A new framework for old Bell inequalities

Autor(en): Tsirelson, B.S.

Objekttyp: Article

Zeitschrift: Helvetica Physica Acta

Band (Jahr): 66 (1993)
Heft 7-8

PDF erstellt am:
23.05.2024

Persistenter Link: https://doi.org/10.5169/seals-116593

Nutzungsbedingungen

Die ETH-Bibliothek ist Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an den Inhalten der Zeitschriften. Die Rechte liegen in der Regel bei den Herausgebern.
Die auf der Plattform e-periodica veröffentlichten Dokumente stehen für nicht-kommerzielle Zwecke in Lehre und Forschung sowie für die private Nutzung frei zur Verfügung. Einzelne Dateien oder Ausdrucke aus diesem Angebot können zusammen mit diesen Nutzungsbedingungen und den korrekten Herkunftsbezeichnungen weitergegeben werden.
Das Veröffentlichen von Bildern in Print- und Online-Publikationen ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Die systematische Speicherung von Teilen des elektronischen Angebots auf anderen Servern bedarf ebenfalls des schriftlichen Einverständnisses der Rechteinhaber.

Haftungsausschluss

Alle Angaben erfolgen ohne Gewähr für Vollständigkeit oder Richtigkeit. Es wird keine Haftung übernommen für Schäden durch die Verwendung von Informationen aus diesem Online-Angebot oder durch das Fehlen von Informationen. Dies gilt auch für Inhalte Dritter, die über dieses Angebot zugänglich sind.

A new framework for old Bell inequalities

By B.S. Tsirelson

School of Mathematics, Tel Aviv University, Tel Aviv 69978, Israel, e-mail: tsirel@math.tau.ac.il

Abstract. Three topics are shown to be closely connected, one belonging to the foundation of quantum theory (Bell-type inequalities), the second to statistical physics (inequalities for partition functions), and the third to probability theory (inequalities for one-dependent processes and two-block factors). To this end, Bell-type inequalities are reformulated for a new space-time arrangement.

1 Introduction

The traditional framework [1] for famous Bell inequalities is a correlation experiment on two noninteracting subsystems of a composite physical system. A correlation function

$$
\left\langle A_{k} B_{l}\right\rangle
$$

depends on two local parameters k, l; the first parameter k determines a local observable A_{k} on the first subsystem, while l determines B_{l} on the second subsystem. Supposing the observables to be two-valued ($A_{k}= \pm 1, B_{l}= \pm 1$), we have, for example,

$$
\begin{equation*}
\left\langle A_{1} B_{1}\right\rangle+\left\langle A_{1} B_{2}\right\rangle+\left\langle A_{2} B_{1}\right\rangle-\left\langle A_{2} B_{2}\right\rangle \leq R, \tag{1.1}
\end{equation*}
$$

where $R=2$ for classical systems [2], when all four observables commute, while $R=2 \sqrt{2}$ for quantum systems [3], when $A_{k} B_{l}=B_{l} A_{k}$, but in general $A_{1} A_{2} \neq A_{2} A_{1}, B_{1} B_{2} \neq B_{2} B_{1}$.

This traditional framework is depicted by Fig. 1(a). The outcome A_{k} results from the

(b)

Figure 1: Graphs for the two frameworks: old (a) and new (b).

(a)

(b)

Figure 2: The two frameworks for classical systems.
classical input k and the first subsystem; B_{l} - from l and the second subsystem. The correlation function is defined as $c_{k l}=\left\langle A_{k} B_{l}\right\rangle$. The new framework presented here is depicted by Fig. 1(b). Four outcomes K, A, B, L are considered; their joint probability distribution determines a conditional expectation $c_{k l}=\mathbf{E}(A B \mid k, l)$ playing the role of the correlation function.

The proposed framework enables us to find the unexpected connections of Bell inequalities to some topics of statistical physics and probability theory, and to shed additional light on the problem of "free will" in choosing k, l.

In order to explain the difference between the two frameworks, the well-known proof of the classical CHSH inequality (Eq. (1.1) with $R=2$) within the traditional framework will be repeated in brief, and a similar inequality will then be proved within the new framework.

2 The classical inequality within the old framework

A two-valued observable A_{k} is supposed to be a function of k and of a classical state λ of the whole system (a set of classical variables, possibly hidden); and similarly for B_{l} :

$$
A_{k}(\lambda)= \pm 1, \quad B_{l}(\lambda)= \pm 1
$$

See Fig. 2(a). A statistical distribution of outcomes is supposed to result from a classical probability distribution μ for λ :

$$
\begin{equation*}
\left\langle A_{k} B_{l}\right\rangle=\int A_{k}(\lambda) B_{l}(\lambda) \mu(d \lambda) . \tag{2.1}
\end{equation*}
$$

But for each λ we have

$$
\begin{equation*}
A_{1}(\lambda) B_{1}(\lambda)+A_{1}(\lambda) B_{2}(\lambda)+A_{2}(\lambda) B_{1}(\lambda)-A_{2}(\lambda) B_{2}(\lambda) \leq 2 \tag{2.2}
\end{equation*}
$$

(a finite number of possible combinations of ± 1 's can be exhausted "by hand"). By integrating Eq. (2.2) we obtain the well-known CHSH inequality [2]

$$
\begin{equation*}
\left\langle A_{1} B_{1}\right\rangle+\left\langle A_{1} B_{2}\right\rangle+\left\langle A_{2} B_{1}\right\rangle-\left\langle A_{2} B_{2}\right\rangle \leq 2 \tag{2.3}
\end{equation*}
$$

3 The classical inequality within the new framework

Three local classical states $\lambda_{1}, \lambda_{2}, \lambda_{3}$ are supposed to exist, and four observables K, A, B, L are supposed to be some functions of $\lambda_{1}, \lambda_{2}, \lambda_{3}$, their dependence being restricted by the considered graph, see Fig. 2(b):

$$
\begin{array}{ll}
A\left(\lambda_{1}, \lambda_{2}\right)= \pm 1 ; & K\left(\lambda_{1}\right)=1 \text { or } 2 \\
B\left(\lambda_{2}, \lambda_{3}\right)= \pm 1 ; & L\left(\lambda_{3}\right)=1 \text { or } 2
\end{array}
$$

A statistical distribution of outcomes is supposed to result from some classical probability distributions $\mu_{1}, \mu_{2}, \mu_{3}$ for $\lambda_{1}, \lambda_{2}, \lambda_{3}$, respectively, with $\lambda_{1}, \lambda_{2}, \lambda_{3}$ assumed statistically independent. The correlation function is defined as

$$
c_{k l}=\mathbf{E}(A B \mid K=k, L=l)=\frac{\int_{\Lambda_{1}(k)} \mu_{1}\left(d \lambda_{1}\right) \int_{\Lambda_{3}(l)} \mu_{3}\left(d \lambda_{3}\right) \int \mu_{2}\left(d \lambda_{2}\right) A\left(\lambda_{1}, \lambda_{2}\right) B\left(\lambda_{2}, \lambda_{3}\right)}{\mu_{1}\left(\Lambda_{1}(k)\right) \cdot \mu_{3}\left(\Lambda_{3}(l)\right)}
$$

where

$$
\Lambda_{1}(k)=\left\{\lambda_{1}: K\left(\lambda_{1}\right)=k\right\}, \quad \Lambda_{3}(l)=\left\{\lambda_{3}: L\left(\lambda_{3}\right)=l\right\}
$$

The following new version of the CHSH inequality will be proved:

$$
\begin{equation*}
c_{11}+c_{12}+c_{21}-c_{22} \leq 2 \tag{3.2}
\end{equation*}
$$

To this end, define functions $A_{1}, A_{2}, B_{1}, B_{2}$ of λ_{2} as follows:

$$
\begin{equation*}
A_{k}\left(\lambda_{2}\right)=\frac{\int_{\Lambda_{1}(k)} \mu_{1}\left(d \lambda_{1}\right) A\left(\lambda_{1}, \lambda_{2}\right)}{\mu_{1}\left(\Lambda_{1}(k)\right)} \tag{3.3}
\end{equation*}
$$

and similarly for B_{l}. Clearly

$$
\begin{equation*}
c_{k l}=\int A_{k}\left(\lambda_{2}\right) B_{l}\left(\lambda_{2}\right) \mu_{2}\left(d \lambda_{2}\right) \tag{3.4}
\end{equation*}
$$

which leads to Eq. (3.2), just as Eq. (2.1) leads to Eq. (2.3). Although A_{k} and B_{l} are now no longer two-valued, but only satisfy

$$
\left|A_{k}\left(\lambda_{2}\right)\right| \leq 1, \quad\left|B_{l}\left(\lambda_{2}\right)\right| \leq 1
$$

it is well-known (and easy to see) that this is not an obstacle. A further proof, dispensing with such an enlargement of spectra of A_{k}, B_{l}, will be given in Sect. 8 .

Figure 3: The old framework for quantum systems.

4 The quantum inequality within the old framework

A two-valued observable A_{k} is now supposed to be an operator on a Hilbert space H_{1} describing the first subsystem of a composite quantum system; and similarly for B_{l}, H_{2} :

$$
\begin{array}{ll}
A_{k}: H_{1} \rightarrow H_{1}, & A_{k}^{2}=1 ; \\
B_{l}: H_{2} \rightarrow H_{2}, & B_{l}^{2}=1 .
\end{array}
$$

See Fig. 3. A statistical distribution of outcomes is supposed to be determined by a density matrix W on the space $H=H_{1} \otimes H_{2}$ describing the whole system:

$$
\begin{equation*}
\left\langle A_{k} B_{l}\right\rangle=\operatorname{Tr}\left(\left(A_{k} \otimes B_{l}\right) W\right) \tag{4.1}
\end{equation*}
$$

Being arbitrary, W may correspond, in particular, to an entangled state vector.
The following operator inequality is well-known [3]:

$$
\begin{equation*}
\left\|A_{1} \otimes B_{1}+A_{1} \otimes B_{2}+A_{2} \otimes B_{1}-A_{2} \otimes B_{2}\right\| \leq 2 \sqrt{2} \tag{4.2}
\end{equation*}
$$

Multiplying by W and taking the trace, we obtain [3]

$$
\begin{equation*}
\left\langle A_{1} B_{1}\right\rangle+\left\langle A_{1} B_{2}\right\rangle+\left\langle A_{2} B_{1}\right\rangle-\left\langle A_{2} B_{2}\right\rangle \leq 2 \sqrt{2} . \tag{4.3}
\end{equation*}
$$

5 The quantum inequality within the new framework

Three non-interacting and non-correlated quantum systems are supposed to exist at the beginning. Each system decays into two subsystems (generally, correlated), and some pairs of subsystems then merge according to the considered graph, see Fig. 4. Four observables K, A, B, L are supposed to be operators on corresponding spaces:

$$
\begin{aligned}
K: H_{1} \rightarrow H_{1} ; & A: H_{2} \otimes H_{3} \rightarrow H_{2} \otimes H_{3} \\
L: H_{6} \rightarrow H_{6} ; & B: H_{4} \otimes H_{5} \rightarrow H_{4} \otimes H_{5}
\end{aligned}
$$

Figure 4: The new framework for quantum systems.
They are supposed two-valued:

$$
\begin{array}{ll}
\operatorname{Spec}(A) \subset\{-1,+1\} ; & \operatorname{Spec}(K) \subset\{1,2\} \\
\operatorname{Spec}(B) \subset\{-1,+1\} ; & \operatorname{Spec}(L) \subset\{1,2\}
\end{array}
$$

The initial state is described by three density matrices: W_{12} on $H_{1} \otimes H_{2}, W_{34}$ on $H_{3} \otimes H_{4}$, and W_{56} on $H_{5} \otimes H_{6}$. A statistical distribution of outcomes is determined by the standard formalism in the space

$$
H=H_{1} \otimes H_{2} \otimes H_{3} \otimes H_{4} \otimes H_{5} \otimes H_{6}
$$

That is,

$$
\begin{equation*}
c_{k l}=\mathbf{E}(A B \mid K=k, L=l)=\frac{\operatorname{Tr}\left(\left(1_{k}(K) \otimes A \otimes B \otimes 1_{l}(L)\right) W\right)}{\operatorname{Tr}\left(\left(1_{k}(K) \otimes 1_{l}(L)\right) W\right)} \tag{5.1}
\end{equation*}
$$

here $1_{k}(K)$ is the projection operator onto the eigenspace of K, corresponding to its eigenvalue k, and $W=W_{12} \otimes W_{34} \otimes W_{56}$.

Clearly, Eq. (5.1) is a quantum counterpart of Eq. (3.1). The following inequality (the quantum counterpart of Eq. (3.2)) will be proved:

$$
\begin{equation*}
c_{11}+c_{12}+c_{21}-c_{22} \leq 2 \sqrt{2} \tag{5.2}
\end{equation*}
$$

To this end, introduce a quantum counterpart of Eq. (3.3) as follows. Define a Hermitian operator A_{k} on H_{3} by the condition

$$
\begin{equation*}
\operatorname{Tr}\left(A_{k} W_{3}\right)=\frac{\operatorname{Tr}\left(\left(1_{k}(K) \otimes A\right)\left(W_{12} \otimes W_{3}\right)\right)}{\operatorname{Tr}\left(1_{k}(K) W_{12}\right)} \tag{5.3}
\end{equation*}
$$

for any density matrix W_{3} on H_{3}. Of course, we suppose that $\operatorname{Tr}\left(1_{k}(K) W_{12}\right)>0$. The existence of such A_{k} follows from standard arguments; in particular, for a finite dimension it follows immediately from the obvious fact that the right-hand side of Eq. (5.3) is a realvalued linear functional of W_{3}. Being the conditional expectation of A, this functional lies within $[-1,+1]$ for any W_{3}; hence, $\left\|A_{k}\right\| \leq 1$. Similarly, this holds for the operators B_{l} on H_{4}.

Now we need the equality

$$
\begin{equation*}
c_{k l}=\operatorname{Tr}\left(\left(A_{k} \otimes B_{l}\right) W_{34}\right) \tag{5.4}
\end{equation*}
$$

It is evident when W_{34} is a product $W_{3} \otimes W_{4}$; but how do we generalize Eq. (5.4) for an arbitrary W_{34} ? Due to linearity! ${ }^{11}$ Both sides of Eq. (5.4) may be considered linear functionals of W_{34}. Hence, their difference may be written as $\operatorname{Tr}\left(C W_{34}\right)$ with some Hermitian C. We have $\operatorname{Tr}\left(C\left(W_{3} \otimes W_{4}\right)\right)=0$ for any W_{3}, W_{4}. Taking them to be one-dimensional, we obtain $\left\langle\psi_{3} \otimes \psi_{4}\right| C\left|\psi_{3} \otimes \psi_{4}\right\rangle=0$ for any vectors $\psi_{3} \in H_{3}, \psi_{4} \in H_{4}$; this is possible only for $C=0$.

Obtained Eq. (5.4) leads to Eq. (5.2), just as Eq. (4.1) leads to Eq. (4.3), since Eq. (4.2) remains true when the condition $A_{k}^{2}=1, B_{l}^{2}=1$ is replaced with $\left\|A_{k}\right\| \leq 1,\left\|B_{l}\right\| \leq 1$. Another proof, dispensing with the enlargement of spectra of A_{k}, B_{l}, will be given in Sect. 8.

6 Violating the classical inequality

It is well-known [2] that the classical CHSH inequality (2.3) can be violated by means of a pair of spin- $1 / 2$ particles in the singlet state, and the quantum inequality (4.3) can be turned into an equality. It will be shown here that the same holds within the new framework: the quantum inequality (5.2) can be turned into an equality, thus violating the classical inequality (3.2).

The famous spin singlet state

$$
\begin{equation*}
\psi=\frac{1}{\sqrt{2}}|\downarrow \uparrow\rangle-\frac{1}{\sqrt{2}}|\uparrow \downarrow\rangle \tag{6.1}
\end{equation*}
$$

has the following correlation property:

$$
\left\langle\sigma_{\alpha} \otimes \sigma_{\beta}\right\rangle_{\psi}=-\cos (\alpha-\beta),
$$

where $\sigma_{\alpha}=\sigma_{x} \cos \alpha+\sigma_{y} \sin \alpha$. Taking $A_{1}=\sigma_{0}, A_{2}=\sigma_{\pi / 2}, B_{1}=-\sigma_{\pi / 4}, B_{2}=-\sigma_{-\pi / 4}$, we obtain

$$
\begin{equation*}
\left\langle A_{1} B_{1}\right\rangle_{\psi}+\left\langle A_{1} B_{2}\right\rangle_{\psi}+\left\langle A_{2} B_{1}\right\rangle_{\psi}-\left\langle A_{2} B_{2}\right\rangle_{\psi}=2 \sqrt{2} . \tag{6.2}
\end{equation*}
$$

Now consider an experiment of the kind shown in Fig. 4. Take $W_{12}=W_{34}=W_{56}=|\psi\rangle\langle\psi|$ with ψ from Eq. (6.1), and let

$$
\begin{aligned}
& K=\frac{3+\sigma}{2}, \quad A=\frac{1+\sigma}{2} \otimes A_{1}+\frac{1-\sigma}{2} \otimes A_{2}, \\
& L=\frac{3+\sigma}{2}, \quad B=B_{1} \otimes \frac{1+\sigma}{2}+B_{2} \otimes \frac{1-\sigma}{2} ;
\end{aligned}
$$

[^0]

Figure 5: The framework investigated in probability theory.
any σ_{α} may be chosen for σ, for example, $\sigma=\sigma_{0}=\sigma_{x}$. So, first and third singlets (W_{12} and W_{56}) are used simply as classical signals, while the second singlet (W_{34}) implements quantum correlations. The first pair (W_{12}) may be thought of as being either ψ_{1} or ψ_{2}, where $\langle\sigma \otimes 1\rangle_{\psi_{1}}=-1,\langle 1 \otimes \sigma\rangle_{\psi_{1}}=+1,\langle\sigma \otimes 1\rangle_{\psi_{2}}=+1,\langle 1 \otimes \sigma\rangle_{\psi_{2}}=-1$; indeed, only these commuting operators are used on $H_{1} \otimes H_{2}$ to form K, A. In the case of ψ_{1} we have $K=(3-1) / 2=1$, and A amounts to $\frac{1+1}{2} \otimes A_{1}+\frac{1-1}{2} \otimes A_{2}=A_{1}$; in the case of ψ_{2} we obtain $K=2$ and $A=A_{2}$. The same holds for L and B. Clearly, the correlation function coincides with that used in Eq. (6.2); in particular,

$$
c_{11}+c_{12}+c_{21}-c_{22}=2 \sqrt{2}
$$

7 A connection to probability theory

The inequality (3.2) constrains a joint probability distribution for a quadruple (K, A, B, L) of random variables, provided that the distribution emerges from some distribution of independent random variables $\lambda_{1}, \lambda_{2}, \lambda_{3}$. These $\lambda_{1}, \lambda_{2}, \lambda_{3}$ may be called "hidden" in contrast to the "observable" variables K, A, B, L. In accordance with the given graph (see Fig. 2(b)), each hidden variable influences two adjacent observable variables.

Interestingly, the problem of finding constraints, resulting from the existence of such hidden variables, is studied in probability theory [4, 5, 6], but its connection to Bell-type inequalities is recognised for the first time.

A stationary random sequence $\left\{A_{n}\right\}$ is called a two-block factor, if it can be represented in the form [4]

$$
\begin{equation*}
A_{n}=f\left(\lambda_{n-1}, \lambda_{n}\right) \tag{7.1}
\end{equation*}
$$

via a sequence $\left\{\lambda_{n}\right\}$ of independent identically distributed random variables (see Fig. 5). A clear restriction to such $\left\{A_{n}\right\}$ is the fact that A_{n+1} is independent of A_{n-1}, and moreover, the sequence $\left\{\ldots, A_{n-2}, A_{n-1}\right\}$ and the sequence $\left\{A_{n+1}, A_{n+2}, \ldots\right\}$ are (statistically) independent for each n. This property is known as one-dependence. The main result of Ref. [4] is the existence of a non-evident constraint for all two-valued stationary two-block factors. In other words, there exists a two-valued stationary one-dependent sequence that is not a two-block factor.

We will see that a close result can be obtained by means of inequality (3.2). First,

Eq. (7.1) may be generalized for the non-homogeneous (=non-stationary) case:

$$
\begin{equation*}
A_{n}=f_{n}\left(\lambda_{n-1}, \lambda_{n}\right) \tag{7.2}
\end{equation*}
$$

that is, f_{n} may now depend on n, as well as distributions for λ_{n} and A_{n}. The domain of n may be finite, $n \in\{1,2, \ldots, N\}$, or infinite. Accept Eq. (7.2) as a definition of a two-block factor, while Eq. (7.1) - of a homogeneous (or stationary) two-block factor.

The conditions imposed on the quadruple (K, A, B, L) in Sect. 3 mean exactly that it is a two-block factor of length $N=4$, with two values. Hence, Eq. (3.2) constrains any twovalued two-block factor of length 4 . When a given two-block factor $\left\{A_{n}\right\}$ is not two-valued, and/or of length >4, we may still apply Eq. (3.2) to any quadruple of the form

$$
\begin{equation*}
g_{1}\left(A_{n}\right), g_{2}\left(A_{n+1}\right), g_{3}\left(A_{n+2}\right), g_{4}\left(A_{n+3}\right) \tag{7.3}
\end{equation*}
$$

where $g_{1}, g_{2}, g_{3}, g_{4}$ are arbitrary two-valued functions. Indeed, the quadruple (7.3) is again a two-block factor.

Unfortunately, explicit inequalities are cumbersome. For a two-block factor (A_{1}, A_{2}, A_{3}, A_{4}) with two values 0 and 1 we have, for example,

$$
\begin{align*}
c_{01}= & \mathbf{E}\left(\left(2 A_{2}-1\right)\left(2 A_{3}-1\right) \mid A_{1}=0, A_{4}=1\right)=\frac{\left\langle\left(1-A_{1}\right)\left(2 A_{2}-1\right)\left(2 A_{3}-1\right) A_{4}\right\rangle}{\left\langle\left(1-A_{1}\right) A_{4}\right\rangle} \\
= & \frac{1}{1-\left\langle A_{1}\right\rangle} \cdot \frac{1}{\left\langle A_{4}\right\rangle} \cdot\left(-4\left\langle A_{1} A_{2} A_{3} A_{4}\right\rangle+2\left\langle A_{1} A_{2}\right\rangle\left\langle A_{4}\right\rangle+2\left\langle A_{1}\right\rangle\left\langle A_{3} A_{4}\right\rangle-\left\langle A_{1}\right\rangle\left\langle A_{4}\right\rangle\right. \\
& \left.\quad+4\left\langle A_{2} A_{3} A_{4}\right\rangle-2\left\langle A_{2}\right\rangle\left\langle A_{4}\right\rangle-2\left\langle A_{3} A_{4}\right\rangle+\left\langle A_{4}\right\rangle\right) ; \tag{7.4}
\end{align*}
$$

disconnected products are factorized due to one-dependence. Similarly c_{00}, c_{10}, and c_{11} have to be found, and substituted into inequality (3.2) or into the more general one:

$$
\begin{equation*}
\left|c_{00}+c_{01}+c_{10}+c_{11}-2 c_{k l}\right| \leq 2 . \tag{7.5}
\end{equation*}
$$

It would be difficult to find these inequalities without the mediation of Bell's inequality! It will be shown in Sect. 8 that the above inequalities are the best possible. They are true boundaries for the class of two-valued two-block factors within the including class of twovalued one-dependent processes described by means of 10 averaged connected products $\left\langle A_{1}\right\rangle$, $\left\langle A_{2}\right\rangle,\left\langle A_{3}\right\rangle,\left\langle A_{4}\right\rangle,\left\langle A_{1} A_{2}\right\rangle,\left\langle A_{2} A_{3}\right\rangle,\left\langle A_{3} A_{4}\right\rangle,\left\langle A_{1} A_{2} A_{3}\right\rangle,\left\langle A_{2} A_{3} A_{4}\right\rangle,\left\langle A_{1} A_{2} A_{3} A_{4}\right\rangle$.

The conditions imposed on the quadruple (K, A, B, L) in Sect. 5 may be generalized as follows. A random sequence will be called a quantum two-block factor, if its joint distribution can be represented as the joint distribution of a sequence $\left\{A_{n}\right\}$ of commuting observables in the situation shown in Fig. 6. That is, a sequence $\left\{H_{n}\right\}$ of Hilbert spaces has to be given, A_{n} acting on $H_{2 n-1} \otimes H_{2 n}$, and probabilities determined by the tensor product of some density matrices W_{n} acting on $H_{2 n} \otimes H_{2 n+1}$. Due to locality, we avoid dealing with infinite tensor products; it is enough to consider joint distributions for all finite regions.

Sect. 6 gives an example of a quantum two-block factor (K, A, B, L) which is not a classical two-block factor. (After introducing the term "quantum two-block factor" it is

Figure 6: A quantum two-block factor.

$$
\begin{array}{cccc}
X_{n-4} & \begin{array}{l}
X_{n-3} \\
K_{n-4}
\end{array} & K_{n-3} & K_{n-2} \\
X_{n-2} & K_{n-1} \\
A_{n-3} & A_{n-2} & A_{n-1} & A_{n} \\
B_{n-2} & B_{n-1} & B_{n} & B_{n+1} \\
L_{n-1} & L_{n} & L_{n+1} & L_{n+2}
\end{array} \begin{gathered}
X_{n} \\
K_{n} \\
A_{n+1} \\
B_{n+2} \\
L_{n+3}
\end{gathered} \begin{gathered}
X_{n+1} \\
\left.\begin{array}{l}
K_{n+1} \\
A_{n+2} \\
B_{n+3} \\
L_{n+4}
\end{array}\right)
\end{gathered}
$$

Figure 7: A homogeneous example of a quantum two-block factor.
natural to add the word "classical" to the old term.) A homogeneous example can be obtained as follows. Take an infinite sequence of independent quadruples ($K_{n}, A_{n}, B_{n}, L_{n}$) for $n=\ldots-2,-1,0,1,2 \ldots$, each quadruple being a copy of the above-mentioned (K, A, B, L), and define a multi-component random sequence $\left\{X_{n}\right\}$ as follows (see Fig. 7):

$$
X_{n}=\left(K_{n}, A_{n+1}, B_{n+2}, L_{n+3}\right)
$$

Alternatively, the four two-valued components can be converted into one 16 -valued component, for example,

$$
\begin{equation*}
X_{n}=8\left(K_{n}-1\right)+4 \cdot \frac{1+A_{n+1}}{2}+2 \cdot \frac{1+B_{n+2}}{2}+L_{n+3} . \tag{7.6}
\end{equation*}
$$

It is easy to see that $\left\{X_{n}\right\}$ is indeed a quantum two-block factor, but not a classical two-block factor, since it violates the constraint Eqs. (3.2) and (7.3).

So, the presented theory provides us with a "quantum" proof of the following result from purely "classical" probability theory: there exists a one-dependent stationary random sequence which is not a (classical) two-block factor. Note that the above-mentioned result of Ref. [4] is stronger, since a two-valued example is constructed there. No "quantum" proof of it is known. It is also unknown, whether any homogeneous one-dependent two-valued random sequence is a quantum two-block factor, or not. For the 16 -valued case a counterexample can be constructed by using Eqs. (5.2) and (7.6).

8 Are the two frameworks equivalent?

New inequalities (3.2) and (5.2) were derived from old inequalities (2.3) and (4.3). The question arises, whether all "new type" constraints (ensuing from the new frameworks) are derivable from "old type" constraints, or not.

An affirmative answer will be given, and not only for the two-valued case but also for the general case. The answer will be formulated in terms of the following two definitions. For simplicity, we restrict ourselves to the discrete case, supposing all observables to be integer-valued.

Define an old-type classical probability set as a family $\left\{p_{k l}^{a b}\right\}$ of numbers given for all integers k, l, a, b, admitting the following representation:

$$
\begin{equation*}
p_{k l}^{a b}=\mu\left\{\lambda: A_{k}(\lambda)=a, B_{l}(\lambda)=b\right\} \tag{8.1}
\end{equation*}
$$

with some functions A_{k}, B_{l} on some set Λ carrying a probability measure μ.
Define a new-type classical probability set as a family $\left\{p_{k a b l}\right\}$ of numbers given for all integers k, l, a, b, admitting the following representation:

$$
\begin{equation*}
p_{\text {kabl }}=\left(\mu_{1} \otimes \mu_{2} \otimes \mu_{3}\right)\left\{\left(\lambda_{1}, \lambda_{2}, \lambda_{3}\right): K\left(\lambda_{1}\right)=k, A\left(\lambda_{1}, \lambda_{2}\right)=a, B\left(\lambda_{2}, \lambda_{3}\right)=b, L\left(\lambda_{3}\right)=l\right\} \tag{8.2}
\end{equation*}
$$

with some sets $\Lambda_{1}, \Lambda_{2}, \Lambda_{3}$, carrying some probability measures $\mu_{1}, \mu_{2}, \mu_{3}$, respectively, and some functions K on Λ_{1}, A on $\Lambda_{1} \times \Lambda_{2}, B$ on $\Lambda_{2} \times \Lambda_{3}$, and L on Λ_{3}.

Suppose we are given both an old-type classical probability set $\left\{p_{k l}^{a b}\right\}$ and a new-type classical probability set $\left\{p_{k a b l}\right\}$. We will call them corresponding (to each other), if the identity

$$
\begin{equation*}
p_{k a b l}=p_{k}^{\prime} p_{l}^{\prime \prime} p_{k l}^{a b} \tag{8.3}
\end{equation*}
$$

holds for some sequences $\left\{p_{k}^{\prime}\right\},\left\{p_{l}^{\prime \prime}\right\}$, each summing to 1 . It follows from Eq. (8.3) that

$$
\begin{equation*}
p_{k}^{\prime}=\sum_{a, b, l} p_{k a b l}, \quad p_{l}^{\prime \prime}=\sum_{k, a, b} p_{k a b l} \tag{8.4}
\end{equation*}
$$

and hence $\left\{p_{\text {kabl }}\right\}$ determines $\left\{p_{k l}^{a b}\right\}$ uniquely provided that all $p_{k}^{\prime}, p_{l}^{\prime \prime}$ obtained from Eq. (8.4) are non-zero. On the contrary, $\left\{p_{k l}^{a b}\right\}$ contains no information about $\left\{p_{k}^{\prime}\right\},\left\{p_{l}^{\prime \prime}\right\}$, and does not determine $\left\{p_{\text {kabl }}\right\}$.

Theorem 1 Let $\left\{p_{k a b l}\right\}$ be a new-type classical probability set. Form $\left\{p_{k}^{\prime}\right\},\left\{p_{l}^{\prime \prime}\right\}$ according to Eq. (8.4) and suppose they all differ from zero. Then the numbers

$$
p_{k l}^{a b}=\frac{p_{k a b l}}{p_{k}^{\prime} p_{l}^{\prime \prime}}
$$

form an old-type classical probability set.

Theorem 2 Let $\left\{p_{k l}^{a b}\right\}$ be an old-type classical probability set, and $\left\{p_{k}^{\prime}\right\},\left\{p_{l}^{\prime \prime}\right\}$ be two sequences of non-negative numbers such that $\sum p_{k}^{\prime}=1, \sum p_{l}^{\prime \prime}=1$. Then the numbers

$$
p_{k a b l}=p_{k}^{\prime} p_{l}^{\prime \prime} p_{k l}^{a b}
$$

form a new-type classical probability set.

Proof of Theorem 2 is straightforward: take $\lambda_{1}=k, \lambda_{3}=l, \lambda_{2}=\lambda, A\left(\lambda_{1}, \lambda_{2}\right)=A_{k}(\lambda)$, and $B\left(\lambda_{2}, \lambda_{3}\right)=B_{l}(\lambda)$.

Proof of Theorem 1. As in Sect. 3, introduce $\Lambda_{1}(k)=\left\{\lambda_{1}: K\left(\lambda_{1}\right)=k\right\}$, then $\mu_{1}\left(\Lambda_{1}(k)\right)=$ p_{k}^{\prime}. Fix some nonatomic probability space $\left(\Omega_{1}, P_{1}\right)$, and for each k choose a map $\xi_{k}^{\prime}: \Omega_{1} \rightarrow \Lambda_{1}$ such that

$$
P_{1}\left(\xi_{k}^{\prime} \in \Delta\right)=\frac{1}{p_{k}^{\prime}} \mu_{1}\left(\Delta \cap \Lambda_{1}(k)\right)
$$

for any $\Delta \subset \Lambda_{1}$. Similarly construct $\xi_{l}^{\prime \prime}: \Omega_{3} \rightarrow \Lambda_{3}$. Finally, take the space $\Lambda=\Omega_{1} \times \Lambda_{2} \times \Omega_{3}$ with the product measure $\mu=P_{1} \otimes \mu_{2} \otimes P_{3}$, and for any $\lambda=\left(\omega_{1}, \lambda_{2}, \omega_{3}\right) \in \Lambda$ define

$$
A_{k}(\lambda)=A\left(\xi_{k}^{\prime}\left(\omega_{1}\right), \lambda_{2}\right), \quad B_{l}(\lambda)=B\left(\lambda_{2}, \xi_{l}^{\prime \prime}\left(\omega_{3}\right)\right)
$$

Then

$$
\begin{aligned}
& \mu\left\{\lambda: A_{k}(\lambda)=a, B_{l}(\lambda)=b\right\}=\int \mu_{2}\left(d \lambda_{2}\right) P_{1}\left(A\left(\xi_{k}^{\prime}, \lambda_{2}\right)=a\right) P_{3}\left(B\left(\lambda_{2}, \xi_{l}^{\prime \prime}\right)=b\right) \\
& =\int \mu_{2}\left(d \lambda_{2}\right) \frac{1}{p_{k}^{\prime}} \mu_{1}\left\{\lambda_{1}: K\left(\lambda_{1}\right)=k, A\left(\lambda_{1}, \lambda_{2}\right)=a\right\} \frac{1}{p_{l}^{\prime \prime}} \mu_{3}\left\{\lambda_{3}: L\left(\lambda_{3}\right)=l, B\left(\lambda_{2}, \lambda_{3}\right)=b\right\} \\
& =\frac{1}{p_{k}^{\prime} p_{l}^{\prime \prime}}\left(\mu_{1} \otimes \mu_{2} \otimes \mu_{3}\right)\left\{\left(\lambda_{1}, \lambda_{2}, \lambda_{3}\right): K\left(\lambda_{1}\right)=k, A\left(\lambda_{1}, \lambda_{2}\right)=a, B\left(\lambda_{2}, \lambda_{3}\right)=b, L\left(\lambda_{3}\right)=l\right\} \\
& =\frac{p_{k a b l}}{p_{k}^{\prime} p_{l}^{\prime \prime}}=p_{k l}^{a b},
\end{aligned}
$$

q.e.d.

So, the two frameworks are equivalent for the classical theory. Returning to the twovalued case we conclude, that a necessary and sufficient condition is obtained for a quadruple $\left(A_{1}, A_{2}, A_{3}, A_{4}\right)$ of two-valued random variables to be a (classical) two-block factor (defined by Eq. (7.2)). Indeed, the last means that their joint distribution $\left\{p_{\text {kabl }}\right\}$ is a new-type classical probability set. Due to Theorems 1,2 it is necessary and sufficient that corresponding $\left\{p_{k l}^{a b}\right\}$ is an old-type classical probability set. (The quadruple $\left(A_{1}, A_{2}, A_{3}, A_{4}\right)$ is supposed onedependent. The case, when at least one of $p_{k}^{\prime}, p_{l}^{\prime \prime}$ vanishes, is omitted because of its triviality.) Now inequalities (7.5) form a necessary and sufficient condition, as is well-known [7]. It follows that inequalities (7.4-7.5) are the best possible.

Note that the given proof of necessity provides us with one more proof of inequality (3.2), as was promised in Sect. 3.

A similar question for a sequence $\left(A_{1}, \ldots, A_{n}\right)$ with $n>4$ remains open.

Are the two frameworks equivalent for quantum theory, too? Yes, they are. Define old-type and new-type quantum probability sets by replacing Eq. (8.1) with

$$
p_{k l}^{a b}=\operatorname{Tr}\left(\left(1_{a}\left(A_{k}\right) \otimes 1_{b}\left(B_{l}\right)\right) W\right)
$$

and Eq. (8.2) with

$$
\begin{aligned}
& p_{\text {kabl }}=\operatorname{Tr}\left(\left(1_{k}(K) \otimes 1_{a}(A) \otimes 1_{b}(B) \otimes 1_{l}(L)\right) W\right) \\
& W=W_{12} \otimes W_{34} \otimes W_{56}
\end{aligned}
$$

cf. Eqs. (4.1) and (5.1).

Theorem 3 The same as Theorem 1, but replacing "classical" with "quantum."

Theorem 4 The same as Theorem 2, but replacing "classical" with "quantum."

Proof of Theorem 4 is a straightforward generalization of the construction used in Sect. 6.
Proof of Theorem 3. Having $\operatorname{Tr}\left(1_{k}(K) W_{12}\right)=p_{k}^{\prime}>0$, consider the state W_{k}^{\prime} on H_{2} obtained from W_{12} by postselection for $K=k$ on H_{1}; that is, W_{k}^{\prime} is defined by the equality

$$
\operatorname{Tr}\left(X W_{k}^{\prime}\right)=\frac{1}{p_{k}^{\prime}} \operatorname{Tr}\left(\left(1_{k}(K) \otimes X\right) W_{12}\right)
$$

holding for any observable X on H_{2}. Similarly introduce $W_{l}^{\prime \prime}$ on H_{5}. The conditional probabilities $p_{k l}^{a b}$ may be computed via conditional states $W_{k}^{\prime}, W_{l}^{\prime \prime}$:

$$
\begin{equation*}
p_{k l}^{a b}=\operatorname{Tr}\left(\left(1_{a}(A) \otimes 1_{b}(B)\right)\left(W_{k}^{\prime} \otimes W_{34} \otimes W_{l}^{\prime \prime}\right)\right) \tag{8.5}
\end{equation*}
$$

the trace being taken on $H_{2} \otimes H_{3} \otimes H_{4} \otimes H_{5}$. (Eq. (8.5) can be proved similarly to Eq. (5.4).) Take some new Hilbert spaces G_{2}, G_{5} (these are quantum counterparts of Ω_{1}, Ω_{3} used in the proof of Theorem 1), and represent each W_{k}^{\prime} by a vector $\psi_{k}^{\prime} \in G_{2} \otimes H_{2}$:

$$
\operatorname{Tr}\left(X W_{k}^{\prime}\right)=\left\langle\psi_{k}^{\prime}\right| 1 \otimes X\left|\psi_{k}^{\prime}\right\rangle
$$

for any observable X on H_{2}. Fix some unit vector $\psi^{\prime} \in G_{2} \otimes H_{2}$, and choose unitary operators U_{k}^{\prime} on $G_{2} \otimes H_{2}$ such that $U_{k}^{\prime} \psi^{\prime}=\psi_{k}^{\prime}$. The same holds for $\psi_{l}^{\prime \prime}, \psi^{\prime \prime}, U_{l}^{\prime \prime}$. (These operators are quantum counterparts of $\xi_{k}^{\prime}, \xi_{l}^{\prime \prime}$ used in the proof of Theorem 1.) We have

$$
p_{k l}^{a b}=\operatorname{Tr}\left(\left(1_{a}(A) \otimes 1_{b}(B)\right)\left(\left|\psi_{k}^{\prime}\right\rangle\left\langle\psi_{k}^{\prime}\right| \otimes W_{34} \otimes\left|\psi_{l}^{\prime \prime}\right\rangle\left\langle\psi_{l}^{\prime \prime}\right|\right)\right) ;
$$

here and henceforth A is transferred from $H_{2} \otimes H_{3}$ to $G_{2} \otimes H_{2} \otimes H_{3}$ by means of tensor multiplication by identity on G_{2}. Substituting $\left|\psi_{k}^{\prime}\right\rangle\left\langle\psi_{k}^{\prime}\right|=U_{k}^{\prime}\left|\psi^{\prime}\right\rangle\left\langle\psi^{\prime}\right| U_{k}^{\prime *}$, we obtain

$$
\begin{aligned}
p_{k l}^{a b} & =\operatorname{Tr}\left(\left(1_{a}(A) \otimes 1_{b}(B)\right)\left(U_{k}^{\prime} \otimes U_{l}^{\prime \prime}\right)\left(\left|\psi^{\prime}\right\rangle\left\langle\psi^{\prime}\right| \otimes W_{34} \otimes\left|\psi^{\prime \prime}\right\rangle\left\langle\psi^{\prime \prime}\right|\right)\left(U_{k}^{\prime} \otimes U_{l}^{\prime \prime}\right)^{*}\right) \\
& =\operatorname{Tr}\left(\left(1_{a}\left(A_{k}\right) \otimes 1_{b}\left(B_{l}\right)\right) W\right)
\end{aligned}
$$

where

$$
\begin{aligned}
& A_{k}=U_{k}^{\prime *} A U_{k}^{\prime}, \quad B_{l}=U_{l}^{\prime \prime *} B U_{l}^{\prime \prime}, \\
& W=\left|\psi^{\prime}\right\rangle\left\langle\psi^{\prime}\right| \otimes W_{34} \otimes\left|\psi^{\prime \prime}\right\rangle\left\langle\psi^{\prime \prime}\right|,
\end{aligned}
$$

q.e.d.

So, the two frameworks are also equivalent for quantum theory. Returning to the twovalued case, can we obtain a necessary and sufficient condition for a quadruple (A_{1}, A_{2}, A_{3}, A_{4}) of two-valued random variables to be a quantum two-block factor, as defined in Sect. 7? Yes, it can be done similarly to the classical case considered above, provided that a necessary and sufficient condition is available for an old-type quantum probability set. Such a condition was indeed obtained [8], though not in the form of explicit inequalities, but in a form free of operators in Hilbert spaces. Unfortunately, the condition is too cumbersome to be reproduced here.

The case of a sequence $\left(A_{1}, \ldots, A_{n}\right)$ with $n>4$ has not yet been investigated.

9 A connection to statistical physics

Consider a system of classical statistical physics with a finite-range interaction. Divide it into a chain of subsystems such that the n-th subsystem interacts only with its two adjacent subsystems, the $(n-1)$-th and the $(n+1)$-th. The Hamilton function may be written as

$$
\begin{equation*}
H\left(\lambda_{1}, \ldots, \lambda_{N}\right)=\sum_{n=1}^{N} H_{n}\left(\lambda_{n}\right)+\sum_{n=1}^{N-1} H_{n, n+1}\left(\lambda_{n}, \lambda_{n+1}\right) ; \tag{9.1}
\end{equation*}
$$

here λ_{n} denotes the state of the n-th subsystem, which may have any number of discrete and/or continuous components. Suppose that the decomposition of H is made so that

$$
H_{n, n+1}\left(\lambda_{n}, \lambda_{n+1}\right) \geq 0
$$

for all n, λ_{n}, and λ_{n+1}. The partition function is

$$
\begin{align*}
Z & =\int \exp \left(-\beta H\left(\lambda_{1}, \ldots, \lambda_{N}\right)\right) d \lambda_{1} \ldots d \lambda_{N} \\
& =Z_{1} \ldots Z_{N} \int \exp \left(-\beta \sum_{n=1}^{N-1} H_{n, n+1}\left(\lambda_{n}, \lambda_{n+1}\right)\right) \mu_{1}\left(d \lambda_{1}\right) \ldots \mu_{N}\left(d \lambda_{N}\right) \tag{9.2}
\end{align*}
$$

here $\beta=(k T)^{-1}$ is the inverse temperature, Z_{n} is the partition function for the n-th subsystem released from the interaction with its neighbors, and μ_{n} is the corresponding Gibbs measure:

$$
\begin{align*}
Z_{n} & =\int \exp \left(-\beta H_{n}\left(\lambda_{n}\right)\right) d \lambda_{n} \\
\mu_{n}\left(d \lambda_{n}\right) & =Z_{n}^{-1} \exp \left(-\beta H_{n}\left(\lambda_{n}\right)\right) d \lambda_{n} . \tag{9.3}
\end{align*}
$$

A connection to two-block factors considered in Sect. 7 may be established as follows. Let us treat $\lambda_{1}, \ldots, \lambda_{N}$ as independent random variables with distributions μ_{1}, \ldots, μ_{N}, respectively. Introduce additional random variables $\theta_{1}, \ldots, \theta_{N-1}$ distributed uniformly on $[0,1]$ and such that all $2 N-1$ variables ($\lambda_{1}, \theta_{1}, \ldots, \lambda_{N-1}, \theta_{N-1}, \lambda_{N}$) are independent. Then random variables

$$
A_{n}= \begin{cases}1, & \text { when } \theta_{n}<\exp \left(-\beta H_{n, n+1}\left(\lambda_{n}, \lambda_{n+1}\right)\right) \\ 0, & \text { otherwise }\end{cases}
$$

form a two-block factor, and their product averages to a ratio of partition functions:

$$
\left\langle A_{1} \ldots A_{N-1}\right\rangle=\frac{Z}{Z_{1} \ldots Z_{N}}
$$

Moreover, each product of some A_{n} averages to some ratio of partition functions. To be more specific, we restrict ourselves to a homogeneous one-dimensional lattice system with pair interaction:

$$
\begin{aligned}
& Z=Z^{K}(1) \int \exp \left(-\beta \sum_{k=1}^{K-1} h_{2}\left(x_{k}, x_{k+1}\right)\right) \mu\left(d x_{1}\right) \ldots \mu\left(d x_{K}\right), \\
& Z(1)=\int \exp \left(-\beta h_{1}(x)\right) d x \\
& \mu(d x)=(1 / Z(1)) \exp \left(-\beta h_{1}(x)\right) d x \\
& h_{2}\left(x_{k}, x_{k+1}\right) \geq 0 \text { always. }
\end{aligned}
$$

Divide the system into $N=5$ subsystems:

$$
\begin{aligned}
& \lambda_{1}=\left(x_{1}, \ldots, x_{k_{1}}\right), \quad \lambda_{2}=\left(x_{k_{1}+1}, \ldots, x_{k_{1}+k_{2}}\right), \ldots, \lambda_{5}=\left(x_{k_{1}+k_{2}+k_{3}+k_{4}+1}, \ldots, x_{K}\right) ; \\
& H_{1}\left(\lambda_{1}\right)=h_{1}\left(x_{1}\right)+h_{2}\left(x_{1}, x_{2}\right)+h_{1}\left(x_{2}\right)+\ldots+h_{2}\left(x_{k_{1}-1}, x_{k_{1}}\right)+h_{1}\left(x_{k_{1}}\right) \text { and so on; } \\
& H_{1,2}\left(\lambda_{1}, \lambda_{2}\right)=h_{2}\left(x_{k_{1}}, x_{k_{1}+1}\right) \text { and so on. }
\end{aligned}
$$

Denote by $Z(k)$ the partition function for a k-element subsystem:

$$
Z(k)=Z^{k}(1) \int \exp \left(-\beta \sum_{i=1}^{k-1} h_{2}\left(x_{i}, x_{i+1}\right)\right) \mu\left(d x_{1}\right) \ldots \mu\left(d x_{k}\right)
$$

Now Z_{n} introduced before appear to be

$$
Z_{1}=Z\left(k_{1}\right), \ldots, Z_{5}=Z\left(k_{5}\right)
$$

$k_{1}+\ldots+k_{5}=K$. For the above two-block factor $\left(A_{1}, A_{2}, A_{3}, A_{4}\right)$ we have

$$
\left\langle A_{1} A_{2} A_{3} A_{4}\right\rangle=\frac{Z\left(k_{1}+k_{2}+k_{3}+k_{4}+k_{5}\right)}{Z\left(k_{1}\right) Z\left(k_{2}\right) Z\left(k_{3}\right) Z\left(k_{4}\right) Z\left(k_{5}\right)}
$$

and similarly for other connected products; for example,

$$
\left\langle A_{2}\right\rangle=\frac{Z\left(k_{2}+k_{3}\right)}{Z\left(k_{2}\right) Z\left(k_{3}\right)} ; \quad\left\langle A_{2} A_{3}\right\rangle=\frac{Z\left(k_{2}+k_{3}+k_{4}\right)}{Z\left(k_{2}\right) Z\left(k_{3}\right) Z\left(k_{4}\right)} .
$$

Substituting them into Eq. (7.4-7.5) we obtain Bell-type inequalities for partition functions! It is natural to suppose that these are irrelevant consequences of some relevant, hopefully simpler inequalities. It should be noted, however, that the inequalities obtained are the best possible for the general inhomogeneous framework given by Eqs. (9.1)-(9.2). This statement follows from the following two facts. First, inequalities (7.5) are the best possible for twovalued two-block factors, as was shown in Sect. 8. Second, any two-block factor valued in $\{0,1\}$, corresponds (exactly or as a limit) to a system described by Eqs. (9.1)-(9.2), as will be shown now. Let $A_{n}=f_{n}\left(\lambda_{n-1}, \lambda_{n}\right) \in\{0,1\}$ with independent λ_{n}, as in Eq. (7.2). Each λ_{n} runs over a probability space which may be chosen as $[0,1]$ with Lebesgue measure, or equally well, may be identified with the phase space of a physical system, equipped with its Gibbs measure μ_{n}, as in Eq. (9.3). Introducing an interaction as

$$
H_{n, n+1}\left(\lambda_{n}, \lambda_{n+1}\right)=c\left(1-f_{n+1}\left(\lambda_{n}, \lambda_{n+1}\right)\right)
$$

with a constant c, we obtain

$$
\begin{aligned}
& \lim _{c \rightarrow+\infty} \int \exp \left(-\beta \sum_{n=1}^{N-1} H_{n, n+1}\left(\lambda_{n}, \lambda_{n+1}\right)\right) \mu_{1}\left(d \lambda_{1}\right) \ldots \mu_{N}\left(d \lambda_{N}\right) \\
& =\int_{\left\{f_{n+1}\left(\lambda_{n}, \lambda_{n+1}\right)=1 \text { for all } n\right\}} \mu_{1}\left(d \lambda_{1}\right) \ldots \mu_{N}\left(d \lambda_{N}\right)=\left\langle A_{1} \ldots A_{N}\right\rangle .
\end{aligned}
$$

The above connection between partition functions and two-block factors remains valid for the homogeneous case. Hence, any inequality for stationary two-valued two-block factors gives an inequality for homogeneous partition functions. However, the inequalities for stationary two-block factors, obtained in Ref. [4], concern only the special case $\left\langle A_{1} A_{2} A_{3}\right\rangle=0$, which is uninteresting for statistical physics. The inequalities obtained in Ref. [6] are nonapplicable here, since they require at least five different values for each A_{k}. The inequalities obtained in Ref. [5] can be applied, giving

$$
Z(3 k) \leq Z^{3 / 2}(2 k), \quad \text { when } Z(2 k) \geq \frac{1}{2} Z^{2}(k)
$$

and

$$
Z(3 k) \leq\left(Z^{2}(k)-Z(2 k)\right)^{3 / 2}+2 Z(k) Z(2 k)-Z^{3}(k), \quad \text { when } Z(2 k) \leq \frac{1}{2} Z^{2}(k)
$$

But the inequalities of Ref. [5] do not distinguish two-block factors from one-dependent processes, so, they are not Bell-type inequalities.

10 Independence, free will, conspiracy, and all that

It was not evident from the very beginning, but now it is understood [9, 10, 11], that no experimental test of a Bell-type inequality can be interpreted without assuming some
independencies. The traditional framework assumes that the choice of k, l is not correlated with the state of the system. Moreover, no idea of a testable local causality is possible without assuming the statistical independence (or maybe a weak dependence) of observers from observed systems before observations. See Refs. [9, 10, 11] for discussions involving free will, conspiracy, and all that.

The important but implicit premise of independence becomes explicit in the proposed new framework. Figs. 2(b) and 4 show clearly the two kinds of assumptions: on dynamical laws (no faster-than-light propagation) and on initial conditions (no initial correlations). The former is directly connected to the causal structure of space-time. The latter is much more vague. Can it be grounded on the causal structure of the space-time, too? An attempt was made in Ref. [11]: two telescopes pointing at opposite sides of the sky were used as sources of independent random events. If we believe that the sky contains no mirrors or other optical devices at least up to the third minute after the Big Bang, is it enough for becoming free of statistical physics in the argumentation? The answer depends on the accepted cosmology. A Friedman-like scenario leads to non-intersecting past cones, while an inflation scenario does not.

11 Acknowledgment

This research was supported by the Rashi Foundation.

References

[1] Bell, J.S. 1964; Physics (N.Y.) 1, 195.
[2] Clauser, J.F., Horne, M.A., Shimony, A., and Holt, R.A. 1969; Phys. Rev. Lett. 23, 880.
[3] Cirel'son (=Tsirelson), B.S. 1980; Lett. Math. Phys. 4, 93.
[4] Aaronson, J., Gilat, D., Keane, M., and de Valk, V. 1989; Ann. Probab. 17, 128.
[5] Gandolfi, A., Keane, M., and de Valk, V. 1989; Probab. Th. Rel. Fields 80, 475.
[6] Matúš, F. 1993; On two-block-factor sequences and one-dependence, J. Theor. Probab., to be published.
[7] Froissart, M. 1981; Nuovo Cimento B 64, 241.
Mermin, N.D., and Schwarz, G.M. 1982; Found. Phys. 12, 101.
Fine, A. 1982; Phys. Rev. Lett. 48, 291.
[8] Tsirelson, B.S. 1987; J. of Soviet Math. 36, 557.
[9] Bell, J.S., Shimony, A., Horne, M.A., and Clauser, J.F. 1985; Dialectica 39, 85 (republished from Epistem. Letters 1976-78).
[10] Peres, A., and Zurek, W.H. 1982; Am. J. Phys. 50, 807.
[11] Peres, A. 1986; Found. Phys. 16, 573.

[^0]: ${ }^{1}$ Of course, we cannot approximate an arbitrary W_{34} by means of linear combinations of products $W_{3} \otimes W_{4}$ with positive coefficients. But here negative coefficients are acceptable, too. This is why the approximation is possible.

