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1. Introduction

When electrons move in a random potential, subtle interference effects may localise their
wavepacket in an essentially finite region of space. Since Anderson's first prediction [An]
of the phenomenon,both the physics and mathematics of the subject have been much
developped [LiPa], [CaLa], It is well established that, typically, the states corresponding to
energies near the edge of spectral bands are exponentially localised. Mathematical proofs of
this fact exist for a wide class of one-dimensional lattice or continuum models, where in fact
all states are localised. We refer the reader to [GoMoPa], [KuSo] for early works and the
book [CaLa] for more recent material. In two or higher dimensions exponential localisation
near a band edge is proven mostly for lattice models (see [FrSp] and the review [MaSc] for
the first proofs, and [Sp], [DrKl], [CaLa], [AiMo] for more recent progress) and for a special
class of continuous models where the random potential takes constant uncorrelated values
on cells or blocks of Rrf [HoMa], [KoSi]. In [BeGrMaSc] it was noticed that the original
techniques and results of [FrSp] and [FrMaScSp] remain unchanged if the hopping matrix
of the lattice model has a complex phase factor representing the effect of a magnetic field.
For a continuum setting with magnetic fields (let us say in ci 2), while the existence of
localised states is accepted, it has not yet been established in a rigorous way. This problem
is particularly important in connection with the Quantum Hall Effect where the following
picture is an essential ingredient for the explanation of the effect [GiPr], [Ma]. The random
potential broadens the discrete, highly degenerate, Landau levels which become "Landau
bands", with a density of states taking large values near the original levels and being small
for energies between the levels. The latter energies are at the "edges" of the Landau bands
and correspond to localised states. Since the conductivity is non-vanishing this implies
that there must exist at least one energy, presumably near the center of the band, where
the localisation length diverges [Ha]. See [Ku] for a rigorous discussion based on the Kubo
formula. Whether there exists in fact a whole non-zero range of energies corresponding
to "extended states", and what is the nature of the spectrum (e.g. absolutely or singular
continuous) is still not at all clear (see for example [Th], [AoAn], [Tr]). In this paper
we are concerned only with the first, easier aspect, of localisation at the edges of the
Landau bands. At first sight it would seem that a magnetic field would have a localising
effect. However, this cannot be so since in two dimensions without magnetic fields, scaling
theories [AALR], [Wei] predict all states to be localised while as we have just discussed
the magnetic field must "délocalise" at least one energy. The classical picture does not
take into account the Aharonov-Bohm type phases introduced by the field, which may
drastically modify the underlying interference effects.

In the present work we consider an electron, allowed to move in an infinite two-dimensional
plane R2 C, submitted to a uniform, perpendicular magnetic field B. The random
potential V(z), z G M2 (or C) takes constant values vx G R for z G B(x), where B(x) is a
unit square centered at x £ Z2. The vx, x G Z2, are independent identically distributed
random variables. Our precise hypotheses on the probability distribution are stated in
Sect. 2. In axial gauge A(z) ^(—lmz,Kez) the usual Hamiltonian is

H(V) (-tV - A(z))2 + V(z). (1.1)

In our model, however, we only consider electron states belonging to the first Landau
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level. This means that we consider states in the infinite-dimensional subspace of L2

corresponding to the projection Po onto the first Landau level. The Hamiltonian is

H(V) P0H(V)P0 |Po + PoVPo (1.2)

where the first term comes from the projection of the kinetic part. Since this term only
changes the energy by a constant we will drop it. Our Hamiltonian thus reduces to
H(V) P0VP0. The projection P0 has an integral kernel so H(V) is a random integral
operator. The main result of this paper is Theorem 4.1. In this theorem we obtain sufficient
conditions for an eigenstate to be exponentially localised. This theorem is then applied to
show that, if the distribution of the potential is unbounded then the eigenfunctions
corresponding to high enough energies are exponentially localised (Theorem 5). Our result is
in particular applicable in the physical range of energies corresponding to the first Landau
band (centered at the origin for convenience), i.e. E << — 1 and 1 << E << B îor B
large. In a companion paper [DoMaPu] the same theorem is applied to prove localisation
in the case when the distribution is bounded.

We now discuss briefly the approximation involved in (1.2). For large enough magnetic
field B this approximation is considered to be good because the overlap of the eigenfunctions

corresponding to different Landau bands is small. This is particularly so in the case
of bounded potential distributions but should also hold in the unbounded case if the
distribution decays rapidly enough at infinity. The density of states associated with (1.1) has
been studied by several authors. Wegner succeeded to compute it analytically [We3] in the
case when the potential has a white noise distribution. Soon after, this was extended to
other distributions using a different technique [BrGrlt], [KIPe]. Finally, in [MaPu], it was
shown that the true density of states converges to the one of the projected Hamiltonian
in the limit B —> oo. Further results in the same direction have been obtained recently
[Wal].

In the model studied here the kernel of the Hamiltonian has Gaussian decay. Apart
from its continuum nature, the model is therefore very similar to a lattice model with an
infinite range hopping matrix. For this reason it turns out that the techniques of [Sp] and
[DrKl] can be adapted to our situation. However, the modifications required are highly
non-trivial due to the continuum setting of the model. In particular, the relevant Green
identities are considerably more complicated.

A full understanding of the phenomenon of localisation involves the study of Lifshitz
tails [LiPa], i.e. the rate of decay of the density of states near the band edges. This is a
problem in its own right but it only arises in the case of bounded potentials. We therefore
leave the discussion of this problem to [DoMaPu].

The paper is organised in the following way. In Section 2 we define the Hamiltonian,
discuss its self-adjointness and gather some general material specific to our setting. Then
the restriction of the Hamiltonian and the relevant Green identities are treated in Section
3. Section 4 contains the main theorem which gives the existence of localised states under
two conditions (as in [DrKl]). These conditions are verified in Section 5 for the case of
unbounded potentials and sufficiently high energies. The main theorem (Theorem 4.1) is

proved in Sections 6 and 7.
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While this paper was being written we received a preprint by Combes and Hislop [CoH2]
on the same subject. At the I.A.M.P satellite conference on 'Disordered Systems' (Paris,
July 1994) W.M Wang informed us that she had also been working on this problem, see

[Wa2],

2. Definition and Self-Adjointness of the Hamiltonian

As explained in the introduction, the Hamiltonian of the model we consider is given by

H(V) P0VP0, (2.1)

where Po is the projection operator onto the first Landau level of a free particle in a
magnetic field and V is a random block potential. In axial gauge, Po is given by its kernel

P0(z,z') ^-exp[-^\z-z'\2+l-BzAz'] (2.2)

for z, z' G R2 C Here the exterior product is given by zAz' Re(2:)Im(2')— Im(.z)Re(.z').
Notice that Po is invariant under magnetic translations defined by

T(a) e'(p-^))-3. (2.3)

Indeed, one easily derives that

(T(â)i>)(z) eiJïaAziP(z + a) (2.4)

and hence that
T(a)P0T(a)~1 P0 (2.5)

and also

T(a)H(V)T(a)~1 H(V(- + a)). (2.6)

The random potential V is given by

V=Y,v*1B{x), (2-7)
xez.2

where the vx are real-valued, i.i.d. random variables with distribution given by a probability

measure p, and the B(x) are unit blocks centred at x:

B(x) {z G R2 | xt - - < zi < x% + - (i 1,2)}. (2.8)

We shall write P for the product measure IP usez2 A* describing the distribution of
the potential V, and E for the expectation w.r.t. this measure. We shall need several

assumptions on the measure p in the following:
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1. p is absolutely continuous with respect to the Lebesgue measure with density p(v).

2. p is continuous on its support, which is either a closed interval supp(p) [a, b] or a
half-line supp(p) [0, oo) or the whole real line: supp(p) R.

3. In case supp(p) [0, oo) or R,

p{v G R| \v\ > L} < IT" (2.9)

for some n > 1/2.(In fact any n > 0 will do).

4. Also in case supp(p) [0, oo) or R, we shall assume that all moments exist and satisfy

I' vk p(dv) < Mk k\ (2.10)

for some constant M > 0.

The last assumption is needed only in the proof of self-adjointness of the Hamiltonian.
We have not been able to prove the self-adjointness without this assumption. Notice
that all the above assumptions are satisfied for the normal distribution and also for the
exponential distribution.

To prove the self-adjointness of the Hamiltonian we first need a suitable domain.
Obviously, H(V)ip 0 for ip G Hq, the orthogonal complement of the range of Po- Moreover,
H(V)um is well-defined for all m > 0, where um is the unit vector in the range of P0 given
by

um(z) (2m+1irm\)-1/2B^m+1^2zm exp [-^S|*|2]. (2.11)

This follows immediately from the following useful lemma:

Lemma 2.1 For almost every V, there exists Cy > 0 such that \V(z)\ < Cy-(l + |2|2)

for all z € R2.

Proof. By assumption 3 about the measure p,

zez2
(2.12)

<i+ y, \x\-2ri i+sY,l1'2*<°°-
z€Z2\{0} i=l

By the Borei-Cantelli lemma, therefore, with probability 1, 1^1 < \x\2 except for a finite
number of x's. QED

Theorem 2.1 The Hamiltonian H(V) defined by (2.1) is almost surely essentially
self-adjoint on the span of {um}^=0 and TLq ¦

Proof. By Nelson's analytic vector theorem ([ReSi], Theorem X.39) it suffices to prove
that, for almost all V,

f;ll(Wo)^fc<oo (2.13)
fc=0
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for some t > 0. To prove (2.13) we use the fact that if F(V) is a positive function of V
and if the expectation E(F(V)) < oo then F(V) < oo for almost every V. Noticing also

that by the Cauchy-Schwarz inequality, E(||Afcu||) < (E(||J4fcu||2)) we conclude that it
suffices to show that

^WKWIVIF))"1,,^ (214)
fc=0

for some t > 0. Now,

E(\\(P0VP0)kum\\2) Jdz Jdz'um(z)um(z') f dZl.. .dz2kPo(z,Zl)

Po(zi,z2) ¦ ¦ ¦ P0(z2k, z')E(V(Zl)V(z2) ¦ ¦ ¦ V(z2k)).

The Zi,...,z2k are in a certain number of distinct blocks B(xi),..., B(x{). If pi (i
1,... ,1) is the number of z's in block B(xi) then

E(V(zi)---V(z2k))= [vpip(dv)---[vp,p(dv)<f[Mp*Pi\<M2k(2k)\ (2. 16)

by Assumption 4, equation (2.10). If Kb(z,z') denotes the absolute value of the kernel
(2-2),

KB(z,z') ^-e-^-^l\ (2.17)

then we can write

E(||(P0yP0)fcum||2)

/ dzum(z) / dz'um(z') / dz2--- / dz2k-iP0(z, z2)

Po(z2, z3) ¦ ¦ ¦ P0(z2k-i,z')E(V(z)V(z2) ¦ ¦ ¦ V(z2k-i)V(z')) (2 lg)
< M2k(2k)\ fdz\um(z)\ f dz'\Urn(z')\

dz2--- / dz2k^1KB(z, z2)--- KB(z2k-i,z').

Next we can iterate the identity

j dz'KaB(z,z')KB(z',z") 2KaB/{a+1)(z,z") (2.19)

to write
E(||(P0I/P0)fcnm||2)

<-A(2M)2k(2k)\ jdz\um(z)\ jdz'^z'^Kß/^.i^z')

^^2k^-s(2ihrÄIdziUm{

(2.20)
2

z)A
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Inserting (2.11) we see that ||um||i < oo. Therefore, if we insert (2.20) into (2.14) we find

£« k\ l
k=0 (2.21)

<i+'-; -
fc=i

(è)
1/2

libili î> - l)-1/2^p(2M)^ < oo

provided t < I/4M. QED

REMARK. If p has bounded support then V is almost surely bounded and H(V) is

obviously self-adjoint.

We next prove as in [KuSo] that the spectrum of H(V) is the support of p. This uses
the following simple lemma:

Lemma 2.2 Let E G R and suppose that for all 6 > 0 there exist fi with P(fi) > 0

and ip G P0(L2(R2)) H0 with \\ip\\ 1 such that \\(H(V) - E)ip\\ < S for all V G fi.
Then Eea(H(V)).

Theorem 2.2 With probability 1, the spectrum of H(V) is given by
o-(H(V)) supp(p) U {0}.

Proof. We follow [KuSo]. Notice first that it follows from the ergodicity with respect to
magnetic translations (2.3) that the spectrum o(H(V)) is almost surely independent of V.
To see that it equals the support of p, suppose first that E ^ 0, E ^ supp(^). Obviously,
if A is a self-adjoint operator satisfying A > al for some a > 0 then ||Ä0|| > aliali f°r a^
ip G D(A). Since supp(^t) is an interval, if d d(E, supp(p)) then either V — E > dl or
E — V > dl. In either case we have

\\(H(V) - E)4>\\2 \\P0(V - E)Po4>\\2 + \E\ ||(1 - Po)^||2

< d||P0çi||2 + \E\ ||(1 - PoMI2 < (dA \E\)M\2.

Moreover, one easily sees that (H(V) - E)(L2) is dense in L2. It follows that H(V) - E
is invertible, that is E is not in the spectrum of H(V).

Next suppose that E G supp(/i) and let ip eH0 with \\ip\\ 1. For R > 0, write A(P)
for the disk with radius R and centre 0, and put tpn Po^A(R)ip- Given 6 > 0, choose
R large enough so that \\ibR\\ > 1/2. Define Çl' {V\\V(z) - E\ < 6/2Vz G A(2P)}.
Since E G supp(p) and A(2P) intersects only a finite number of unit blocks, P(fi') > 0.

Taking C > \E\ + 6/2 large enough it follows from Lemma 2.1 that Çl fi' O {V \ \V(z)\ <
C(l + \z\2Vz G R2} also satisfies P(fi) > 0. Note that \\ip - ipR\\ < ||lA(Ä)ci/>||. Now,

\\(H(V) - E)ipR\\2 \\P0(V - E)P0lHR)iP\\2
|2<\\(V-E)P0lAfR)ip]\2

f d2z(V(z)-E)2\iPR(z)\2 (2.22)
Ja(2r)

+ [ d2z(V(z)-E)2\ipR(z)\2.
JA(2RY
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The first integral is bounded by

L d2z (V(z) - E)2\ipR(z)\2 < \o2\\ipR\\2 < S2/4. (2.23)
A(2Ä) 4

In the second integral we have

2

\Mz)\2 g U^z'e-^-^/^z')]]

<^—\ f d2z'e-B\z~z'\2l2
'A(fi)

(2.24)

by the Cauchy-Schwarz inequality and the fact that \\ip\\ 1. Since z G A(2Ä)C and
z' G A(Pl) we can bound the exponential in the integrand by
exp [-SP2/4] x exp \-B\z - z'\2/4]. Thus we have

/ d2z(V(z)-E)2\ipR(z)\2
Ja(2r)"

< —e-BRÏl* [ d2z' [ d2z fC(l + UP) + \E\)2 e-ßl—'l2/4
4tt2 / êz' f d2z(C(l + \z\2) + \E\)

JAIR) Ja(2RY(fl) JA(2RY (2.25)

<&Re-BR>/4 f d2c[2C+|£;| + 2ii2+2|C|2]2e-i3|C|2/4

< 2rrBRe-BB?l\2C + 2R2 + |P|2)2 + 16B"1] < 62/2

if R is large enough. QED

We want to prove that the Hamiltonian H(V) has almost surely pure-point spectrum in
the neighbourhood of the edges of its spectrum given by Theorem 2.2. This will be done

by proving that the corresponding generalised eigenfunctions decay exponentially. The
pure-point spectrum is then a consequence of the following general result:

Theorem 2.3 Let ri a E be a Hilbert subspace of a conuclear space E. Suppose
that t : E —» E is a continuous linear map such that its restriction T to a dense
subset D of Ti defines a self-adjoint operator on Ti. Then, with respect to the spectral
measure of T, almost every X G R is a generalised eigenvalue, that is, there exists a

non-zero f G E such that r(£) A£.

Corollary. //, for a given X G o~(T), t(£) A£ implies that ÇeD for any (CË
then X G app(T).

The standard references for this theorem are [Ber] and [Mau]. However, we prefer the
approach developed by Thomas in [Thol] and [Tho2]. We apply the theorem to the case
E iS'(R2) and Ti L2(R2). To prove that the theorem is indeed applicable we must
show:

Lemma 2.3. For almost all V, H(V) maps <S'(R2) continuously into itself.
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Proof. We need to define H(V)Ç for £ G <S'(R2). This is, however, straightforward if
we first prove that H(V) maps <S(R2) into itself. We can then define H(V) on <S'(R2) by
duality as the adjoint map. This is consistent because of the fact that H(V) is Hermitian
on L2(R2). Continuity in the strong topology of <S'(R2) then follows from the corollary of
Prop. 6 of Chap. 4, §4.2 in Bourbaki [Bo].

To prove that H(V) is continuous on <S(R2) consider the general seminorm pm,a, where

m is a non-negative integer and a (ai, a2) is a double index (cxj G Z+), is defined by

pr,m(V>) sup sup(l + \z\2)m\daiP(z)
\a\<r zEC

(2.26)

It suffices to show that for all m and r, there exists a constant K and integers m',r' > 0

such that
Pr,m(H(V)iP) < Kpr>,m>W. (2.27)

Now,

(H(V)ip)(z) J d2z' J d2z"P0(z, z')V(z')Po(z', z")iP(z") (2.28)

so differentiating underneath the integral sign,

pTtm(H(V)ip) sup sup(l + \z\2)m
\a\<rz&C

J d2z'j d2z"dazPo(z, z')V(z')P0(z', z")iP(z")
(2.29)

It is not difficult to prove the following relation for the derivative of P0 analogous to formula
(I.18b) in Simon [Si2]:

d?P0(z,z') Fai(zi - z')Fa2(z2+iz')Po(z,z')

where zi Re(z), z2 lm(z) and

[n/2]

Z^ k\(n-2k)\ V 4

B
—z

2

-2fc

We use the following rough estimate to bound Fn(z):

_^ <M^\4k
k\(n-2k)\ - V k

n + 1

(2.30)

(2.31)

(2.32)

This yields

/ 2\ n/2

\Fn(z)\<([(n + l)/2])\(B+(^\z\j] <a„(l + N2r/2 (2 33)
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for some constant an. Using Lemma 2.1 and the simple estimate 1 + \z — z'\2 < 2(1 +
|.z|2)(l + l^'l2) we obtain

Pr,m(H(V)ip) < sup 2W2Cvaapm+ìaì/2 (kb(1 + \z\2)1+^'2KB\iP\) (2.34)
\a\<r V '

(Here we have written pm for po,m and |a| ai + a2 and aa aaiaa2.) It now follows
from Lemma 2.4 below that there is a constant K such that

Pr,m(H(V)ip) < Kpm+r+1(iP). (2.35)

QED

Lemma 2.4 Given m G 1, m > 0, there exists a constant CB%m such that

JKB(z,z')(l + \z'\2)-md2z' < CB,m(l + \z\2)-m. (2.36)

Proof. It is easy to prove that ln(l +1) < ^ + et for t > 0 and e > 0. Therefore, if we
take

2/ Am \ 4
P2 Cl + |2|2/4 with Cl (— j +-gln2 (2.36)

/ KB(z, z')d2z' 2e-BR2'A < (1 + \z\2)~m. (2.38)
J\z-z'\>R

then

J\z-z'\

On the other hand, if \z'-z\ < Pthen|z|2 < (|z'|+P)2 < 2(\z'\2+R2) < 2(c1 + |2/|2) + |2|2/2
and hence

(1 + |2|2)"m > 4-m(l + ci + |2'|2)-m > (4(1 + Cl))-m(l + |z'|2)-m. (2.39)

Inserting this into the integral we have

/ KB(z,z')(l + \z'\2)-md2z'
J\z'-z\<R

< (4(1 + Cl))m(l + |2|2)-m I'KB(z, z')d2z' (2.40)

2(4(1 + Cl)r(i + \z\2)2\-m

It follows that we can take CB,m 1 + 2(4(1 + cj))m. QED

The distributions H(V)£ are in fact regular:

Lemma 2.5 For almost all V, the distributions H(V)£ are in fact C°° functions
for all ÇeS'(

Proof. It is clear that H(V)£ is the function given by

(H(V)0(z') (H(z,z'Mz)), (2.41)



Dorlas, Macris and Pule 339

where

H(z, z') J d2z" P0(z, z")V(z")Po(z", z') (2.42)

and the angled brackets denote the (anti-)duality between <S and <S'. (We take it to be
antilinear in the first argument.) As f G iS'(R2), there exist integers m and r and a
constant M > 0 such that

\{<p\0\<Mpr,m(<p) (2.43)

for all 4> £ <S(R2). It therefore suffices to show that, for any double index ß and any
compact set K C R2,

sup pr,m (d0z,H(-, z')) < oo. (2.44)
z'eK v '

This is proved in the same way as (2.35) in the proof of Lemma 2.3. QED

This lemma has the following important consequence:

Lemma 2.6 Suppose that f G >S'(R2) is a generalised eigenfunction of H(V) with
eigenvalue E ^ 0. Assume that Ç is exponentially decaying on blocks, that is,

<lS(*)||ç1><^e-ml*i (2.45)

for some constants A and m > 0. Then I; is a C°°- function which decays exponentially

with rate m: There exists a constant A' such that

|É(z)|< Äe-mW. (2.46)

Proof. As £ is an eigenfunction of H(V) P0VP0 and Pqç" Po£ even for £ G <S' it
follows that Po£ £, that is

£(*) JPo(z,z')Ç(z')d2z'. (2.47)

Taking absolute values we find

\Ì(z)\< j KB(z,z')\t:(z')\d2z'

(2.48)
KB(z,z')\i(z')\d2z'.

Hv)
Y I KB(z,z')W)\d2z'.
yeZ2 JB(y)

Now suppose z G B(x). We split the above sum into two pieces: the first, denoted Si,
will contain the terms for which \x — y\oo < 1, the other, denoted S2, the remaining terms.
Here | • \x is the sup-norm which is convenient for the square lattice: larice supi=12 l^il-
Obviously, Si contains only 9 terms. In these we can replace KB(z,z') by its maximum
value. The remaining integral is just (2.45). Thus

Si < A— V e~mM < A\e~m^ (2.49)
2-7T *¦—'

\y-x\œ<1
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where

A'1=9A—eZ%. (2.50)
27T

(We use the fact that \y\ > \z\ — \y — z\ > |z| - 3/\/2.) The second part of the sum can be
bounded as follows. In the kernel KB(z,z') we use |z — z'| > \x — y\ — \x — z\ — \y — z'\ >
\x — y\ — \[2 and in the bound (2.45), |y| > \z\ — \x — y\ — \/\[2. Inserting this we have

S2 < A— Y e-B^-y\-^2'Ae-m^ < A'2e-(m-e^, (2.51)
\y-x\ooy2

where

A'2 A—em'^ Y e-^y'^-^^e^y't < oo. (2.52)
y'el?

We can thus take A' A[ + A'2. QED

3. Truncation and Green's Functions

For regions A C R2 we define truncated Hamiltonians HA — HA(V) by

Pa 00 Pa^aPa, (3.1)

where
Pa UP) (3.2)

and VA 1AV. HA(V) acts on L2(A). If E $ o(HA(V)) then the Green function

GA(V,E) (HA(V)-E)~l (3.3)

is well-defined. In particular, we shall consider the regions

Az,(x) {2GR2||2-a;|0O<L/2} (3.4)

for x G Z2 and L > 0, A^(a;) is a square of size L2 and, if L is an integer, it is a union
of unit squares B(y). We derive some important relations for the Green function. In the
following we write Ga or GA(V) or GA(E) for GA(V, E) when there is no ambiguity. Using
the resolvent identity

B-1 - A'1 A~\A-B)B-1 (3.5)

with A — HAl ffi Pa2 - E and B HAlUA2 — E this gives, when Aj n A2 0,

Ga!UA2 Gaj © Ga2 + (C?Ai © Ga2)(Ha! © #A2 _ ^A1UA2)GrA1UA2

GAl © Ga2 — (Ga1 © Ga2)Fa1ia2Ga1ua2,



Dorlas, Macris and Pule 341

where

rAl,A2 PAl VAlUAlP^ + Pa^a^a.P^ + Pa^a.Pa, + Pa2^AiP^2. (3.7)

In particular, if Ai U A2 R2, we can write Ai A and A2 Ac and (3.6) becomes

G GA©GA.-(GA©GAc)rA,A^G (3.8)

with
rA,Ac 1AP1a< + 1a=P1a + Pa^acP; + Pa^aPac (3.9)

Now suppose that £ G <S'(R2) is a generalised eigenfunction of H with eigenvalue E £
o(HA). Then it follows that for e > 0,

£ ieG(E - ie)t
(3 10)

ie(GA(E-ie)®GAo(E-ie))t:-(GA(E-ie)®GAc(E-ie))rAtAac:. V' ;

For z G A this yields

£(*) ie(GA(E - ie)£)(z) - (GA(E - ie)TAiAcÇ)(z). (3.11)

Taking e —+ 0 this yields

£(z) -(GA(E)TA,A^)(z)
-(GA(E)(HlM+P0VA.Pl)O(z), ['

where we have used (3.9).

We finish this short section with an important definition.

Definition. Fix constants ß G (0,1) and s G (|,1). Given a potential V, a

square A^(x) is called (m, E)-regular for some m > 0 and E G R if the following two
conditions are satisfied:

(RA) d(E,o(HAL(x)(V)))>\e-LP

(RB) (lAl(s) I \GAl{x)1Al,x)<p\) < e-mL||lÄi(:c)0||2

for all cp G L2, where Ar,(x) A^(x) \ A^(x) with L L — Ls. Ai(x) is called singular
if it is not regular.

4. The Main Theorem

In this section we state the main theorem which is an analogue of the main theorem proved
in [DrKl]. It states conditions under which the spectrum of our random Schroedinger
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Hamiltonian is pure-point near the edges. We shall check these conditions in the next
section in the case of unbounded support: supp(/u) R. The case of bounded support is

more complicated and will be analysed in a separate paper [DoMaPu].

Theorem 4.1 Fix constants ß G (0,1), s G (\, 1), p > 2, q > 4p + 12, 7 G (ß, 1) and
€0 > 0. There exists Qo > 0 depending on all these constants such that the following
holds:

If, for some Eo G R \ [—eo^o] the conditions (PI) and (P2) are satisfied, where

(PI) There exist Lo > Qo and mo > Lq such that

P{ALo(0) is (m0, Eo)-regular} > 1 - L~p (4.1)

(P2) There exists n G (0, |I?o|/2) such that, for all E G (Po- V, Eo+v) and for ail L > Lq,

F {d(E,o (HAl(0))) < e~Lß} < L-«, (4.2)

then, for ail m G (0, %), there exists S > 0 depending on m, mo, Lo, ß and n such
that, almost surely, o~(H)n(Eo — 6,Eo + S) is pure-point and the corresponding eigen-
functions decay exponentially with rate > m.

As in [DrKl], the proof of this theorem can be split into two parts: one in which condition
(PI) is iterated to pairs of larger and larger blocks, and one in which the iterated condition
is shown to imply exponential decay. The latter part is formulated in the following analogue
of Theorem 2.3 of [DrKl]:

Theorem 4.2 Let I C R, L0 > 1, ß G (0,1), s G (§,1), oc e (1,2), p> a and m > 0.

Define Lk+i L£ for k 0,1, 2,... Suppose that, for any k 0,1,2,... and any
x,y G Z2 with \x — yl^ > Lk + 1,

P{3E G / : ALk(x) and ALk(y) are (m,E)-singular} < L~2p. (4.3)

Then, with probability 1, the generalised eigenfunctions of H corresponding to
generalised eigenvalues in I decay exponentially with rate > m' for any m! < m.

The proof of this theorem is similar to the one of [DrKl], but more complicated. We
shall indicate the main differences in Section 7. The deterministic part of Theorem 4.1

is the analogue of Theorem 2.2 in [DrKl]. However, it is considerably more complicated
due to the infinite range of the Hamiltonian and the more difficult form of the resolvent

identity (3.12). Before we formulate the theorem it is convenient to define the conditions

(Kl) There exists mo > L~1+1 such that R(L0,m0) holds, where

R(L,m) For all x,y G Z2 with \x-y\00>L+ 1,

P {3P G / : AL(x) and AL(y) are (m, P)-singular} < L~2p (4.4)

and
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(K2) For all L > L0 and all E with d(E,I) < \e~hß,

P {d(E,o (HAh{0))) < e~Lß} < L'". (4.5)

Theorem 4.3 Let I C R \ [-e0,e0]. Fix ß G (0,1), s G (1/2,1), p > 2, and
q > 4p + 12. There exists Q(ß,s,p,q,eo) > 0 such that the following holds:
If, for some Lo > Q the conditions (Kl) and (K2) hold then there exists a G (1,2s)
such that, with L/t+i L" for k 0,1,2,..., ï\(Lk,m) holds for all m < mo and
*=1,2

This theorem will be proved in Section 7. We now prove Theorem 4.1 assuming that
Theorems 4.2 and 4.3 are valid.

Proof of Theorem 4-1
Suppose that (PI) and (P2) are satisfied for some Lo- By the resolvent identity (3.5),

GAto(o)(P) Gaìo(0)(£o) + (E- E0)GAlo{o)(E)GAlo{o)(Eo). (4.6)

If ||GAl,o(o)(Po)|| < exp [L^] and \E - E0\ < \ exp [-Lq]> then it; follows from (4.6) that

l|GAto(o)(P)|| < 2exp[Z#. Moreover,

(lAl(o) I |GAto(o)(S)lALo(o)0|) < (lAl(o) | |GAi,o(o)(^o)1ai,0(o),?!,I>

+ |P - Pol ||C?Ato(o)(^)|| ||GAio(o)(Po)|| l|lÄio(o)*H-
(4.7)

Thus, if A£,o(0) is (mo,Po)-regular then

(lAl(o) I \GAlo{0)(E)1Alo{0)<p\) < (e-m°L° + 2\E - E0\e2Leo) ||lAlo(0)*||. (4-8)

Given m'o G (0, ra0) and p' G (2,p) define

8 -e~2L° (e-m'°Lo - e-moLo). (4.9)

Then, if \E-E0\ < 6,

(1ai(o) I |GALo(o)(P)lAio(o)0|) < e-mo^||iÄLo(o)^||. (4.10)

This is the second regularity condition (RB). If we also assume that
d(E0,cr(HAL (o)j) > exp[—Lq] then it follows, since 6 < | exp [—Lq], that Ai,o(0) is

(m'0, P)-regular. We may now conclude that

P {VP G (Po - 6, Eo + 6) : ALo (0) is (m0, P)-regular}

> p{aLo(0) is (m0,P0)-regular and d (p0,ct (ffAl.0(o))) > e~L°} (4.11)

> 1 - L-p - v > i - V'
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provided L0 is large enough: L0 > Q'. (Here we used (PI) and (P2).) Now let i,y 6 Z2

with \x - j/1«, > L0 + 1. Then

P {VP G (Po - 6, Eo + 6) : either ALo (x) or ALo (y) is (m0, P)-regular}

> 1 - [P ({VP G (Po -S,Eo + S): ALo(0) is (m0, P)-regular}c)]2 (4.12)

>l-L-2p'.
Thus (Kl) of Theorem 4.3 is satisfied with p replaced by p', I (E0 — S, Eq + 6) and mo
replaced by m'0. (P2) implies that (K2) is also satisfied provided 6 < n, so that Theorem
4.3 applies. Therefore the conditions for Theorem 4.2 are satisfied and the conclusion
combined with Theorem 2.3 implies Theorem 4.1 with Qo Q V Q'.

5. Proof of the Conditions (PI) and (P2) for Large
Energies

In this section we prove the conditions (PI) and (P2) in the case of a probability measure p
with supp(ju) R satisfying the additional condition that there exists a function p(v) > 0

such that, for 0 < A < 1/2, JRv4p(v) dv < oo and

|p((l + X)v) - p((l - X)(v))\ < X\v\2p(v). (5.1)

We will prove localisation for large energies: |P| S> 1. This is the simplest case because,
for large |P|, the density of states is small. (We do not actually use this fact explicitly.)
For the more physical case of a probability distribution with bounded support the proof
of (PI) when P is near the band edge is much more delicate and will be presented in a

separate publication [DoMaPul].

Lemma 5.1 Fix e > 0, L > 0 and Bo > 0. One can find W large enough, but
independent of B > Bq, such that

(1ai(o)| |Gal(o)1àl(o)^D < 8Aie-1exp(-€A2L)||l

P£cr(PAi(0)),|P|>P0
(5.2)

> 1

with E0 — 2W and A! exp(A A2 V^exp(^).

Proof. We use a Combes-Thomas type of argument [CT]. Let U be the operator on
HAl(0) defined by (Uf)(x) ex°xf(x) where x0 G R2 with |a;0| < 1 and let

Q UHAl{0}U-1-HAl{0) (5.3)

Then Q has a kernel Q(x, y) where

Q(x,y) (e-o-(«-») - 1)Halw(x,y), (5.4)
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HAl(0)(x,p) being the kernel of HA Now we suppose that the potential satisfies

||Val(o)|| supAlro) \vx\ < W, for some W that we choose later. We have (c is a positive
constant)

\(Q<p)(x)\ < cBW j |eso-(s-v) _ \\e-i\x-yf\<t>(y)\dy. (5.5)

and
^xo-(x-y) _ 1|e-f |x-y|2 < |Xo ^ _ ^^.(x-^lg-f l^-yl2

< |z0||z - y\e\x°Ux-yie-* I*"»!' (5.6)

<|a:o|6a|*-vle-«|-,'|2<e4/B|a:o|,

>From (5.5) and (5.6)

|(Q0(aO| < c|xo|e4/B(r|^|)(x) (5.7)

where T is the operator with kernel T(x,y) BWe~^x~v^ Thus

\\Q<t>\\ < \\T\<p\\\ \x0\<\\T\\ \xo\ W\ (5.8)

The operator norm of T is ||T|| supfc |T(ft)| where T(k) is the Fourier transform of the
kernel T(x,y) as a function of (x - y). Now f(k) We~k2'B < W. Thus ||T|| W,
which gives ||Q|| < A2|a;o| because of (5.8). Since e is fixed (small), for W large and
E > E0 — 2W we have that d(E,o(HL)) > e. We choose x0 such that \x0\ < e/(2A2) so

that IIQII < |e. Then, by (5.3),

||PGAl(o)(P)c/-1|| ||(PAi(o) +Q- Ey'W < \. (5.9)

Now we split up Al into four parts:

where A}/ {a; : x G A, e» - x > \x\/y/2} and ei (1,0), e2 (-1,0), e3 (0,1),
e4 (0,-1). We have

4

(lAl, \GL1AJ\) < £<lAl, |GL1A(..,^|). (5.10)

Now

Clearly

(lAl)|GLlA(>)^) (lA^fZ-^GiC/-1^!)^)
< iic/^iAjinc/Gif/^iiiif/i^iiiiiÄ^ii (5.n)

< |||CZ-1lAll|[|C71Ao.>|j||lA^^t|.

IIcT-HaJI^Ai (5.12)
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and by choosing x0 (~2^A ,fy we Set

||P1A(D^||2 / e2^-|^(a;)|2dx<e-^(L-L")||^||2, (5.13)

from which it follows that

||PlA(i)|| < e~^{L~L'] < e~^L (5.14)

for L sufficiently large. Thus using (5.11) to (5.14) we get

IA
(1Ai,\Gl1aW<P\) < -^e-^L||lÄ^||. (5.15)

and similarly for i 2,3, 4. Therefore

(lAl, \GLlAé\) < ^e-rtï*||iA>||. (5.16)
8Ai >-L.

e

So far we have shown that for ||Val(o)|| < W and E > Eq, (5.16) holds. Thus the

probability in the left hand side of the inequality (5.2) is greater than P HVa^ojH < W

The Lemma follows from

JV

(5.17)/WWP{V))dv
-w'

where N is the number of unit squares intersecting Aio(0), since for any e > 0, we can make
the right-hand side of (5.17) larger than 1 — e by taking W large enough, but independent
of B. QED

>From the Lemma we conclude that (PI) holds for Po large enough, independent of
B > B0 > 0.

It remains to prove (P2). The main idea goes back to Wegner [We2] who reduced the
estimate to one on the difference of the density of states for energies E — e and E + e. In
the present case, however, Pa is a compact operator so that there is an infinite number of
energy eigenvalues accumulating at zero. We are therefore forced to define the density of
states in a non-standard way: for E > 0 we define

AT>(V, P) tt{A > E\ X eigenvalue of HA(V)}. (5.18)

Note that, since Pa(^) is compact for bounded regions A, NA(V,E) is finite. Moreover,
it is a decreasing function of E and an increasing function of V. Also, it is easy to verify
that, for any a > 0, NA(V,E) NA(aV,aE). So, replacing E by P + e and choosing
a E/(E + e) we get

N>(V,E + c) N>U^-V,e\ (5.19)
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and similarly, with E replaced by P — e and a E/(E — e),

N>(V,E-e) N>(~-V,Ey (5.20)

If E < 0 we define

N£(V,E) H{A < P| A eigenvalue of HA(V)} (5.21)

and similar inequalities hold true.

Lemma 5.2 There exists a constant K, independent of V, such that for E > 0,

iV>(I/,P)<PP-2|A|( Y M) • (5-22)

\x: B(x)nA^0 /
The same inequality holds for NA(V,E) if E < 0.

Proof. By definition, NA(V,E) is the number of eigenvalues A such that X/E > 1. It
is therefore smaller than the sum of (Aj/P)2 over all eigenvalues Aj. This is just Trace(PA):

N>(V,E)<±Trace(H2A)

~Trace (1aP0VaP01aP)^aPoU)f (5.23)

^LVace [(FaPo1aP)Va)Po1aPo]

<-|i||^A||2Trace(PolAPo).

Now,

Trace(P0lAP0) Trace(lAP0lA) / dVPB(2,2)2 £|A|. (5.24)

>From (5.23), (5.24) and the fact that ||VA|| < J2X- Btx)nA^<6 lw*l we Set t^le una" inequality.
QED

For the rest of the argument we just imitate the usual proofs. Using (5.19) and (5.20)
we have for the expectation value of the density of states

E(N>(V,E-e)-N>(V,E + e))

InI(V,E) IJ(1 - |)p((l - ^)vx)dvx
J xGA

- JN>(V,E) IJ(1 + |)p((l + |K)d^
x£A

se/ n {(>-IMO-i) »-)«»-}
(5.25)

\\l-E)P\\l-E)V*)aV*)
y€A xÇ,A;x<y

x6A; cc>y

X Idvy |p((l- I) «„) - p ((l + I) «„) \N>(V,E).
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To get the second inequality we have ordered the unit squares in A. Using Lemma 5.2 and
the hypothesis (5.1) on the probability distribution we find

E(N>(V,E-e)-N>(V,E + e))

z KihiAi zZ f I n dv*pM \ \ n fo-**0*
yeAJ U<y J U>y J (5.26)

X J dvyv2yp(vy)[ (l-j) EU*+(1 + f) /\2Vx+Vl
\ x<y x>y

By the Cauchy-Schwarz inequality and assuming e/E < i,

\ x<y x>y / L x<y X>y (5.27)

<4|A|J>2
x6A

SO

E(jV>(^,P-e)-iV>(V,P + e))<

4tf-Jj|A|2 (2\A\E(v2x) j ~p(v)v2dv + jp(v)vUv^J <K'^\A\
(5.28)

Finally we use the fact [W] that ¥[d(E,o(HA)) < e] is bounded by the left-hand side of
(5.28) and we set A Aj,(0) and e exp [—L'3] to get

P [d(E,a(HAL{0))) < expl-LO}] < P,L6eX^~L/3] < L-" (5.29)

provided L and P are large enough. This proves condition (P2).

We can now apply Theorem 4.1 to conclude that

Theorem 5.1 Suppose that the probability distribution p has support R and
satisfies the conditions 1,2,3 and 4 of Section 2 as well as (5.1). Then there exists
Eo such that, almost surely with respect to the product measure P, the spectrum
cr(P)n{P| |P| > Po} is pure-point and the corresponding eigenfunctions decay
exponentially. Moreover one can choose Bq such that for all B > Po> Po *s independent
ofB.
Remark: Here we have restricted ourselves to the first Landau band so that we get pure
localisation for all |P| > Po- However for the full hamiltonian (1.1), when the magnetic
field is large, there are many Landau bands separated by an energy of order B. Therefore
the physically relevant range of energies where the theorem should be applied is P < P0,
Po < P << B. Theorem 5.1 covers this case since for B large enough (B > Po) we can
choose P0 independent of P, i.e. of order one with respect to the magnetic field strenght.
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6. Proof of Theorem 4.2

In this section we prove Theorem 4.2. As part of this proof is analogous to the one of Ref.

[DrKl], we shall abbreviate some of the arguments which need no modification. We first
need some technical lemmas:

Lemma 6.1 The kernel H(z,z') of the Hamiltonian H satisfies the following
bounds. For every double-index a,

\d?H(z,z')\ < Aa(l + |2|2)M/2+le-B|Z-,T/16 (61)

for some constants Aa depending on V.

Proof. By formulas (2.28) and (2.31),

\d?H(z,z')\ < Cvaa fd2z"(l + \zi - 2"|2r/2(l + \z2+iz"\2r'2
J (6.2)

KB(z,z")(l + \z"\2)KB(z",z').

In the product KB(z, z")KB(z", z') we use the identity |z - z"|2 + V - z"]2 2\z" -(z +
z')/2\2 + \z- z'\2/2. Next we change variables to w-= z" - (z + z')/2. This leads to

(1 + |zi - 2'fr/2(l + \Z2 + iz"\2)a*l2

(i + \\(z - z') - w\2r'2(i + \\i(z+z')+iw\2r'2
< (2(1 + |W|2))I"I/2(1 + \(z - 2')/2|2)ai/2(l + |(2 + z')/2|2)a2/2

<(2(i + H2)(i + (|2|v|2'|)2))N/2.

Inserting this we obtain

\dfH(z,z')\ < 2^/2+1Cvaa(l + (\z\ V \z'\)2)\oc\/2+le-B\z-zr/S

(^Xf d2w(l + |w|2)|a|/2+le-B|-|2/2 (6.4)

<Aa(l + \z\2)W/2+1e-B^-z 'I2/16

for some constant Aa. QED

Lemma 6.2 Suppose that £ G <S'(R2) is a generalised eigenvector of H with
eigenvalue P ^ 0. Then £ G C°°(R2) and £ is polynomially bounded, that is,

|£(z)| < K(l + \z\2Y (6.5)

for certain constants K and p > 0.

Proof. As £ G <S'(R2), there exists a constant M and integers r and n such that

\(<p\0\<Mpr,n(cp). (6.6)
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for all <p G <S(R2). Now,
(P(V)£)(2) (P(.,2)|£), (6.7)

so to prove that H(V)Ç is C°° it suffices that

suppr,n(dP,H(-,z')) <oo. (6.8)
z'ec v '

This is analogous to Lemma 6.1. Since P(V)£ P£ it follows that £ is itself a C°°-function.
Moreover,

K(*)l< j|| !<#(-,*) I£>l

M
- TÊ\Pr'n(H(''zïï

< M*
sup(1 + |JB/|2)»+|a|+le-B|«-«'|Vl6 (6.9)

<2n+lQî+1^(l + |2|2)"+lal+1sup(l+tr+H+ie-fl'/i6
|P[ te«.

<K(l + \z\2)n+^+1

This proves the lemma. QED

Lemma 6.3 Suppose that N is an operator on L2(R2) with kernel N(z,z')
satisfying

|AT(z,z')l<A)(l + |z|2)e-^-z'l2 (6.10)

for some constants Ao and k0 and suppose that ip G C(R2) is polynomially bounded:
\i>{z)\ ^ K(l + \z\2)p- Then, for any m > 0, there exist constants A'0 and L0 > 0 such
that, if L > Lo and AB(x) is (m,E)-regular then

(lAi(»)| \Gal(x)N1Al(x)^\)
(6.11)

< yl0L3(l + |a;|2)P+1 [ e~Kh 'l + e-mL [ \iP(z')\d2z')
JA2l(x) J

Proof. We write

(lAl(x) | \GAl{x)NIAl{xYiP\)

(!Al(i) | \GAL(x)NlA2L(x)\ALrx)ip\) + (lAl(x) | \GAL(x)NlA2L(xyip\).

We start by considering the first term: Suppose first that z G A^(x). In that case
\z - z'\ > Ls/2 and, moreover, since z' G A2L(x), \z'\2 < 2(\x\2 + \z' - x\2) < 2(\x\2 + 2L2)
and hence certainly 1 + |z'|2 < 5L2(1 + |œ|2). Thus we have

I (N1A2AAl(x)iP) (z)\ <A0 I (1 + \z'\2)e-^-z'f\ip(z')\d2z'
Ja2L(x)\Al(x)

< 5A0L2(1 + \x\2)e-^2"/4 [ \ip(z')\d2z'.
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Using the inequality ||/g||2 < H/H00IMI2 this implies that

H1AI.(2:)ArlA2I,(;c)\Ai(:r:)V'll

< 5A0L3(1 + \x\2)e~KL2"/4 f \iP(z')\d2z'.
JA2L(x)

(6.14)

Using the regularity condition we now find that

(lAi(x)| \GAL(x)lAL(x)NlA2L{x)\ALtx)ip\)

< 5A0L3eLß(l + \x\2)e-KL2"'A f \ip(z')\d2z'
JA2l(x)

< 5A0Lse-mL(l + \x\2) [ \ip(z')\d2z'
JA2L(X)

(6.15)

provided L is so large that kL2s /4 > L@ + mL.

Next suppose that z G Al(x). In that case we can simply write \N(z,z')\ < A0(l +
\z'\ < 5Ao(l + ]x|2)L2 and hence, using the regularity condition,

(1ai(x)| \GAUx)hL{x)mML<*)\AUx)1>\) < $A0L3(1 + \x\2)e-mL f \iP(z')\d2z>'.
JA2L(x)

(6.16)

Next we consider the second term of (6.12). For z G AL(x) and z' G A2x,(a;)c,

l + \z'\2<l + 3(\x\2 + L2/2+\z-z'\2)
<2L2(l + |a;|2)(l + |2-z'|2) (6.17)

<8(l + |x|2)(l + |z-2'|2)2

assuming L2 > 2. Therefore, if \ip(z)\ < K(l + \z\2)p then

](NlA2L(xYip)(z)\ < AoK f d2z'(\ + \z'\2)p+1
Ja2L(xy

-k\z-z'\2
l(xY

< 8A0K(1 + \x\2)p+1 f d2z'(l + \z'\2)p+1e-^z'f
J\z'\>L/2 (6.18)

< 87rA0P(l + |ï|2)p+1 / dt(l + t)p+1e-Kt

< 8ttA0K(p+ l)\(2/K)p+2e^2(l + \x\2)p+1e-KL^a.

(6.15),(6.16) and (6.18) prove the lemma with A'0 equal to the minimum of 10^4o and

8ttA0K(p + l)\(2/K)p+2eK/2, and with L0 (4(m + l)/«)1^25"1). QED

Proof of Theorem 4-2
Let 6 be a positive integer to be determined below. As in [DrKl] we define for xo G Z2,

Ak+1=A2bLk+1(x0)\A2Lk(xo). (* 0,1,2,....) (6.19)
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We also define the events

£k(xo) {V\ ALk(x0) and ALk(x) aie
2l (6.20)

(m, P)-singular for some P G / and some x G .4fc+i(a;o) n Z }.

If
fio {V | Vzo G Z2 : tt{*| V G £fc(x0)} < 00} (6.21)

then it follows from the Borei-Cantelli Lemma that P(fio) 1. (See [DrKl]).

Now let V G fio and P G / and suppose that £ G <S'(R2) is a generalised eigenvector of
H(V). It follows that £ G C°°(R2). Choose x0 G Z2 such that (lAl(x0) I l£"l) ¥= 0. Suppose
that A£,t(a;o) is (m, P)-regular. Then, by formula (3.12),

(lj3(xo) I l£l) ^ (iß^o) I \GALk(x0)H^ALk(x0y£\)

+ (lß(xo) I \GALk(x0)PoVALkiXoyPALk<Xa)t\).

By Lemma 6.3 with N H the first term on the right-hand side is bounded by

(lß(x0) I \gal. (x0)H^ALk <x0yt\)

< A'L3(1 + \x0\2)p+1 (e-BLVie + e-mL« f \t(z')\d2z'
\ JALk(x0)

(6.23)

Notice that, by Lemma 6.1, the kernel of H satisfies (6.10) and P(xo) Ai(xo)-

As to the second term of (6.22), we can use Lemma 6.3 with N PqV and ip

PL„(xo)£ to c°nclude

(1b(x0) I \GALk(x0)PoVALk(x0yPALkrXo)£\)

< AL3(1 + \x\2)p+l L-bl2'32 + e~mL« f \i>(z)\d2.

\ IA2Lk(x0)

Notice that ip is also polynomially bounded:

\iP(z)\ < 2pK(B/2ir)(l + \z\2)p f d2z'(l + \z'\2)pe-B\z'^'A

(6.24)

< -AKB(p + l)\(2/K)p+leK(l + \z\2)p.

(6.25)

Moreover, since

J A2Lk(x0mz)\d2z< I d2z [ d2z'KB(z,z')\t(z')\
J •>A2Lk(x0) J ALk(x0)

< 2 f d2z'Uz')\,
JA2LAx0)

(6.26)
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both terms in (6.22) satisfy the same bound and we have

(1b(»o)I Kl> < Ml\(\ + l*o|2)p+1 (e-BLl'32 + e-mL* f \t(z)\d2z) (6.27)

\ JA2i,k(x0) J

Combining this with the polyniomial bound on £ (Lemma 6.2) we find

(lß(x0)| |£|) < J4iP3fc(l+|*o|2)"+1 {e~BLll32 + KL\(\ + 2M2 + 4L\)p^e'mL-) (6.28)

If there were to exist an infinite number of k's such that ABk (xq) was (m, P)-regular, then
it would follow from (6.28) that (lß(x0) | |£|) 0, a contradiction. Therefore, there exists
ki such that for all k > fci, A^k (xq) is (m, P)-singular. By the definition of fio this implies,
as in [DrKl], that there is k2 such that Ai,k(x) is regular for all x G Ak+i(x0) PI Z2.

Now let p G (0,1) and choose 6 > (1 + p)/(l - p). Define

Äk+i h2bLk+l/ii+p)(x0) \ A2Lk/ii_p)(x0). (6.29)

Let k > k2 so that ALk(y) is (m,P)-regular for all y G .4fc+i(a;o) n Z2. Inserting in (6.27)
the obvious bound

/ \az)\d2z<L2 sup <lß(j/0||£|) (6.30)
JA2Lk(y) y'eA2Lk(y)ni.2

we have

<lfl(v) I Kl> < ML\{\ + \y\2)p+1 (e-BLl'32 + L2e-mL- sup (lB(yl) | |£|) (6.31)

\ y'eA2Lk(y)ni?

>From now on we shall keep xQ fixed and all constants may depend on xq- If y G Ak+i HZ2

then \y\ < \x0\ + bLk+1V2 < cL% so

(lß(v)||£|)<GLUe-ß^/32 + e-^ sup <1b(V')| Kl> (6-32)

\ y'€A2Lk{y)nl? J

where r 5 + (1 + p)a. As ^4fc+i(x0) C ^4fc+i(cco) and d(x,dAk+i(x0)) > p\x - x0\ for
x G Ak+i(xo), we can iterate (6.32) at least n p\x — xo\/Lk times to obtain

(1b(x)| l£|) < CnUkn (ne-BLl'32 + Ke-mL«nLakp)

i / i t \ p\x — Xo I

<- tQl/Lk\p\x-xa\ [llr'Lk\ e-mp\x-x0\x

p\X - Xo\
T eXP 32^ "^T^l^-^ol + mplx-xol

(6.33)
+

K(l - p)ap\x - xo\ap



354 Dorlas, Macris and Pule

If p' < p then for k sufficiently large, this yields

<lB(x)||£|)<Me-m"'l—"I (6.34)

for some constant M. It then follows from Lemma 2.6 that £ is exponentially decaying
with rate mp'. QED

7. Proof of Theorem 4.3

As in [DrKl], the proof is by induction on k. The induction step is

Lemma 7.1 Let p > 2, ß G (0,1) and s G (|,1) be given. Let Jp be the smallest
odd integer > (p + 2)/(p — 2) and define

«o
(JP + l)p

2(p+Jv + l)
(7.1)

Pick a G (l,a0 A (2s)).
There exists Q Q(a, ß,s,p) such that if I > Q and mi > 4J/l1~@ then if K(l,mi)
holds and (K2) holds for all L > I and for some q > 4p+ 12 then K(L,mB) holds with
L la and

mL>mi- [(2r(2-a>/4 + l-^-'A mi + a(v + 4)/"1 In I + r0'1""»]

> 4Jpr1+'3.
(7.2)

Again, the proof of this lemma has a probabilistic part and a deterministic part. The
latter is much more complicated than in [DrKl] and will be split into several lemmas.

Lemma 7.2 Suppose that N is an operator on L2(R2) with kernel N(z,z')
satisfying

\N(z,z')\ <Aoe-^z-z'\\ (7.3)

Then, if Ai,A2 C R2 are disjoint regions with distance d d(Ai,A2),

||lA1iVlA2||<A0(^)1/2|Ai|1/2e-^. (7.4)

Proof. Since the operator norm is bounded by the Hilbert-Schmidt norm we have

1/2

||lA1iVlAJ| < f d2z f d2z'\N(z,z')
J Ai J A2

J At JA;

< Ao(7r/2K)1/2|Ai|1/2e-Kd

<^o d2z/e-2«|2-2r
1/2 (7.5)
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since, for any z G Ai,

/ dVe-2*i*-*'l2 < / dVe-2*!*-*'!2 (7r/2/t)e-2^2. (7.6)
JA2 J\z'-zï>d

QED

Lemma 7.3 Let Ai C A AL(x) with L G N and x el? and let ip G P2(A) with

î 0. Then

HIaP^Ga^i^^-p3!^!! sup 9A(u) (7.7)
Z7r uÇ.AL(x)r\T?

where gA(u) is defined by

Proof. For any z G A,

(1b(U)|1ga^|)
9a(u) —L^rL-n • (7-8)

(P^GaV)(z)|< / d2z'KB(z,z')](GAip)(z>)\
JAi

j \(GAiP)(z')\d2z'
JAi

B
<- 2ir

B E <1b(U)||gaVI>
(7.9)

2tt
u€A!HZ2

r>

< ^-^2H^II SUP 9a(u).
Z7r ueAinz2

The Lemma follows by integration over z G A. QED

We now come to the main deterministic lemma, the analogue of Lemma 4.2 in [DrKl].

Lemma 7.4 Let J G N, ß G (0,1), s G (§, 1), a G (1,2s), and E G R be given. Fix
x el? and assume that for all L > 1, |V(z)| < Lv for all z G Al(x), where v < oo.
Then there exists Q' Q'(a,ß,s,J,v) such that the following holds:

If I > Q' and mi > 4Jl~1+@ then the three conditions below imply that A^(x) is
(m,L,E)-regular with

mL > mi (l - 2/""«1-8) - r(2-«)/4) - a(v + 4)/"1 In I - r"!1"") > -^. (7.10)

(i) Al(x) satisfies (RA) in the definition of regularity.

(ii) At,(y) satisfies (RA) for all l' G Ji {1,1 + 1 + 1,2(1 + 1 + 1),... ,J(l + î+l)}, where
1 1 + j(«+2)/4; and for all y G AL(x) n Z2 such that At>(y) C AL(x).

(Hi) There are at most J squares Ai(ui) C A?(x) with centres Ui G Z2 and with
d(ui,Uj) > I + 1 (t / j), which are (mi, E)-singular.
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Proof. We want to prove that, provided I is large enough, conditions (i), (ii) and
(iii) above imply that A AB(x) is (m£,P)-regular. Suppose, therefore, that (i), (ii)
and (iii) are satisfied and choose a maximal set A;(u;) (i 1,... r) of non-overlapping
squares with centres w» G Z2 contained in A^(x) which are (mi, P)-singular. By (iii),
r < J and if A;(w) C A^(x) and u ^ (J;=i A2i(uj) then A/(w) is (mi, P)-regular. An easy
geometric induction argument shows that this impies that there are squares A^ C A^(x)
(i 1,..., t; t < r) with centres on Z2 and with lt G Ji such that A;, n A^ / 0 for i ^ j,

t r t

Yl*< J(l+ Î+1) and UAW+iWcUAV (7-n)
i=l i=l J—1

Clearly, if u £ Ar. for any j 1,..., t, where l3 Ij - £("+2)/4 and u G Z2 and Ai(u) C

A|_(x) then u ^ A2;(«;) (i 1,... ,r) and hence Ai(u) is (mi, P)-regular.

To prove that A Al(x) is regular, choose an arbitrary qS G L2(A). From (3.6) we
have that, if Ai, A2 C A are disjoint and A[ C Ai and A2 C A2 then

GaiUA21a^ Ga21a^ - (Ga, © GA2)TAl^A2GAlUA2lA'2(p. (7-12)

Using (3.7) this yields

(1a;| IGajua^a^I) (1A'J |GAirAliAaGAlUA2lA^|)
< (1A;| |GAlPoVAluAaPAaGrA1uAalA^I) (7.13)

+ (1A,| IGa^o^P^Ga.ua.Ia^D-

We now specialise to Ai A;(u), A2 A^(x) \ A;(m), A'i Ai(u) and A2 Al(x),
assuming that A;(w) is (mi, P)-regular. (Notice that A'2 C A2 because u G A^(a;).) Denoting
lKL<x)<t> V>, we find

\H\\9a(u)<Ii(u)+I2(u), (7.14)

where

h(u) (lfl(u)| \GAliu)PoVAP*AKAi{u)GAiP\) (7.14a)

and

h(u) (1B{U)\ \GAl{u)P0VA\Al{u)P*Ai{u)GAiP]) (7.14b)

and where gA(u) was defined in (7.8). We will now bound the two terms h(u) and I2(u)
in similar fashions using Lemmas 7.2 and 7.3. We split I\(u) into three terms:

h(u) < (1B(„)| \GAl{u)PoVAP^A[{u)GA^\)

+ (1b(u)| \GAl(u)lAl(u)PoVAPZnA.{u)\Al(u)GAip\) (7.15)

+ (lß(u)l |GfA,(«)lÄi(«)PoVrAPAnA.(u)\Ai(u)GA'i/'|)

The first term on the right-hand side can be bounded with the help of Lemma 7.2. By (i)
and (ii), ||GA|| < 2eL" and ||GAl(„)|| < 2elß. Moreover, since |Val(x)| < L"',

\PoVAPZ(z,z')\<L» J KB(z,zi)KB(zi,z')d2Zi=Lv^e-B\z-z'fl* (7.16)
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using (2.16). With Lemma 7.2 this yields

(1bMI \GAl{u)PoVAP^A.tu)GAiP\) < 4(BM1/2L»lelßeLße-BlU*+2)/2'8\\iP\\

4(P/7r)1/2r"+1ei'3+r'5-B!(a+2,/2/8||^|| (7.17)

<Cie-Bl«-w/iem

provided l > Qi (48/P)1/^1 with 7l 1 - a/2, where cj 4(B/Tifl2((av + l)/e)av+1.
(We use that ß < ßa < a < (a + 2)/2 and also P < (y/e^e1) The second term is estimated
in the same way:

(1b(«)| \GAl{u)lAl{u)PoVAP*AnAl{u^Al{uiGAiP\) < Cle-Bl2"l™ (7.18)

provided I > Q2 (48/P)1/72 with j2 (2s - aß) A (2s - 1). (The wedge denotes the
minimum.) To estimate the third term of (7.15) we use the assumption that Aj(u) is

(m;,P)-regular. This gives

(1b(u)| \GMu)lAlMPoVAP*AnAiiu)XAl,u)GAiP\) < 2Ue-^leaßU\\- (7-19)

On the other hand we can also use Lemma 7.3 with Ai A n Ap(u) \ Ai(u):

(1b(u)| \GA,(u)lAlru)PoVAPAnA[ru-)\Alru-)GAlb\)

R (7 20)
< £.L^e-mdm sup ffA(w).

Z7r tuEAiHZ2

Collecting terms we find

h^<2c1e-BlS'16 + lave-m'1
IMI

2el"ß A TT1*" SUP 9a(u)
Zir weAnA^ujnz2

(7.21)

The second term of (7.14) is estimated in the same way:

h(u) < (1b(u)| \GAl{u)PoVA\A.(u)P*Ai(u)GAip\)

+ (lß(«)| |GAl(u)lAl(u)PoVAnAf(u)\A1(u)PA,(u)GA'0l) (7.22)

+ (1b(u)I |GfA,(«)lÄi(u)-PO^AnAf(tJ)\Ai(u)Pli(„)GAV'l).

In the first term we use Lemma 7.2 with N P0:

(IbwI |GA,Mfl)VANAfW/%(u)0A^|) < 4 (^)1/2^+1^+i"«-S'Cö+2)/3/4|l^ll- (7-23)

Similarly, for the second term,

(Iß(u)l \GAl(u)^Al(u)PoVAnAifu)\Al(u)Pll{u)GAip\)

<4(2K/BYl2lav+1elß+l"ß e-Bl2"lA\ '
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In the third term we have as before

(1b(u)| \GAl(u)^Alfu)PoVAnAi(u)\Al(u)PAl(u)GAip\)

< rve-miX 2e"ß /\ ^-l3a sup gA(i

Collecting terms,

h{u)
IMI

<2cie-ß( /w + laue-mi
B

•u)€Ai(u)nZ2

(7.25)

2er /\Tl3a sup gA(w)
wEAi(u)nZ2

(7.26)

It now follows from (7.21), (7.26) and (7.14) that, if A;(u) is (m.z,P)-regular, then

9a (u) < 4c1e-Bl5>16 + 2la"e-m»
B2éa f\—l3a sup gA(w)

weA[(u)ni,2
(7.27)

Next, suppose that Ai(u) is not (m/, P)-regular. Then u G A;. for some j G {1,..., t}.
We use (7.13) with Ai A^, A2 A \ Ai, Ai B(u) and A'2 AL(u) to write an
analogue of (7.14):

]gA(u)<I[(u)+I2(u) (7.28)

with

and

T'i(u) (1B(„)| \GA[jP0VAP^AiGAiP\)

I2(u) (1B{U)\ \GAljPoVAXAl.P*AljGAiP\).

(7.28a)

(7.28b)

Notice that the only difference between Ii(u) and I[(u) is that A;(w) has been replaced by
A;,,. We can split I[(u) into three terms analogous to (7.15), where the first two terms are

bounded as in (7.23) and (7.24) with I replaced by Ij < (I + l)J < 3JI. For the third term
there is no analogue of (7.25) but (7.26) still holds. We thus obtain

^ < 2^-^/16 + 2£l«(-+3)elf sup flA(tw))
IMI 2tt uEAnA- \A;

,ez2

(7.29)

where c'i 3Jci. We split up I'2(u) differently:

I'2(u) < (1b(„)| |Gaì.PoVA\Ai.Pai-.GaV'I)

+ (1b(u)| |Gaì.PoVa\aì.ìdaì.Xa,-.G'a^|).

We obtain, using Lemma 7.2 and 7.3 respectively,

^ < c[e-B<S^ + 2^-KV? sup flA(w).
Imi 27T

^e(AÌ3\A,-3)nZ2

(7.30)

(7.31)
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In all we have, if At(u) is (mi, P)-singular,

gA(u) < 3cie-ß'6/16 + 2-l<v+3h1'gL(w) (7.32)

for some tu £ (A n A? \ Ar. J n Z2. But, if w G Af \ A,-, then w £ Ar. for any i 1,..., t.

If, therefore, d(Aij, ôA^(x)) > I then Ai(w) C A^(x) and hence Ai(w) is (m;, P)-regular.
We can then insert (7.27) into (7.32) and conclude that

9a(u) < (3c[ + ™cila(»+Vels) e-Bl6'w + 2-^-l2a^e1'e-milgA(w') (7.33)

for some w' € A fl Ar(ui) n Z2. We are now going to iterate the inequalities (7.27) and
(7.33). We first simplify these inequalities as follows. There exist Qz(a,ß,J,v) such that
if I > Q3 then

l2a{»+3)e-Jlß <^A^ (7.34)

and there exists Qi(a, ß, s, J, v) such that if I > Q4 then

3J + ™r{*+3)e3Jl>) c < ieB<S/32 (7.35)
7T y 4

Using the fact that m; > 4Jl~l+@ we now have

gA(u)<\e-Bl6l32 + Z(u)gA(w) (7.36)

where
r üla(,+3)e-mii ifA,(u)is(m,,.E;)-regular

Z(m) < V'.«J'J
L I if A;(w) is (m;,P)-singular

and where w G AnA(-(u) if Aj(u) is regular and w G AnAr(w') for some w' G (AnAr.)\Ar.
if A; (it) is singular. If we can iterate (7.36) N times, starting at u x then we get

9a(x) < e-BlS'32 j l + Z(x) Y Z(wi)Z(w2) ¦ ¦ ¦ Z(wn)
1

l 71 0 J

+ 22(ï)Z(w1)...2(l(;Jv-i)er'' (7"38)

< Ie-ß'6/32 + 2Z(x)Z(Wl) • ¦ ¦ Z(wN^)e"ß.

(In the final step we have used the other bound on gA in (7.27).) If Ni is the number of
n such that Xi(wn) is regular (wq x) then the procedure can be repeated as long as

L - (Nil + Y û + A >\Jk+ L (7-39)
V i=i J i=i
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For this it suffices that Ni < (L - (9J + l)l)/l. Let, therefore, Ni be the integer satisfying

£-<Y + 1)*
< Ni < î^j±Dl (7.40)

Then

9a(x) < l-e-Bl°l32 + 2(B/7r)NHa^+3^e-m^lerß. (7.41)

Define

mL ^- (mil - In - - a(v + 3) Inl) - % In 2 - Z0^"1). (7.42)
L \ 7T J L

Inserting the first inequality (7.40) and the relation

ri i — ;-«(i-s)"
77 2V4 > 1 - rö(1"S) - l(a~2)/4 (7-43)

ZP 1 + z(°-2)/4 v y

it easily follows that

mL > mi (l - 2/-a(1-s) - Z-(2-«)/4) - a(i/ + 4)/"1 In Z - Z-««1"« (7.44)

provided Z > (9J + l)2 V (P/tt). Therefore

L1"^ > ^Z^-1«1-« (l - 2Z-"(1"S) - Z-(2-«)/4)

- a(i/ + 4)Za(1_/3)_1 InZ - 1 > 4J
(7.45)

if Z is large enough: Z > Q5(q, ß, s, J, v). Finally, we define mi mi A -^Bl6 a. As 6 > a,
we then have pa (z) < e_mi-L and mL > 4JL~l+ß provided? > Q' QiVQ2VQ3VQ4VQ5,
which proves the lemma QED

To prove Lemma 7.1 we introduce another definition. Given an interval / C R, let

o'(HA<) o(HAr) n {P I d(E,I) < \<Trß}- (7.46)

We shall assume that d(1,0) > e0 and e~r < eo- Then o'(HAr) CR\ [— \eo, \eo\- As in
[DrKl] we now have

Lemma 7.5 Suppose that (K2) is satisfied and that Zi > l2 > Lo V (—A meo). Let
the squares A^ and A;2 /lave centres on Z2 and distance cZ(A;1,A;2) > 1. Then there
exists a constant c > 0 suc/i t/iat

P [d {o'(HAli),o'(HAh)) < e~lß] < cj|. (7.47)
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Proof. Let Vi VA[ and V2 VAl Since d(A\1, A;2) > 1, Vi and V2 are independent
random variables. We denote the corresponding probability measures by Pi and P2. Let
Xi(Vi),...,Xn(Vl)(Vi) be the eigenvalues of PA;i(Vi) in o'(HAli(Vi)). Then d(A((Vi),/) <

|e~'i < |e~'2 and hence by (K2),

d{a'(HAli(Vi)),o'(HAl2(V2)))<e-lß

JPi(dVi
"(Vi)
U {v2\d{Xl(Vi),o'(HAl2(V2)))<e-1*}

"(Vi)
/Pi(dVi) ^ P2 [{^^(VVO.^Ha,,^))) <e-''}]

<Z2-9Ei(n(Vi)) (7-48)

< Z2-?E (AT>h (V, eo/2) + A^ (V, -e0/2))

<2Z2-'E (^(lVl.eo/2))
<4Z2-?e-1E(TracePAll(|^i|))

<^E(K|)sup / d2z'Jr;B(z,z')2<l^ilE(K|)Z2-«.
'2€0 z€Ah Jah ""Co

This proves the lemma. QED

Proof of Lemma 7. i
The proof now proceeds exactly as in [DrKl]. Taking Q > Q' oi Lemma 7.2, it suffices to
show that if Q is large enough and I > Q then, for any x, y G Z2 with |x — y|oo > L + 1,

P [VP G / : (i), (ii) and (iii) of Lemma 7.4 hold either for x or for y] > 1 - P_2p. (7.49)

Indeed, one proves as in Lemma 2.1 that, for given x G Z2, |V(z)| < L2 for all z G AL(x)
provided L is large enough (independently of x).

Fix, therefore, x, y G Z2 with |x — j/|oo > L + 1. We may assume that

d(o> (HAli{xl),a'(HAl2(yl))) > e-C^)' (7.50)

for all x' G AL(x) n Z2 and y' G AL(y) n Z2 and all Z2, Z2 G J| U {L} with A(l (x') C AL(x)
and Ai2(y') C AB(y). Indeed, by Lemma 7.5, the probability that this is not the case is
less than P4(J + 2)2cP2Z_« c'L6l-q. It is easy to see that if (7.50) holds for all x', y', h
and l2 as above then, for all Eel, (i) and (ii) of Lemma 7.4 hold either for x or for y.
Hence,

P [VP G I : (i) and (ii) hold either for x or for y] > 1 - c'L6rq. (7.51)
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As to condition (iii) we have, moreover,

P[3P G / : there are at least J + l(mj,P)-singular squares A;(u) with
distance > 1 contained in Al(x)]
< P[3P G / : there are at least two (m;,P)-singular squares A;(u), Ai(v) C (7.52)

AL(x) with lu-wloo^l]^^72
< (L2rp)J+1

and similarly for the square AB(y). It follows that (7.49) holds since
c'L6l-i + 2L2(J+1)Z-P(J+1) < L-2p for I large enough. (Remember that q > 4p + 12 >
2ap + 6a and a < a0 < 2.) QED

Proof of Theorem 4-3
Let ao and Jp be as in Lemma 7.1. Starting from I Lo and mi mo we can iterate
Lemma 7.1 to find that H(Lk,mk) holds for Lfc+i L£ and a sequence {mk} satisfying

mk+i >mk- [(2L-(2"Q)/4 + L"q(1-s)) mk + a(v + 4)L^ In Lk + Lka{1~ß)] (7.53)

Given m < mo it remains to show that Ylk=.i(mk ~ mk+i) < rrio — m for Lo large enough.
But this follows immediately from the inequality (7.53). QED
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