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Abstract. We prove a theorem which generalizes Poisson convergence for sums of
independent random variables taking the values 0 and 1 to a type of "Gibbs
convergence" for strongly correlated random variables. The theorem is then used to
develop a lattice-to-continuum theory for statistical mechanics.

0. Introduction
The Poisson Convergence Theorem (Corollary 1.1 below) has a statistical mechanical

interpretation. Let A be the intersection of a fixed rectangle in Rd with the d-dimensional lattice

n-l jfi regarded as a subset of Rd. For each site m e A associate the Bernoulli random variable

XU, which takes the value 1 if a particle is present at m (with probability pJJ, and the value 0

otherwise. The distribution of the collection {X^, )of independent random variables may be

thought of as the Gibbs distribution for an ideal gas on the lattice A. If we let n approach

infinity, so that the lattice spacing decreases to zero, and if we maintain for each n approximately

the same average density of particles in A, then the Poisson Convergence Theorem says that the

lattice ideal gas distributions converge weakly to the standard Gibbs distribution for an ideal gas

in the continuum.

On physical grounds, one expects that a similar convergence result holds for interacting

particles. This would amount to a generalization of the Poisson Convergence Theorem for
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certain sums of strongly correlated (essentially Gibbs distributed) random variables. The main

parameter now becomes a kind of "chemical activity" z^ instead of p^,. In the case of

independent random variables considered in the Poisson Convergence Theorem, zjj, p° (1-
p^)-1 and an analysis based on these quantities produces an estimate on the rate of convergence

that is sharper than the standard fare when the sum of the z° pm(l-pîJ,)_1 is less than 2.

Our generalization, in the form of Theorem 1.1, allows us to develop a lattice-to-

continuum theory of classical statistical mechanics including some results for the infinite volume

case, i.e., a lattice-to-continuum theory for the thermodynamic limit. In particular we find a

potentially useful criterion for the existence of a first-order phase transition in hard-core

continuum models in terms of related lattice models.

In Section 1, we introduce notation and state and prove our generalization of the Poisson

Convergence Theorem. Section 2 is devoted to applications to statistical mechanics.

1. Gibbs Convergence
d

Let A c Rd be a rectangle with volume IAI. For each integer n, let d(n) J^d; (n) where each dj
i=l

d(n)

is an increasing positive integer valued function. Let IAIzn ^z^ where z° > 0 for each m
m=l

and n. Assume that the collection {z^} is chosen so that A may be partitioned into a regular

array of d(n) subrectangles {S",..., S°(n) Jwith vol. of (S^) s v(S° -*-. For each m and n, let
Zn

1m e Sm. We will consider a sequence of functions (fk) satisfying:

Condition 1.1

a.f0=l
b. For each k > 1, fk(xi, X2, xk) is a nonnegative function, Riemann integrable on Ak,

satisfying:

i. fk is a symmetric function for each k, i.e.,

fk(x0(l), Xo(2), • •., X(j(k)) fk(xi, X2,..., xk) for any permutation o.

ii. There exists a constant C such that fk(xi, X2,..., xk) < Ck for all k > 0.

iii. fk(xi, X2,..., Xk) 0 if Xj Xj for some i * j.

Remark 1.1 Condition iii above restricts fk on a set of Lebesgue measure zero and is therefore

not necessary in what follows. We include it because it simplifies some of the discussion below

and because it is satisfied by our applications of Theorem 1.1.
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Theorem 1.1 Let XJJ,, 1 < m < d(n), be random variables each taking only the values 0 and 1

with density function

P{X? =ai,..., X^-adfc)} « fk(q^..<)ff(zm)'m d-D
m=l

where each ai 0 or 1 and the incuries on the right side are determined by
d(n) k

k= Xam= Xa.„- Assume
m=l m=l

z„—-—>z>0 and max z" >0. (1.2)n_>~ lSmSd(n) m "->"

Define

S„=Xr+---+X2(n). (1.3)

Define a nonnegative integer valued random variable S by the density function,

z"
Ja„ fk(xlv..,xk) dxi-dxk
n

^"~tL f.(xi--x») dXi-'dXn
P(S k) -^- (1.4)

z

n=0

Then Sn => S, i.e., Sn converges weakly to S.

proof.
P(Sn=k)= £ P{Xr=ai,...,Xdn(n)=ad(„)} (1.5)

>l+'+»dfnl=k

^W (i, ik)<={1.2 d(n)l m=l

where Z(n)_1 is the constant of proportionality in (1.1). By Condition 1.1,

-.k d(n) d(n) k

P(Sn k) d(n) kd(n) ld(n) j (1.7)

I^rI-Ift(q".-'Onv(srm)
k=0 *•¦ i,=l i,=l m=l

The numerator in (1.7) is a Riemann sum converging to the numerator in (1.4). The convergence

of the denominator in (1.7) to the denominator in (1.4) follows from Condition 1.1 and the

Lebesque Dominated Convergence Theorem. I
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Corollary 1.1 (Poisson Convergence Theorem) Let (d(l), d(2),...} be an increasing sequence of

positive integers. For 1 < m < d(n), let X^ 1 with probability p^ and X^ 0 with probability

1-p^. Let { X",..., Xd(n)) be independent Assume
d(n)

£pm -^r">z > ° and ™«, P»~^r*0- Let S„ XJ+ • • • + X^,. Then

zk
P(Sn=k)——>e-z—. (1.8)

proof. Let A [0,1] cR. Define z^ p° (l-p° H. Then (1.2) holds. Also,
d(n)

d(n) ll'Zm' ™

d(n)

P{X^ =ai,...,XS<n)=ad(n)}= nKpm+(l-ara)(l-pm)] ^ - II<Z»>'"

m=l

where a; 0 or 1. Choose the qJJ, e S j), to be distinct, but otherwise arbitrary, and

fn(xi, X2,..., xn) s 1 whenever the points {x,} are distinct (and otherwise

fn(xi, X2,..., xn) 0). By Theorem 1.1,

ki-P(Sn k)
-1 1 dx,---dx

— p—Z

Y —f 1 dx,--dxn

since fn(xi, X2,..., Xn) 1 almost surely. I

k!
(1.9)

Remark 1.2 Our method of proof provides an estimate for the rate of convergence for Corollary
1.1. For simplicity and with no loss of generality, let d(n) n. Since fn ^ 1,

^fÌ-Èf.(q" qUnv(SL)^
K; i,=l i,=l m=l Ki

(1.10)

Replacing fn by 1 on the left side of (1.10) and subtracting the volume of all subrectangles along

any diagonal of [0, l]k gives

k! X-É^-'q^n^L)^ (zjk

for k à 2. Straightforward manipulations then give,

k!
1- (1.11)
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co:

and

n k)<- k!

i (Zn)"+Ti ìX(02
L (n + l)!jL 2à ' J

n k)> .-*„ (ok
k! K» 'if

,Zn,

for k > 2. In the case that zn £z^ z, by (1.13),

1 z"
P(S k)-P(Sn k) <-e~z rX<02

(1.12)

2 (k-2)!#
for k > 2, and otherwise the left side is < 0. If A {k : P(S k) - P(Sn k) > 0}, then

X [P(S k)-P(sn k)]<X ^--f—X(zD2<^X(02
keA keA Z *.K — 4/! 1-1 7

Therefore, the total variation norm,

2t!

(1.13)

(1.14)

(1.15)

X IPCS k) - P(Sn k)l < X(ZD2 (1-16)
k=0 i=l

By contrast, using different methods, C. Stein [S], eq. (43) pg. 89 (see also Chen [C], Hodges
n

and LeCam [H-L], and Durret [D] has shown that if Xp" z>men

X IP(S=k)-P(S„ k)l<2min(z-l,l)X(Pr)2 d-17)
k=0 i=l

n

Therefore, when Xzm z ana (I- max Pm)-2 < mm (2. 2/z), our estimate is sharper than
^^ 15mSd(n)
m=l

n n

(1.17). We note that Xp? z anaXz™ =zare mutually exclusive and our estimate (1.16) can
i=l m=l

also be derived using the methods of [H-L].

2. Lattice to Continuum Statistical Mechanics
We begin with a description of the finite volume continuum theory of classical statistical

mechanics.

For a Borei measurable subset A c Rd, let X(A) denote the set of all locally finite subsets

of A. X(A) represents configurations of identical particles in A. We let 0 denote the empty

configuration. Let Ba be the o-field on X(A) generated by all sets of the form {se X(A): Is n B|

m}, where B runs over all bounded Borei subsets of A, m runs over the set of nonnegative
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integers, and I • I denotes cardinality. We let (Q, S) (X(Rd), Bud). For a configuration x e Q,

let XA. x n A.

A Hamiltonian H is an S measurable map from the set of finite configurations Qp m Q to

(-00,00] of the form

h(x) X X<pN(y) (2.1)
N=2 seti

where the function 9n on configurations of cardinality N is an N-body potential. The

configuration x in (2.1) is coordinatized by x {xi, X2, x|x|}. For xe X(A), we will
sometimes write HA(x) instead of H(x). Define the interaction energy between x € X(A) and

s n Ac by

WA(xls) X X <Pn(y) (2-2)
N=2 yn\*0*yr*

lyl=N,ycxvs

where we write xvs to mean the configuration x u (s n Ac). We will sometimes write

W(x I s) when x and s are located in disjoint regions. Define

HA (x I s) HA(x) + WA (x I s) (2.3)

For a bounded Borei set A, let IAl denote the Lebesgue measure of A. The symbol I I may

therefore represent cardinality or Lebesgue measure, but the meaning will always be clear from
the context. For each i e Z^, let

Qi {re Rd: ik _ 1/2 < ik < rk + 1/2, k=l,...,d}
so that the unit cubes {Qi} partition R°\ Define IxjI s I xQ

I Ix n Qj I.

We assume that H satisfies the following:
Condition 2.1

a) H is translation invariant

b) H is stable, i.e., H(x) > - K Ixl for some K > 0 and all xe Qf
c) H(x) is lower regular. For any Ai and A2 which are each finite unions of unit cubes

with x <z Ai and s c A2,

W(x|s) >-XX Ili-jM-^ Ixil Isjl
i€A|jeAj

where K > 0, X > d are fixed.

d) H(x) is tempered. There exists R0 > 0 such that with the same notation as in part c,

assuming Ai and A2 are separated by a distance R0 or more,

W (x I s) < k XX "i—J» ~X N !sjl
i<=A,jeA:
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e) exp{-<pn(xi,..., Xn)} is Riemann integrable in any closed rectangle of Rd" for

all n > 2.

Temperedness and lower regularity allow W(xls) to be defined when s is an infinite

configuration of particles. We assume in this section that the configuration s is chosen so that

W(x | s) is finite.

Let Xn(A) be the set of configurations of cardinality N in A and let

T: AN -> Xn(A) be the map which takes the ordered N-tuple (xj,..., xn) to the (unordered) set

{xi,..., xn}. In a natural way T defines an equivalence relation on AN and Xn(A) may be

regarded as the set of equivalence classes induced by T. For n 1, 2, 3, let dnx be the

projection of nd-dimensional Lebesgue measure onto Xn(A) under the projection T: AN —>

Xn(A). The measure d°x assigns mass 1 to Xrj(A) {0}. The unnormalized Poisson measure

on (X(A), Ba) with parameter z, interpreted here as fugacity, is given by

In!

If A n A 0 where A and A are Borei sets, then (X(A), Ba, va) x (X(A), Ba, va) may be

identified with (X(A u A), BauA, vaua) via xa x xa xa u xa.
The grandcanonical partition function in A with boundary configuration s is defined by

vA(dx) XVx (2-4)
n=0'

ZA(s)= Jexp{-ßH(xls)}vA(dx)= X4L exp{-ßH(x„...,xnls)} dx1-dxn (2.5)
J *¦* n I JA°

X(A)

where ß in inverse temperature. The pressure p(ß, z, A) for the Hamiltonian H in A is given by

ßp(ß,Z,A) ^ (2.6)
IAI

For a a bounded Borei set A in Rd and a configuration s in Ac, the finite volume Gibbs state

with boundary configuration s for H, ß > 0, and z is

/j i x exp{-ßH(xls)} /0 _.aA(dxls) vA(dx) (2.7)
za(s)

The probability that there are k particles in a Borei subset T of A may be determined by

integrating the characteristic function for the set { x e A: Ixn TI k} with respect to Oa( dx I s).

We now describe lattice theories of statistical mechanics in finite volume in a form

suitable for Theorem 2.1 below.
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d ì
Let {S"} be a partition of Rd by translates of TT(0,—] by linear combinations of the

ii n

standard basis vectors with coefficients of the form — where m e Z. For each m and n choose
n

a point q^e S^ and define Q(n) {q°}. For example, Q(n) -Zd c Rd. Let A be a Jordan-
n

measurable set in Rd (i.e. A is bounded and the boundary of A has Lebesgue measure zero).

Remark 2.1 The Hamiltonian H(x) restricted to Q(n) nA can be rewritten in a form more

commonly associated with lattice models. Let the integer n be fixed. For each lattice site

q° e Q(n) associate the occupation variable (or "spin" variable) sra which takes the value 1 if a

particle is present at q^ and takes the value 0 otherwise. Let s denote the configuration

(si,..., Sd(n)) in the rectangle Q(n) nA such that Sj 1 if and only if j e {ii,..., ik}. Then we

may identify

H(s) H(q|; ,..<) X XJ;,i,iAvsi„
m=2 Ji<h<-<jm

whereJi,Jv..im=(Pm(q"1.-.qL).

The grandcanonical partition function Za (n, s) for the lattice gas on Q(n) nA with the

Hamiltonian H given by (2.1) restricted to Q(n) nA, inverse temperature ß, and fugacity z is

given by

ZA(n,s)= £ -T XexP«-ßHC< .....q?, Is)} (2.8)
k=o vn J |q. q»t )c:Q(n)nA

The grandcanonical pressure is then,

ßPn(ß,z,A)= lnZ(n'f,d (2.9)
IQ(n)nAln

The finite volume Gibbs state is defined on the measurable space ({0, 1 }Q(n)nA, BA(n)) where

BA(n) is the CT-field consisting of all subsets of {0, 1 }Q(n>nA Elements of {0,1 }Q(n>nA may
be identified in an obvious way with subsets of Q(n) nA. The finite volume Gibbs state

<*a( I s)n with boundary configuration s is given by

^S ZA(n,s) UV
where B e BA(n). The probability that there are k particles in a subset T of Q(n) nA may be

determined by integrating the characteristic function for the set { x e Q(n) nA: Ixn TI k} with

respect to oa( dx I s)n.
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Definition 2.1 Let Ac Rd be Jordan-measurable. The sequence of lattice Gibbs states

{cta( I s)n} converges weakly to the continuum Gibbs state d\( I s) if for any Jordan-measurable

set r contained in A, the probability according to o"a( I s)n that there are exactly k particles in

Q(n) nr converges to the probability according to Ga( I s) that there are exactly k particles in T,

as n approaches infinity.

Theorem 2.1 For a fixed Jordan-measurable Ac Rd, asn->»,
a) the lattice partition function Za (n, s) converges to the continuum partition function

ZA(S).

b) the lattice pressures pn(ß, z, A) converge to the continuum pressure p(ß, z, A)
c) for any s, the lattice Gibbs states o"a( I s)n converge weakly to the continuum Gibbs

states Oa( I s).

d

proof. Let A J^Jta^bJ be a closed rectangle with integer vertices a; and bj containing A. For
i=l

convenience relabel {q^} so that Q(n) n A {q°,..., qd(n)}.

a) Define random variables { X^} associated with the lattice sites {qJJ,} taking the values 0 and 1

d(n)

with distribution P{ X? ai,..., XJ(„= a„} ~ fk(q" ,...,q? £[(0"" where
m=l

zam= zn-d and fk (<,...<)= XA> (q?,...,q? )exp{H3 H ((q?,...,q? )ls)} and where xA,is the

characteristic function for Ak and k is determined as in (1.1). Then fk satisfies Condition 1.1. If
we define as in Theorem 1.1 Sn X"+ • • - + Xd(n), then by Theorem 1.1,

ZA (n, s) P(S„ 0)-l -> P(S 0)-l= ZA (s) (2.11)

b) This follows immediately from part a and the continuity of the logarithm.

c) Let r be a Jordan measurable subset of A and let m be a nonnegative integer. With the

notation of Theorem 1.1, let z°= zn-*1 and

fk(q° ,.-.<)= XAn.v(Axr)- ({q-,...,q°t})exp{-ß H^....^ Is)},

where XA„v(Axr)^ ({q",,...,q^})= 1 provided l{q^,...,q^}nA| mand

l{q° ,...,q- }nA\T| k -m; otherwise JCAmv(Avr)k-m ({q?, ....< })= 0.

The coUection {fk} satisfies Condition 1.1. By Theorem 1.1, P(S„ 0)-1 -^ P(S 0)"1.

Combining this with part a shows that,

ZA(n,s)-l X 4 Xfk(<'-.<C
k=0 VU / t.i nn tf-citn-it-tA

IQ(n)nAI/- „ ^k

k=0 V" / |q^,...,q?t]cQ(n)nA

converges as n -4 °o to
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Za(s)-1Xtt L fk(x„...,xt)dx1...dxk
k=oK.

In other words, the probability according to oa( I s)n that there are exactly m particles in

Q(n)nT converges to the probability according to 0"a( I s) that there are exactly m particles in T,

as n approaches infinity. I

We now show how the finite volume lattice approximation of the continuum pressure

may be extended to the infinite volume case, i.e., after taking the thermodynamic limit. For

simplicity we assume that our Hamiltonian H is given by a pair potential with a hard-core of
radius R. This has the effect of limiting the number of particles which can accumulate in any

unit cube Qi in Rd. The lattice and continuum infinite volume pressures are given respectively

by

Pn(ß,z) ß-llim ^aC"'0) (2.12)FnvK' H iAiî~|Q(n)nAln-d
and

p(ß,z) ß-lhmlnZA(0) (2.13)^' K .Alt» | Al
where limit may be taken via an increasing sequence of cubes centered at the origin.

Theorem 2.2 If H is determined by a pair potential with hard-core radius R satisfying Condition
2.1, then limpn(ß, z) p(ß, z) for each ß, z > 0.

proof. Let A be a cube centered at the origin containing an integer number of unit cubes of the

form Qj. Let A be partitioned into cubes {Ak} of equal size and integer dimensions. The size

and number of these cubes will be determined below. Assume that A is large enough to make

the partitions we describe below possible. With this notation we may write,

ZA(0)= JnexPHiH(xnAk)}nexpKßW(xnAklxnAk)}vA(dx) (2.14)
k k

From the hard-core assumption and Condition 2. lc,

W(xnAklxnAk)>-N2K X Xlli_Jir>' (2.15)

for some integer N, and the bound on the right side is the same for all k. Therefore,
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ZA(0) < n«P fN2K X XHi - J""" Jllexp{-ßH(X n Ak)}vA(dx)

riexpj?N2KX Xni-jirnn^ceo C2-16)
k [¦*¦ itQiCA^QjcAE J k

because of the product structure of Va- An inequality analogous to (2.16) holds with Za(0) and

ZAi (0) replaced by ZA(n, 0) and ZAk (n,0) respectively.

To obtain lower bounds for Za(0) and ZA(n, 0), we partition A differently. Necessarily,

the hard-core diameter 2R of the Hamiltonian H is less than Ro, where Rn is the constant

appearing in Condition 2. Id. Define x e A to be a "corridor point" if x lies within a distance

|Ro of some Ak not containing x or within a distance ^Rrj of Ac and let C be the collection of

all corridor points. Then A is partitioned by the sets C and a collection {Bk} of disjoint cubes of

equal size with each Bk a proper subset of some Ak. Any two cubes Bi and Bj are separated by a

distance of at least Ro. Let 0c denote the event {xc A: xnC 0}, i.e., there are no particles in

C. Then

ZA(0)> Jexp{-ßH(x)}vA(dx)

J nexp{-ßH(xnBk)}nexp{-ißW(xnBklxnBt)}vA(dx) (2.17)
0C k k

By Condition 2. Id and the fact that Bk c Ak,

W(xnBklxnBk)<N2K X X"1--)11"*' (2.18)
i:Q|CA, jrQjCAJ

It follows that

zA(0)> n^xp -|n2k x xni-j|r" j nexp{-ßHcxnBk))vA(dx)
k [ 2 iiQiCAj j:Q,cA'i J 0C k

nexp{-^N2KX X'^-JHrKOZ) (2-!9)

An inequality analogous to (2.19) holds with Za(0) and ZAk(0) replaced by ZA(n, 0) and

ZAi (n,0) respectively.

Combining (2.16) and (2.19) gives for any k,

^lnZA(0)-^lnZA(n,0)<

-i-lnZAi(0)-J-lnZBi(n,0)+J-ßN2K X X"1"-!11"" C2.20)
IAk' IAk' IAk' i:Q,cAk j:QjcAj
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Taking the limit as the cube A increases to Rd gives

ßp(ß,z)-ßpn(ß,z)<

^lnZAi(0)-j|^lnZB>0)+-LßN2K X S«i-Jf* <2-21>
IAk' IAk' IBk' IAk' i:Q,cAi j:QjCA£

Now given e > 0, choose fixed Ak and Bk large enough so that :

-i-ßN2K X Xlli-jr*<e (2.22)
IAk' i«iCA, jiQjCAJ

^5kl>l-e (2.23)
IAkl

'iFiln Za* (0) " iJTiln Zß>mi<e (2,24)

For such fixed Ak and Bk choose n sufficiently large (using Theorem 2. lb) so that

l^-jln ZBt (0) - J-jln ZBj (n,0) I < e (2.25)

Combining (2.21) through (2.25) gives,

ßp(ß, z) - ßpn(ß, z) < —In ZAj (0) - (1 - e)[—In ZAk (0) - 2e] + e (2.26)pptp, z) - ppntp, z) S - ' " '~s " sr

Hence,

IAkl A" IAkl

ßp(ß, z) - ßPn(ß, z) < e-J-ln ZAt (0) + 3e (2.27)
IAkl

Since {——-In ZAt (0) }is a bounded sequence for all Ak with integer vertices, it follows that
IAkl

liminfpn(ß,z)>p(ß,z) (2.28)
n->»

An analogous argument shows that limsuppn(ß, z) < p(ß, z) which establishes the theorem. I

A probability measure o on (Q, S) is a continuum Gibbs state (or infinite volume

continuum Gibbs state) for H, ß, and z if it satisfies the DLR equations, i.e., if
a (j f(xvs) GA(dx I s)) G(f) (2.29)

for every bounded S-measurable function f from ti to R and every bounded Borei set A. The

definition of infinite volume Gibbs states for the lattice models we consider is completely

analogous.

For any of the grandcanonical lattice or continuum models we consider, a first order

phase transition is said to occur if the (infinite volume) pressure fails to be differentiable as a

function of the chemical potential u ß_1log z at some point (ßo, Ho)- In case the pressure is not

differentiable with respect to u at the point (ßo, Po), there exist two translation-invariant Gibbs

states whose expectations of the number of particles in a unit cube are equal respectively to

D~P(ßo> Mo) and D+p(ßo, (io), where D+ (resp. D~) denotes the right-hand derivative (resp. the
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left-hand derivative) with respect to p, and where p may be either the lattice or continuum

pressure, which we now regard as a function of ß, p instead of ß, z (see, e.g., [K-Y] and the

references contained therein). The quantity D+p(ßo, Mo) - D_p(ßo, Mo) is therefore the gap

between the high density and low density states of matter which can co-exist in equilibrium at

the values ßo, Mo of the inverse temperature and chemical potential.

The following theorem may be useful in proving the existence of first-order phase

transitions for continuum models of statistical mechanics.

Theorem 2.3 Assume that the Hamiltonian H is determined by a pair potential with a hard-core

and that it satisfies Condition 2.1. If each element in a subsequence of lattice pressures (on

lattices of the form Q(n)) exhibits a first order phase transition at ßn, |0.n with the gap between the

high density and low density states bounded below by a positive number, and (ßn, pn) -> (ß> M)>

then the continuum pressure exhibits a first order phase transition at ß, p with the same lower

bound on the gap between high density and low density states.

proof. It is routine to check that if (Pk(0) is a sequence of convex functions defined on a open

interval I of the real line and (Pk(t)) converges pointwise to a convex function P(t) and tk->toe I,

then Pk(tk) -» P(to) and

D-P(to) < lim inf D-Pk(tk) < lim sup D+Pk(tk)< D+P(to). (2.30)

(Here D+ P (to) and D_P (to) denote respectively the right and left hand derivatives of the

fuction P at to.) It follows that limpn(ßn, (j.) p(ß, |i) when ßn-> ß, and that
n->«

D-p(ß, p) < lim inf D-pn(ßn, Mn) ^ lim sup D+pn(ßn, Mn) ^ D+p(ß, p) (2.31)

when un-> p, where the one-sided derivatives are again taken with respect to p.1
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