t=+€
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where: £,x(£,p,t)
Ìt(Ì Pj)

« «fP Sn,n,x(k»P) e J=1

The problem leads to the study of the asymptotic decrease of the pseudo-function snnX. If the

decrease were sufficient, the t-derivatives would be given by the factor (E Pj)2a inside the last

integral. We will see that it is not so simple. In the free models for example, in the case n=m=l,
8(2)(k-p)

the pseudo-function s,, n is given by s (k,p) —* *-*¦, and the form of the denominator is not
¦ • p +m0

sufficient to guarantee the integrability of p2as(k,p) even for a=l/2. But after integrating over ê

and p we obtain, in this example : £(ic,p,t) 5(ic-p) —— exp(-\t\(ù(p)) and then
(o(p)

X(t,0) f-^_ I f(p)l2 exp(-lt\a$))
J 2<o(p)

R

which, for all fe SPÇR.), is a C°-function of t for t>0, with a well defined limit for t-»+0 ; and

also each derivative admits a well defined limit for t—h-0.

In the next paragraph we present a programme which decomposes each Schwinger distribution

in a sum of products of two kinds of terms. The first one are distributions of the free models (for
them we must "first integrate and then differentiate"), and the others have a Fourier transform

with a good asymptotic decrease (for them we must "first differentiate and then integrate") and

their derivatives with respect to X have the same property. The consequences of these results on

the zero-time vectors will be discussed in §2.4.

2.3 The WTI Programme

We present a new programme for the Schwinger distributions, in order to study the asymptotic

decrease of their Fourier transfoims. It is based on two analytic results, the inequalities i) and ii)
of the theorem of the thermodynamic limit (last theorem of §2.1), and on three algebraic-like

operations :

(W) : the Wick projection,

(T) : the truncation,

(I) : the integration by part formula.

First we expose these operations and then we discuss their consequences.
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We will adopt the notation : )x for I d\ixI
2.3.1 (W) : the Wick projection. We first give a definition. The Wick-Schwinger distributions

SW„^ with Xe [0,XJ and ne N*, are given by

SWn>x(f) =<:<Dfl-<Dfn:)x

for all fe ^R2)n ; for n=0 we take SW0A 1. Note that for X=0, SWn0 0 for all ne N*. AU

Schwinger distributions can be decomposed linearly into Wick-Schwinger distributions, the

coefficients of the decomposition being Schwinger distributions of the X=0 case.

Lemma Let X be a finite non -empty subset of N*, p a partition ofX and fe (^R2))x. Then the

following formula (W), called the "Wick projection", holds

n
jep je J I <

0CYCX
n =n

JepY je J

Ofj >0 : Il ffj
je X-Y

Integrating over [ix for all Xe 0,À] gives :

<n
Jep

: II «ffj : >x

je J I0ÇYCX
<n

JepY
n
jeJ

*j \ SWix-yi,Ac-y)

where fx_y •ieX-YV

The proof is given for instance in [7]. pY is the restriction of p to Y.

2.3.2 (T) : the Truncation. Let ne N*, Qcl" a neighborhood of 0 and yeCn(0)
satisfying g(0) 1 (the generating function). For Ic[l,...,n) (non empty) we consider the

following numbers (with the notation Dj nieI dfi) :

MT, a moment afg, defined by : Mj (D^)(0) and

Tj, a truncated moment ofg, given by : TT (Dj In g)(0).

These quantities are related together as follows.

Lemma Letg, {M,, T,,Ic[l,. ,n )} as before. For all Ic {1,... ,n} (non empty) we have :

i) Mi S II Ti - a) ^ x (-1)"""1 op'-di n mj •

pe^O) Jep pe^a) ïep

Notation : ^"(1) is the set of all partitions of I. For a proof of this well known result, see [7].
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As first example we take ^(x) <elx' )x, where x-A x^j-t-...+xnAn and {Aj, l^j^n} are

suitable random variables. The moments are Mj im <rije j Aj)^ and the truncated moments are

noted by TI im<njeI;Aj;)J.

An other example is given by : g(x) ^(x-f)/^(x-f), where x-f Xifj+...+x„fn. The

moments are the Wick-Schwinger distributions SWmX(fi)> with fi=®jeifj. The truncated

moments, called the truncated Wick-Schwinger distributions, are denoted by SWTm x(fj).
Because the logarithm of g is a sum, we have SWTm x STm x - STm 0. Note that a simple

calculation gives STm0 S^ <• ; (1-A)"1 .>

2.3.3 (I) : the Integration by parts formula. This is a family of relations between

Schwinger distributions obtained by an adaptation of the familiar "integration by parts formula" to

the functional integral; see [1] or [7].

We denote by 3>k the k-th derivative of the interaction polynomial 9> (if k>degn>, V>k=0).

For all Xe [0,XJ, ne N* and pe &°n, the set of all partitions of [l,...,n], we consider the

combinations of Schwinger distributions :

s£(f)= um2 <n ^'«v^-A-»R Je p

6T*(f) iim2 (YI; :n>%):f];)T
A-»R jep

for fe (^R2))p, with the notation : <... )X>A for fad^ A The limit A->R2 has to be taken

in the sense of the thermodynamic limit theorem, §2.1.

Lemma For all ne N*, fe (SP (R2))n and Xe [02], thefollowing "integration by parts formula"

(I) holds :

i) SWnA(f) S (-X)'P' «Sp(fp),
Pe^n

ii) SWTnA(f) I (-X)'P' ST^fp),
Pe^n

where fpe (J^R2))'P' is given by fp «Jep (nie j Cfj) ¦

In the lemma, C is now the operator (1-A) Note that the r.h.s. involve the functions Cfj instead

of fj, l<j<n. This is the key for finding the local regularity of the Schwinger distributions.
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2.3.4. Local regularity. The integration by parts formula (I), i) (previous lemma), together

with the inequality a), i) of the thermodynamic limit theorem (last theorem of §2.1), have the

following consequence ([7]).

Lemma. For all Xe [0,XJ and ne N*, the Wick-Schwinger distribution SWn x is generated by a
continuous and boundedfunction swn x, called a Wick-Schwinger function ; moreover llswn x II

„„

is also a boundedfunction of X on [0,XJ.

This lemma has three important consequences. First, by (W) all Schwinger distributions S^
are generated by functions s„ x which have the same singularities as the functions s^^. But s^q

can be studied in great detail (see §2.2 or [7]) ; they are C°° functions on the non-coincident points

NC(n) defined by

NC(n) {(x„.. .,xn)e (R2)n Xi*Xj for all i*j }

and have only logarithmic singularities. The functions s„ x are then continuous on NC(n) and

locally integrable at any power.

The second consequence is that the first limits of the U.V. limit theorem (§2.1), which lead to

the Wick-fields, can also be obtained when X*0.

Proposition. For all Xe [0,XJ the following limits exist in L2(Q,Hx) (wUh the notation of the

U.V. limit theorem §2.1):

N

û 1$™% s-lim
i=i * n~>~

N

n
i=l r"

*: fi(x) d2x

N

and they satisfy : < Ü ''^''ù >x
i=l

S"(f)

for all Ne N*, me (N*)N, fe (5*(R2))N

The :<|>x : are the Euclidean Wick fields of the interaction model. The proof of the convergence

(see [7]) consists in writing the corresponding L2(Q,^)-norms as sums of products, by (W), of

distributions with X=0 (which converge by the U.V. limit theorem) times distributions SW^
(which converge because they are generated by continuous and bounded functions). The problem

is now one of convergence of a product of convergent distributions. It can be solved by

performing the limit in two steps in a standard way.

The third consequence is an extension of the formula (W).



590 Frochaux

Lemma For all ne N*, me Nn and Xe [0^] the distribution S ™ is generated by a function s™

continuous on NC(n) and locally integrable at any power satisfying the extendedformula (W)/or
atfxeNC(n):

s™(x„...,xn) 2^ K™ sS(x„...,xn) swm.v>x(x1,...,x„...,xn).
0<v<m

In the lemma m and v are multi-indexes, K™ n L1] (binomial coefficients) and

n
m-v £ (mj-Vj). In swm.v )l(x1,...,x1,...,xn) the variable xt appears mp-Vj times, etc.... If an

i=l
index v; is 0, then the x;-dependence in s*(Xj,.. .,xn) is dropped.

The proof of the formula (see [8]) consists in showing again the convergence of a product of

convergent distributions (because the Euclidean Wick fields are given by limits, and the formula

(W) introduces products).

2.3.5. Asymptotic decrease. The truncated Schwinger distributions ST^ are defined as the

truncated moments (times r") of the generating function

En3aH^(a)
f n

dUx exp

Q

iZ ai:<t>^:f.

They are connected with the distributions S™ by the formula in lemma 2.3.2. Thus they are also

generated by functions st™ continuous on NC(n) and locally integrable at any power. Moreover

they have an asymptotic decrease property, which follows now from the second inequality a), ii)
of the thermodynamic limit theorem (last theorem of §2.1). Note that by the translation invariance,

stj1(x1)...,xn), where (x1,...,xn)e(R2)n, do not depend on the R2-variable x,+...+xn. Thus st™ is

a function of the relative variables (x1-xn,...,xn_,-xn)e (R2)""1 alone. We need one more

definition. For neN, n>2, for (x1,...,xn)e(R2)nand for {I,J} a partition of [l,...,n] in two

parts, let us denote by dT j the smallest distance between the convex envelopes in R2 of [xj, ie I}
and of [Xj, je J). Then we define : o(x1,...,xn) max { du, [I,J}e ^n} (see figure 1).
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2
1,2,3 ,4,5,6

al,2,...,6
» -{1,3,5},{2,4,6}

Figure 1

Lemma For all ne N, n>2 and me (N*)n there exist Ke (0,°°) a«d ve N* such that

/ vy
IsÇCx! xn)j < Kl n L(Xi-Xj)] ap(-mö(x„...,xn))

l l<i<j<n

for all xe NC(n) and Xe [0,XJ.

Here L(x) /(n^llxll), where /(r) 1 + \ln r I if 0<r<l and l(r) 1 if r>l.

The proof (see [8]) is complicated. It does not follow directly from the inequality a), ii) of the

last theorem of § 2.1 (which concerns only smeared distributions), but uses a consequence of this

inequality on the spectrum of the Hamiltonian, which has a gap of length m. The exponential in

the lemma comes from this gap. Thus the lemma is a consequence not only of the inequality

mentioned above, but also from the existence of the Hamiltonian, that is from all the Axioms.

We will use two consequences of the lemma. The first one is that the truncated functions are

integrable in the relative variables.

Proposition For all ne N, n>2, me (N*)n, Xe [OA] and l<p<«> the function :

(x p...,xn_j,0) H» sf?(x,,...,xn_1,0) is in Lp((R2)n_1), and its If-norm is bounded in X.
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To prove the proposition (see [8]) we bound the involving integral using the previous lemma

and we introduce a lattice on (R2)""1 to separate the local and the asymptotic difficulties.

The second consequence of the lemma concerns the derivative of the Schwinger functions with

respect to X, which have to be well controlled before doing perturbation calculations. The

following theorem concerns the derivatives of the Schwinger distributions. The interaction

polynomial CP is written as !?(x) X1<i<N a; x1, where N is even and aN>0. In what follows we

take ai=0 for i=0 or i>N.

Theorem For all Xe [0,2], ne N*, me (N*)n and fe ^(R2)n), the function Xh»ST ™(f) is in

C°°([02i) and the following identity holds for all ve H* :

^ST> (-l)v V a; f cTnx (fy f(x) stmx+i(x,y)
let» jR2(n+v)

In the Theorem, ie N" is a multi-index, i=(i1,...,iv}, a; IT,^ a,. and m+i (rn^^^m,,,

Ì!,...,iv). Note that the l.h.s. of the formula is well defined, because of the integrability properties

of the truncated functions. The proof is due to Dimock [15].

Let us pass to the differentiability of the Schwinger functions ([8]).

Proposition For all Xe [0,XJ, ne N*, me (N*)n and xe NC(n), the function Xi->st ™(x) is in

C°°([0^]) and the following identity holds for all ve N*

dX« (-DV Tai f A st™+i(x,y).
¦eN" V

In particular, x h-> 3 st^ (x) is continuous on NC(n) and locally integrable at any power.

This formula, often used in the literature but never completely proved, is a consequence of the

theorem and the fact that the r.h.s. is continuous on NC(n). This last result follows from the

integrability property and from the local regularity seen in §2.3.4.

We summarize the consequences of the asymptotic decrease by a statement on the Fourier

transform of the truncated functions. By the integrability property, the Fourier transform in the

relative variables gives well defined, continuous and bounded functions. By derivation with

respect to X they become a sum of Fourier transform of other truncated functions. Thus their

properties of continuity and boundedness are conserved by derivation with respect to X.
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2.3.6. The Wick-Schwinger truncated functions. The Wick-Schwinger truncated
distributions SWT^^ introduced in §2.3.2 are also generated by functions sw^ x, the Wick-

Schwinger truncatedfunctions. They are the most interesting functions occurring in the weakly-

coupled 3>((p)2 models, because they have the local regularity of the Wick-Schwinger functions

(bounded and continuous) and the integrability property in the relative variables of all truncated

functions. Moreover they generate all the objets of the models in the sense that by successive

applications of (W) and (T), all Schwinger functions are sums of products of only

- Schwinger functions of the free models (i.e for X=0),

- Wick-Schwinger functions,

and only the last ones depend on X. The formula of integration by parts (I), ii) (lemma 2.3.3) has

the following consequences.

Proposition For all Xe [0,2J and ne N, n>2 :

i) swt„ x is of class Ó((R2)n) and belongs to Lp((R2)n_1) (w.r.t. relative variables) for all

l<p<°°, the If-norm being bounded in X ;

ii) for all xe (R2)n the function Xh-»swtn x(x) is of class C°°([0,i]) and its derivatives

<?x swtn^ for all ve N satisfy all the properties stated in i) ;

j«) the derivatives of the Fourier transforms 3^swt^x satisfies, for all ve N and pe (R2)n

8<2(âPi
3^swt„A(p) -—^ ^— 3^Z"(pi,...,pn.1)

n (p2 + m2)
i=l v '

where dx Z" is a continuous function on (R2)""1 such that there exists Ke (0,°°), indépendant

of X and ofpi,... ,pn., with

d* E"(p„...,pn.,) < K.

The proof consists in establishing iii). The formula is simply (I), ii), (in lemma 2.3.2) written

after having performed a Fourier transformation in all variables. (To have symmetric notation we

often take the Fourier transform in all variables rather than in the relative variables; this simply
introduces an extra 8 pseudo-function). EJ is a sum of Fourier transforms (here in the relative

variables) of truncated functions :
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E"(Pl,...,pn.,) *-i (-*•)' *x„
P={\ Ir)e^n

e ^
IPi •••- EP;
iel. iel

V ' ' J

where pn=-(plv..,pn.,), /tx (1 ^,
(2jc)n+2( : ü^iS) : )x (finite constant bounded in X, by the first

lemma of 2.3.4) and, forp=[I1,...,Ir}e^sn, r>2, /6. (q1,...,qr.1,-(q,+...+qr.1 is the Fourier

transform (up to 2;t-factors) of (x„ .x^) h» (n^^ ; : ^''(((»(x;)) : ; x with xr 0 (where <()(x)

<j>(T(x)8) )• The differentiabihty with respect to X and the continuity and boundedness of 9^E" are

those of all Fourier transforms of truncated functions.

Note that EJ contains a constant (/ix (1
thus have no asymptotical decrease.

2.3.7. A formula for the truncated functions. The last proposition allows us to write the

functions swt,, x in term of functions E", which are made of Fourier transforms of truncated

functions st/J\ For iterating our programme, we have to apply it to these functions. But the Wick

projection (W) gives expressions where the truncated properties are no more evident. So we need

for the functions sÇ a formula which generalizes the previous proposition.

We introduce some notation. For ne N*, and me (N*)n let ^ be the set of all connected

graphs linking n vertices of m^.^jn,, segments respectively. To each such graph G we associate

a nx/ matrix e(G), (the incidence matrix), where I is the number of lines of the graph (that is /
2 ^i<i<n ^)' as f°ll°ws : we choose a direction to each line (arbitrarily), and we put

{+1
if the line j get out of the vertex i

-1 if the line j goes in the vertex i
0 if the line j do not reach the vertex i

Zn t
d^(k) û 8(2) Pi - X etOijkj

Ge<£, J i=i V j=i

A tedious calculation gives the formula (called Wick theorem) ([1]) :

A d\
where d£r(k) 11 rj •—j • The WTI Programme gives a similar expression for stf1 for all X,

j=i kj + m0

involving graphs with more lines (but less than E1<i<n m;) and functions remaining under the

integrals. These functions are bounded and continuous.
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2\nProposition. For all Xe [0,XJ, ne N* and me(M*)n the function six satisfies, for all pe(R2)'

Vf n *(G) A

s~t>„...,Pn) L d^(G)(k) û S(2) Pi - I e(0)y kj s\ (k„...,kAG))
G6ÎC i=l

wAere &m is a set ofconnected graphs ofn vertices and less than Elsiâl m; lines,

l(ß),for Ge &m, is the number of lines ofG,

J?~x ,for Ge &m, is a continuous and bounded function such that, for fixed ke (R2)'(G\

Xi-)^^ (k) is of class C°([0,H), and which satisfy .for all ve N there exists Ke (0,°o) such that :

3î'^(k1,...,k/(G)) < K /ora//ke(R2)'(G) andXe[0,2J.

The formula of the proposition can be compared with the formula for the swt functions

(proposition of § 2.3.6), the functions J^playing the role of the functions E. But it remains to

integrate on variables associated to the loops of some graphs with less than E1<ial mj lines. The

proof (see [8]) is based on a formula which generalizes the extended (W) formula (last lemma of §

2.3.4), in which only truncated functions appear :

Lemma. For all Xe [0,X], ne N* and me (N*)n the following formula holds for all xe NC(n) :

% (xi,...,xn) e n
pe^Po Jep

f n I ^
swtjUJ|(x1,...,x1,...,xn) - E Kijc(xrxj)

i*j=i J

where p0 is a partition {I,,...,In}e S?x with llj^m; for all i and r ElsiSn m; ; K1;.

S2,ui 8i,iiinJi 8i,il mi; in swtx,uKxi'-.x1,...,xn), X] appears Unijl times, etc

Notation : &L is the set of all partitions of {l,...,r} mutually connected with p0 that is

those partitions pe ^ for which all unions of Je p differs from all unions of Ij's (except for the

total union). The restriction of those partitions is necessary to avoid the factorization of the

variables xlv..,xn That is, each term of the sum cannot be a product f(y)g(z) with y and z

disjoint subsets of {x,,...,x,,}.

Performing a Fourier transformation and using the proposition 2.3.6 leads to

"(p„...,pn)= x
pe5".Po

d^(k)
{M { **> JJ Jep VeJ J
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where E'^kj, jeJ}) E^fkj, jeJ}) - £ K1 (k^-m,,2).
i*j=l

Note that the two products of 8 pseudo-functions cause no difficulties, because the partitions p0

and p are mutually connected (so there is no 5-square!). We separate the integration variables kj in

two sets. We define the partition infip0,p) by collecting the sets InJ for all Ie p0 and Je p. Now in

each element of p we choose an element of w/(p0,p), and we call K their union. We introduce the

function :

J^G(qi,...,qs)
jeK kj + m0

nS^fEkjÌE^jeJ})
Jep jeJ

which is a function of the lq, ieL [1,.../]- K (which we have called qj,...^). Note that, due

to the good properties of E', these functions satisfy all the analytic properties stated in the

proposition. We insert these functions in the above formula for stj, which leads to the announced

formula (the graphs G depend on p and on the choice of K).

2.4 Zero-time vectors in the domain of the Hamiltonian

We are now able to answer the first question of the beginning of this § 2, about the

smoothness of the zero-time vectors. There exist indeed zero-time vectors in the domain of M and

even in the domain of M2 (this will be usefull in §2.6). Moreover for two such vectors \, Ç, the

scalar products (Ç, Mv Q, ve {0,1,2,3,4}, are C°° in X. Because the operator P acts trivially on the

zero-time vectors we have only to study the case where M is replaced by H. We follow essentially

the way of the free model case §2.2, the WTI Programme bringing enough information about the

scalar products of the models with interaction.

Due to the previous analysis, the scalar products of Euclidean fields can be defined for
functions in a larger space than SP, which admit functions with 6 pseudo-functions of the

Euclidean time. Moreover, these scalar products, smeared now only in the space variables, are

differentiable with respect to X and to an extra Euclidean time variable obtained by translating one

of the two vectors (§ 2.4.1)

§ 2.4.2 deduces the existence of zero-time Euclidean fields and § 2.4.3 translates these results

in the Minkowskian Hilbert space, constructs the zero-time vectors and states their properties.

§ 2.4.4 presents some generalizations.
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2.4.1 Regularity of some Euclidean scalar products. Let us take n.meN*, feJ?t(R2)n)

and ge S\(R2)m). We consider the function xf,g on R2x[0,2J given by

Xf,g(s,X) (<t)n(f);T(s)<t.m(g)V - (?"©; 1)^(1 ^"Wjf

J rfnx êmy f(x) g(y-s) snmX(x,y)

with y - s =(y, - s,...,ym- s). Here snm^ is the function generated by the distribution Snim;l(f,g)

<t>"(f) ; <()m(g) )x (Note the differences with the notation of §2.2 : se R2, the truncation property

in Snjn x and the absence of the operator W).

We will see that %f g(s,X) is well defined and differentiable with respect to s and X even if f and

g are of the following kind
(R2)> ayn h(y) &>(y - x) for some xe Rj

for j=n or =m (with the notation : #(y - x) Ili<j<j 8(y; - x;) provided the functions of the

space variables h belong to some function spaces. Moreover, even in this case, it can be

differentiable with respect to s if the Euclidean times s and x; have a right sign.

Xfig(s,X) involves only the orthogonalized part of the smeared fields <j>n(f) with respect to the

constants (recall that the constant random variables Q3qh^ce(C belongs to %). We will also use

the projection on the constant, so we introduce

X?(X) (l;0n(f))^ J cffac f(x) sw^x)

The function spaces we need are build on the semi-norms b„ and norms hna (with ae N),

defined for all suitable functions f as follows

fe°(f>2 fdnn(k*)|f(Ê)|2 X Ilsfï^lR* pe^n Jep (,JeJ J

WO2 I Jdnn(k*) |?(Ê)|2 { Ì a>(£j)T I û «fl *}
1=0 Rn VJ=1+1 J ve$\ Jep IjeJ J

n j*
(Recall that : drf(jc) YL —i- ; co is the function on R : co(p) Vp2 + m02 ; P is the

i=i 2co0ci)

complete symmetrization of f and ^ is the set of partitions of {1,... ,i}. If i=0 or if n= 1 the sum

over &[ must be omited.).

Mathematically the norm bn „is the L2-norm of a Borel-measure on Rn.
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Examples. For suitable functions f :

K(f) mo-1/2|f(0)|,

b2(f)2= f-4^ |~f(^-^)|2 + n^^lWO)!2,
J 4co(k)2

R

blia(f)2= f-^-rf(^i2ü)(i?)a;
J 20)(k)

R

t2-(f)2= f^ -%-|f(M2)|2(co(^) + ^2))a +
J 2aKk,) 2co(k2)

R2

+ 2mfa
c dk ,-i„-.m,2 lt,

2co(k)Tifttr^r.
R

Let us introduce the following function spaces :

8° (respectively B^J is the space of functions feL/oc(Rn), with at most polynomial growth,

having continuous Fourier transforms (in the distribution sense) and well defined bn(f)

(respectively b„,a(f)).

These spaces are given the topology induced by their norms or semi-norms. We do not close

them, because we do not need completeness.

We state the differentiability properties of Xf,g(s>^) and X?(X) for functions f and g as described

above. We will use the notation F f introduced in the last proposition of § 2.2, and R+ [xe R,
0<X<oo}.

Proposition. For all Xe [0,XJ, se R2, n,me N*, xe Rn and ye Rm :

1) for all fe B°n let us write F(z) f(z) 8n(z -1)for all ze (R2)n ;

then Xf(X) is a well defined C~ function ofX satisfyingfor all ve K

there exist Ke (0,°°) independent off, x and X, with K*w> <Kt°(f).

2) for all ß, ßj ßje N with fa+fc =$,for all P^e 8^0 and P%e 8m0 let us write

F(z) f(z) Sn(z - x)for all ze (R2)n and G(z) g(z) Sm(z - y)for all ze (R2)m;
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then for s fixed, X i-» Xf,g(s.^) e C~[0^J,

andfor all ve N, î h» 3* Xf,g(s>^) e CP(R) for fixed s and X ;

the derivations commute : 3^ 3* Xf,g(s>^) ^"x "t Xf,g(s>^) ;

moreover there exists Ke (0,°°) independent off, g, x, y and X, with

4 K Xf.g(sA) < K b^oCpN) ^„(P^g)

5) /or all ae {1,2,3}, wif/t f/te sa/ne hypothesis and notation as in 2)

but P^fe 8n>a, Pfcge 8m,„ and xe (R+)n and - ye (R+)m,

s h-> 3^ 3*Xf,g(sA) e Ca(R+)/or/ïxed s andX;

all the derivations with respect tos, s and X commute ;

moreover there exists Ke (0,°°) independent off, g, x, y and X, with

^3iaIxF,G(s,x)^
:Kbn,a(PStm,a(P^)

4) 77œ statement 3) is also truefor a 4 i/x;=s/or all l<i<n a«d yj=t/or all l<j<m, for some

s, te R+.

The proof (see [8]) begins with functions F, G in SP and establishes the proposition with, in
the r.h.s. of the estimations, the semi-norms N^(F) (resp. norms Nn „(F)), defined as Vj„(0

(resp. bna(f)), but with Rn, f and drf replaced by (R2)n, F and dÇn. Let us denote by 3^\ (resp.

SP^a) the space of functions Fe l^oc((JR2)n), with at most polynomial growth, having continuous

Fourier transforms (in the distribution sense) and with well defined N°(F) (resp. Nn a(F)).
Because ^R2)") c_> ^ and ^(R2)n) cu ^„ (continuous injections) we have obtained the

extension of Xf (resp. Xf,g) fr°m ^t0 ^n (resP- ^o)-We caHthem aêain Xf and Xf.g-

Functions like F and G in the proposition belong to A?\ or -5^, a, and the semi-norm b° (resp.

norms hno) are simply the restriction of N° (resp. Nn>a) to this set of functions.

Let us present the others steps of the proof. The functions sn m x ^d swn x are decomposed

according to the WTI Programme. The permutation of differentiation and integration : 3S j h(s,t) dt

Jds h(s,t) dt, is allowed when the functions h(s,t) and 3S h(s,t) are Lebesgue-integrable in s for

all t and continuous in t for all s. This permits us to perform the derivatives for 1) and 2). Using
that dx E"(k) is bounded in k and X we obtain the existence of dx XfW provided that
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df(k) iF(k)i x n 8(2)fEkj>i
pei?n Jep lie J J

is well defined. But this expression exists for functions F like in 1), and becomes then, after

integration over the variables k; :

dtAÊ) i~f(k*)i Teok^T1 in«
VJeJ J pe5»n Jep je J

which can be bound by a constant times b„(f)> using the Cauchy-Schwartz inequality. 2) is

proven with similar technics.

To show 3) and 4) we start from 2), that is from 3^ 3* Xf,g(s-^) with F and G like in 2). The

WTI Programme decomposes Sj, m x in products of functions of the free models and functions

swtj x. According to the Leibniz rule we have only to look at the differentiability of each term

separately. The functions of the free model are differentiable only if s, xj and yj have the right

signs (see § 2.2), which is realized for seR+, xe(R+)n and -ye(R+)m. Moreover each

differentiation gives a factor E (ofjcj) which for integrability reasons requires that f is sufficiently

regular at infinity (in particular if fe SP, these terms are C^R^)). Let us look at the differentiation

of the factors swtj x. By the formula of the proposition § 2.3.6 we have to control a product of

factors of the following type :

rr„ dt ^ ' n it(I-Éj) i(s-x°jÉj) ~K^W
lim 3a

t->+o l
jeI kf+0)(kj)^ te) jeJ jeK jeL d'Enel})

(multiphedby 5(EjeIîcj) for some sets I c {l,...,n+m}, J, K, L c I with L I - K. Let us

suppose that a < 3. Because the derivatives of Ei ^e bounded, the above expression is bounded

by a constant times

n
je I

di;

kf+C0(kp2 UeI J
E^j
je J

which gives the announced result. For a > 3 we need more information on E^. Recall that it is a

sum of functions /&Xp, which are truncated Schwinger functions evaluated at some sums of

variables k (let us call them p;). We iterate the WTI Programme using now the proposition 2.3.7

in order to find the decrease in those variables p,. In the other variables we have only to study the

following limit of derivatives of one-dimensional Feynmann integrals :
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lim 3"
t-»+o «

rrr dk,

jel kj+0)(kj)2J ^ jei

it(E tj) KE Xjtj) -KE Mi>
jeJ e jeK

e J.L

The conditions on xj and on yj in 4) simplify only this last problem.

Remark. Continuing iterating the WTI Programme it is perhaps possible to prove the proposition

for all œ N, but with stronger conditions on f and g.

2.4.2 Euclidean vectors with precise Euclidean time. The operations of extension and

restriction of the scalar products can also be performed for the Euclidean fields. As before we
must distinguish the subset of % generated by the constant random variables. Let P0 be its

orthogonal projector.

Let Xe [OiJ, n,me N*, xe Rn and ye Rm be fixed.

The field : P0-<t»n can be extended continuously from ^(R2)n) to &\ (this gives Fi-^XfW
itself) and then restricted to the functions (R2)ns z h-> F(z) f( z) 8n(z - x) with fe 8S • This

gives a map O^ : 8„xRn -» P0% that we call the Euclidean field with precise Euclidean time

along the constants. The scalar product involving O x is given by the formula :

(i;<C(f,x))% 7&M.

The field : (l-P0)-<J)n can be extended continuously from ^(R2)n) to^ (by a standard

analysis argument) and then restricted to the functions (R2)na z h» F(z) f(z) S"(z - x) with
fe 8n 0. This gives a map <t>n x : 8no* Rn -» (1-P0)% that we call the Euclidean field with

precise Euclidean time. The scalar product involving <P^X is given by the formula :

(«I>n,x(f,0x);«I>miX(g^))% Xf.g«W

for all (R2)ma z h> G(z) g(z) 5m(z - ft with ge 8m>0.

If x 0, ^„^(f.O) and <I>nX(f,0) are the Euclidean zero-time vectors. If X 0 they coincide

with the corresponding vectors of §2.2 :

<x(f-°) W) and «^(f.O) (1-PJ 9n(f).

For more details, see [8].
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2.4.3 Zero-time vectors in the domain of the Hamiltonian. We translate now the

results obtained in the Euclidean theory to the Minkowskian Hilbert space §£x.

We choose an Euclidean-time direction in R2 and construct an operator Wx which passes from

the Euclidean Hilbert space ^ to the Minkowskian Hilbert space J%TX, as explained in §2.1. The

map

Vrux w^ra : 8n,0x(R+)n^(l-E0)^'x

is called thefield with precise Euclidean time (note the sign of the Euclidean time). Its restriction

to the zero Euclidean time ¥„^(.,0) is the zero-time field, and its values *?„ x(f,0), fe 8no are the

zero-time vectors. Formally they should not be distinct from the zero-time Wightman fields

applied on the vacuum state :

¥ia(fi»-«ln,0) (l-EJq^f,»«)...^,,«)^ (1-Eje^«...«^)^

where the last notation is that one of the zero-time vectors used in § 1.

Let us denote by D^A^) c S^x the domain of any self-adjoint operator Ax.

Theorem. For all Xe [O.ZJ, n,me N*. xe (R+)n and ye (R+)m :

Existence ofvectors with precise Euclidean time in DX(PX) and DX(H^) :

for all ße N : ¥nA(f,x) e DX(P?) if pPf e 8n>0 ;

«F^f.x) e Dx(Pg) n I\(HX) // pPf e 8„,2 ;

j/xps >0for all l<i<n : ¥nA(f,x) e Dx(Pj>) n D,(hJ) if pPf e 8„,4.
Scalar products of these vectors :

for a//ß,ß, ß2eN with ß,+ß2=ß, ae [0,1,2,3], PPlfe8nf(I and P%e&ma,the scalar

product ^nX(g, - °y) ; pV^f.x) is a C"function ofX ;

it and its derivatives are given by theformula, for all ve N :

K *n.x(g. - y) ; PßHa «F^f,x) 3^ 3pt 3; Xf.g(sA)
f=0, S=+o

where F : (R2)na z h-> f(z) 8n(z - x) and G : (R2)ma z h> g(z) Sm(z - y)
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and there exists Ke (0,=»), independent ofX, x, y, f and g, such that :

dl «P^fe,-°y) ; PP H" ¥nA(f,x) )^ | < K ^„(P^f) VaA
The above statement is also truefor a 4 i/xps/or all l<i<n and yj=tfor all l^j^m,
for some s, te R+.

The theorem also concerns the zero-time vectors : it suffices to take x=0 and y=0. Note that the

projection of the zero-time vectors on the vacuum state is neglected. It can be treated as in the

Euclidean case.

The proof of the theorem (see [8]) follows from the Proposition of §2.4.1 by standard analytic

arguments.

Remark. By successive applications of the WTI Programme it is perhaps possible to verify the

following conjecture : ^n>x(f,x) e DX(H£) for all ae N if xe (R+)n and fe ^Rn).

2.4.4 Beside the norms t»n a. Does the tn a be the optimal norms for which the theorem

holds Let us look at the possible improvements in the definition of b^,,, §2.4.1. We have seen

that the combination of 8 pseudo-functions arises from the invariance of the truncated functions

under the space translations, so they can not be avoided. The (Eo^-factors are also necessary,

because they are those which enter in the case where X=0 (see §2.2). Nevertheless we will see

two possible improvements.

The first one is concerned with the special case where the interaction polynomial is even. In
that case the Wick-Schwinger truncated functions swt,^ with odd n vanish all identically. Then

we can replace b^ by the same expressions, but involving only even partitions, that is partitions

{Ij,...,Ik} where all lljl, l<j<k are even numbers.

The second improvement can be useful when the test functions f depend on X in a singular

way, as we have seen in § 1. The 8 pseudo-functions in ba<x come all from a factor swt„^. Due to

the nice properties of these functions and because they vanish when X-»0 we can put a X-factor in

front of each one without destroying any properties necessary for the theorem. Then we can

replace the b^,, by the same expressions, but with a X-factor in front of all 8 pseudo-functions.
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2.5 "Almost density" of the zero-time vectors

We try now to answer the third question of the beginning of this § 2, about the density of the

zero-time vectors. We will only see the weaker property that all vectors can be approached by an

asymptotic series of zero-time vectors.

To be more precise, let 3), be the span of { Clx, ,Fn>x(f,x), ne N*, fe 8no, xe (R+)n}, the

set of vectors with precise Euclidean times. 3X is clearly a dense subspace of 3ŒX. The span of

j Qx, ^„^(f.O), ne N*, fe 8no [, denoted by 3oX,is the set of zero-time vectors. Then the

following statement holds.

Theorem. For all Xe [0,XJ andu *FnX(f,x) e 3X there exists a sequence of30X :

[Ç,, ie N} such that, for all Ne N :

N

< XN+1Kbn,0(f)

for some Ke (0,°<=) independent ofX, feB,, 0 and xe (R+)n.

Before presenting the proof of the theorem (which constructs the vectors Q let us discuss its

result. Nothing is said about the growth of K when N increases. Thus nothing is known about the

possible convergence or resummability of the series. So the theorem does not imply the density of
30X but only to the weaker statement, that for all perturbation calculations, 3^ and 30X are

undistinguishable. We call this property the "almost-density of 30X".

In the theorem we must suppose that f and x do not depend too wildly on X. Recall that S^_

itself depends on X (via the construction of the measure m*) and tf, Ç; e J^. So X plays a double

role : it indicates which Hilbert space the vectors belong to, and it is a small parameter which

allows perturbation expansion. To get a better understanding of the situation, consider the fibre
bundle with base [0,XJ and fibre <%£ (see figure 2), and let ^be the set of the cross sections. An
element fe ^ls given by a family of vectors [fxe S^, Xe [0,XJ}. The zero-time vectors generate

a subspace 3Ç c ^which satisfies according to the theorem :

for all fe ^"and Ne N there exist ge ^and Ke (0,<~) such that Hfx-gxIU < K XN.

It would be dense in ^"provided the topology would be generated by the following set of
neighborhoods of any fe ^~:
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* J ge ST, II fx - gx II < K XN for some Ke (0,<*>)

for all Ne N, which is without interest for us because this topology is not fine enough to allow

calculations by any resummation procedure.

se Se

0 /
' \Subspaceof ^generated by the vacuum subspaces

A cross section entirety contained in vacuum subspaces

Figure 2

The proof of the theorem (see [9]) starts by supposing that there exists a perturbation

expansion :

tf =X X1^
i>0

for all tfe 3X and with each Çje 3%x. Then for all Ce 30<x :

U;*)k - I U ;C,)k.,l
i=0 J

0 (^tf-EX^j) £xk
k>0

where we have expanded the scalar products, with the notation (A,B)= EX (A,B)^. Note that for

fixed k, i takes only a finite number of values. Thus for all ke N we must have :
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u;ck)o (^n-s^Ow •

i=0

Now we take tf=,Pnx(f,x) and write Ç;as T&i^ijS-A t,i»0)» f°r some unknown functions

Anf'oJ. If we take ^=VrX(g,0), the l.h.s. of the previous formula is easily calculated (estimation

from the free theory), and is (Ç;^ X(A j o' .O))^. So the above formula gives A in terms of

the sets [A je N} with i<k. This leads to the following formal definition of A{ o.

Definition. For all ne N*, fe 8,^, and xe (R+)n let a"'oJ be the functions given, for all ie N,

jeN*andpeRJ, by:
~ • • oj — j
A fWp) -rr F(î?) n <»(î?k) where F is given, for all y^e RJ, by :

J- k=l

F(y ax \ J dn? fòt) sPj,n>x((^,0);x)
x=o

I aïkoi)! X J d'* ^S*) sPj.r.x((y .0) ; (x,0))
i-1Ik=0 x '" r>l

(for i=0, the term containing the sum over k does not appear).

x=o

The definition uses the functions spjjX instead of the S;rX, introduced in §2.4.1, which would

appear naturally according to the previous considerations, spj r x are called the partially connected

Schwinger functions and are defined as follows. We write Sj r x as a sum of products over the

partitions of {1,.. .,j+r] of some truncated functions (which are defined by this operation, by the

lemma of §2.3.2). Let us denote by J=[l,...,j} and R=[j+l,...,j+r}. spjrXis obtained by

summing only on the partitions of JuR which connect all element of J to R. This connectedness

property is necessary to avoid 8 pseudo-functions in A f' ò (p and for the following results.

Lemma. For all n, ieN and je N*, A™0: 8nox(R+)n->8jj0. Moreover, bjo(A"^ < K

h^0(f)for some Ke (0,°°) independent offe 8ao and xe (R+)n.

This result is not trivial : it says that some Schwinger distributions can be evaluated at the functions

Af'o which are themselves combinations of Schwinger functions partially evaluated at f.

To complete the proof of the theorem only operations on the terms of the perturbation series are

needed. A stronger version of the theorem (unpublished) states that for tfe DX(HX) (that is

fe 8^2) die functions A{V belong to 8j>2, that is all the Ç, are in D^H^). So the intersection of

the subspaces 3QXn D^fH^, which we really needed in §1, is also "almost-dense".
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2.6 Zero-time one-particle states projection

We try now to answer to the second question of the beginning of this § 2 concerning the

orthogonalization with respect to the vacuum and one-particle state subspaces. We have seen in

§2.2 that in the free models the span of [W09n(g), n>2, ge 3C„} have this property. This is no

more true in the interacting models. The orthogonalization with respect to the vacuum state causes

no problem because this subspace is generated by the unique vector £2^ The difficulty in (1-Eq-

En,) comes from the projector Em. As in §2.5, we will not really obtain it, but only approach E^,
for any vector Ce 30 x, by an asymptotic series of zero-time vectors.

To get a better approach of the spectrum of the mass operator we begin to estimate the action of
; resolvent operator of M on the zero-time

suitable ze Œ by an asymptotic series in 30 x.

the resolvent operator of M on the zero-time vectors, by approaching (M -z)" 4 for Ce 30jX and

Let us introduce some notation: for a self-adjoint operator A, d(A,z) is the smallest distance in
Œ between z and the spectrum of A. We introduce on 8nm+i with n,me N*, the norms f H»

d",m(f) given by

*~<o- (• * («fef)'*»+ (üfef ^2"
where R is some fixed arbitrary number such that R»m0. We denote by © the following open

subset of Œ :

© { ze Œ, IzkR, d(M£,z)>0, d(M^,z)>0 }.

Theorem. For all Xe [0,1], Ne N, ze © and tf »Fn>x(f,0) e 30X with «A ^+1(f) < ~ there

exists a finite sequence of30X : (Çz ;, 0<i<N} such that :

1V1X. z i=0

N dn,N+1(f)
< XN+1K z

d(Ml,z)

for some Ke (0,°°) independent of X, f and z.

Note that the conditions on f depend on the order N ; but this concerns only the dependence of

f(xp- -,xn) in the variable x,+---+xn

To construct the vectors Çz ; for tf ^„^(f.O) e 30X, tf*0, and suitable ze Œ, let us suppose

that there exists a perturbation expansion such that :

tf (Mj-z)I X^i
i>0
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where all Ç^ e 30X. (Note that Çz. must be in the domain of M2). Then we write Ç^; as
Z,1

,n.i.j, „•MOEj^^j x(ß f'z ,0) for some functions B{ z We follow now the same way as in § 2.5, and obtain

analogous results (see [9]). We find that A™0 : B^xO-frS^ and that (z,p t-> B j j (p is

continuous on ©xR1.

We use now the information on the mass operator M given in the beginning of this paper, § 1.

For X sufficiently small, a circle ^ in Œ can be drawn, with center m2, such that d(M^,z)>imo

and d(Mx,z)>i m2. for all ze ^(see the figure 3). Let us call X the maximal value in (0.XJ for

which these conditions hold for all Xe [0,X]. We fix now Xe [0,X]. The projector Em can now be

written as

E™ =-77 f dz
2ra J<#

1

)<e Mît- z

Because of the nice properties of the functions Bf z
stated above, the new functions D{' '

given by

òrj(?) hidz^270

for all p e RJ, belong to 8i4, and then the vectors Ç; ^ù.\¥\,\(P t
' >0) üe in die domain of

and have the property stated in the following theorem.

Mz

Theorem. For all Xe [0,X], Ne N and tf ^.(f.O) e 30X with bn>0(f) and bn>0(P2N+4f) < «>

there exists a finite sequence of30X : [Ç;, 0<i<N} such that :

Emtf -I x1;,
i=0

< riKb^O + K'b^^f))
for some K, K'e (0,°q) independent ofX and f.

tf 4m - e

•

Figure 3
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3. Zero-time representation of the Poincaré group

Here we try to construct an intermediate theory between the Q.F.T. and the Q.M. adapted to

the two-particle system at low energy. More precisely we go back to the theorem of § 1 and to the

details of its proof, and we stop the calculation at an intermediate level, before doing the

expansion in the 8 parameter (in order to avoid the non-relativistic limit). Let us denote by *P(f)

the vector obtained by minimizing the Rayleigh quotient in varying the functions fj je N, but not

f f^. We change the representation of the relevant Hilbert space, introducing for each f a new

function F (on R2) such that :

II ¥©11^ JR2dn2(?)lF(l^)l2

,r»
where dT|2(]c I lie j 2} —, and co is now the function on R : p h-> (p2+ m2) Note that

2co(k*)

here m is the one-particle mass of the model with interaction (it depends on X).

We can compute the first perturbation orders of OPff),©*?©),^ f°r ® Ha, or P^, or L,

which give bilinear forms for the Fs. It is then possible to define operators which generate these

forms. We obtain in this way a new quantum and relativistic model, which is simple but not

completely satisfactory because it comes from the first orders of a perturbation calculation, so that

the Lorentz invariance is realized only at 0(X2). Nevertheless this model is interesting for many

reasons. It is simpler than the 3>(<p)2 models and well adapted to the two-particle problem;

moreover it has the same mass spectrum (in the neighborhood of 2m and at first perturbation

orders) and it admits the same non-relativistic limit.

A Quantum Relativistic model is a representation in a Hilbert space of the Poincaré group or of
its Lie algebra, which for a two-dimensional space-time is generated by three operators : P

(momentum), H (Hamiltonian) and L (Lorentz generator), satisfying the commutation rules :

[P,H] 0

[P,L] iH
[H.L] iP

The last proposition of §2.2 gives an example of such representation, the "representation for n

free particles", which has the interesting property that it works at zero-time. We want now to

introduce interaction terms in this representation, deduced from the 9>(<p)2 model in the way
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explained just before. For the two-particle system at zero-time we obtain the following
representation.

3? L2(R2,n2). On Jwe define (formally) the operators P, H, L by

Pftf) fà+lQfflÊ)

Hf(ìc) Q(t)f(t) + X^jdîi2(lc')f(]c')8(k>'1+^-Ê1-t2)

Lftf) L0f$) + X^ L0 f dn2^') f(g') 8(^l+]Vgrgi) +
271

J Q(lc) + Q(Ic')
4! a.

Q(lc) + Q(É ')

where Q(lc) ©(k*',) + C0(k*^ and L0 is as in the last proposition of §2.2, with now m,, replaced

by m. For X=0 we obtain the representation for 2 free particles. These operators are well defined

and symmetric on the domain J^(R2). Their self-adjointness will be shown in another paper [16].

We can now reverse the situation, forget the 3>((p)2 models and consider the above expressions

for Se, H, P, L as definitions (we also forget the restriction to weak relative energy). To simplify
the notation we introduce the operator ff on <#T defined by

^ 4! aA d^.)f(g,)8MM
ßflc) + Qflc')

û is a bounded operator [16]. We also denote by Q. the multiplication operator by the function

Qi$.). Then H and L can be written as

H Q + X(fì£?+C7Q) Q + X {Q <?}

L L0 + X(L0<7+<7L0) L0 + X {L0, Û)

where {A,B} AB + BA Then P, H, L satisfy the following commutation relations :

Proposition. On ^(R2) the operator H, P and L satisfy

[ P, H ] 0

[P,L] iH
[H,L] iP + X2 [ {Q, û), {L0, Û) ]

The proposition shows that H, P and L give "almost" a presentation of the Poincaré group.
The third relation states that the term proportional to X in [H, L] vanishes identically. If we want
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that the term proportional to X2 vanishes also, we must add to H and L new appropriate terms

multiplied by X2 (see [16]

The proof of the proposition will give the answer to another question : how can we modify the

interaction terms in H and L so that the commutation relations of the proposition hold again (see

the remark after the proof).

Proof. Because of the 8 pseudo-function in the definition of û we have [£?, P] 0. Thus [P,

H] [P, Q] + X{[P, Q ], Û}. Because two multiplication operators commute we have [P, Q]

0, and then [P, H] 0. We also have : [P, L] [P, LJ + X{[P, LJ, <?}. But [P, LJ i O, so:

[P, L] i Q + X{Q, û} i H. Now :

[H, L] [Q, LJ + X([ Q, {L0, (7}] + [{ Q, ^},LJ) + X2[{£2, <7},{L0, <?}]•

Using [Si, LJ i P, we obtain :

[H, L] i P + 2 X (i P<? + Sl(7L0- L0<7C1) + X2[{Q, <7},{L0, <?}].

Until now we have not used the explicit form of the Kernel of û (except from the presence of the

8 pseudo-function). The proposition is proved if for all f e J^R2)

t^- (iP<? + Q(7L0-Lo(?Q) f(£) iOcYHQt. <t4

dT|2(Kfa f(Ê') 8(g,'^l4)
Si(t) + Q(Ic')

+ Q(£) f dn2(^') (L0f)<*) *(?<fr-Vx-p

- l0 f difah ß(Th fit') 8&\f'2-*r*z)
J Q(C) + Q(lc')

vanishes. Let us denote by (*) the r.h.s. of this expression.

We make the change of variables (k*!, lej) -» (a, x) given by :

k*, m ch % sha + sh x cha)
k*2 m ch x sha - shx cha)

(note that L0(k*) - i 3a), and the change : (k*'„ k*^ -» (a', %') given by the same formulas. Note

thatdn2(k>')=ida'dx' and

S^k'j+kj-k,-^ Qi
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where Sì' Sì (k*') and ce arg sh (see [3, Appendix I] for other formulas).
chx'

Then (*) becomes :

(*)= i(k\+Kg \wjgfsi') - iß \WavTm

+ l8«J 2d* qTTT

where F(a,x) f(k*) and Q Si (t). With : 3a= -£- ds ^95we obtain :

(*) iJdx' mx') (a. ö^qt + çfyrrfrr^

But a« ÔÏÎ27 - 0'(Q+1Ï) • »<*) -0. 0

Remark Let us replace in the kernel of the factor q+q' by a function Ç(a,x>X')- From the

proof it follows that the commutation relations of the proposition hold again provided that :

daÇ(a.X>X') - "ßfa Ê(a.Z.Z')

C(x.Z')
This differential equation is easily solved and gives : £(oc,X>X') q+Q' ^or an arbitrary

function C. Then the proposition is true even if we multiply the kernel of û by an arbitrary

function of % and %'.

Acknowledgements

I would like to thank Professor G. Gallavotti for helpful discussions.

References

[1] J. Glimm and A. Jaffe, Quantum Physics, 2nd ed. Springer, Berlin, 1987.

[2] J. Glimm, A. Jaffe and T. Spencer, Physics of Quantum Field Models, in Constructive

Quantum Field Theory, G. Velo and A. Wightman ed. (Proceedings of Erice 1973) Springer

Berlin, 1973.



Frochaux 613

[3] E. Frochaux, A variational proof of the existence of a bound state in a relativistic quantum

model with weak coupling, Helv. Phys. Acta 61,923-957 (1988)

[4] E. Frochaux, The bound states of the 3>(<p)2 relativistic quantum field models with weak

coupling obtained by the variational perturbation method, Nucl. Phys. B389, 666-702

(1993)

[5] J. Dimock, The Non-relativistic Limit of 3>(<p)2 Quantum Field Theories : Two-particle

Phenomena. Commun. Math. Phys. 57, 51-66 (1977).

[6] E. Frochaux, Relativistic corrections to the Schrôdinger equation. In preparation.

[7] E. Frochaux, Probability Axioms for Quantum Field Theory. Helv. Phys. Acta 62, 1038-

1069 (1989).

[8] E. Frochaux, Sur le domaine de l'hamiltonien dans les modèles SP(9)2, thèse de l'Université

de Lausanne, Suisse (1988). Zero-time vectors in the domain of the Hamiltonian in quantum

field theory as application of a programme for nearly Gaussian processes, to appear in

Forum Mathematicum.

[9] E. Frochaux, Zero-time one-particle states in Quantum Field Theory, Commun. Math. Phys.

136, 15-33 (1991).

[10] K. Osterwalder and R. Schrader, Axioms for Euclidean Green's Functions, Commun.

Math. Phys. 31, 83-112 (1973). Axioms for Euclidean Green's Functions n. Commun.

Math. Phys. 42, 281-305 (1975).

[11] A. Klein and L. Landau, From the Euclidean Group to the Poincaré Group via Osterwalder-

Schrader Positivity, Commun. Math. Phys. 87, 469-484 (1983).

[12] E. Nelson, Probability theory and Euclidean Field Theory, in Constructive Quantum Field

Theory, G. Velo and A. Wightman ed (Proceedings of Erice 1973) Springer, Berlin, 1973.

[13] J.-P. Eckmann, H. Epstein and J. Fröhlich, Asymptotic Perturbation Expansion of the S-

matrix and the Definition of Time Ordered Functions in Relativistic Quantum Field Models,

Ann. Inst. Henri Poincaré A 25, 1-34, (1976).

[14] K. Osterwalder and R. Sénéor, The Scattering Matrix is Non-Trivial for Weakly Coupled

9>(<p)2 Models, Helv. Phys. Acta 49, 525-535, (1976).

[15] J. Dimock, Asymptotic Perturbation Expansion in the ÎP(<p)2 Quantum Field Theory,

Commun. Math. Phys. 35, 347-356 (1974).

[16] E. Frochaux, A.-M. Moix and C. Raharinosy, A quantum relativistic model for two interac¬

ting particles at zero-time. In preparation.


	The bound-states in quantum field theory : review of some analytic problems raised by the variational perturbation method

