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Abstract. We prove that a generic potential perturbation in Euclidean scattering splits the
multiplicities of all resonances. Our argument can in fact be generalized to a class of non-self-adjoint
Fredholm operators on an abstract Hilbert space.

1. Introduction

The purpose of this note is to show that for a generic compactly supported perturbation
of the Laplacian in Rn the resonances are simple. The argument presented here shows in
fact that for any perturbation for which the resonances are defined by complex scaling the
algebraic multiplicities can be split by adding a generic compactly supported potential to
the perturbation. As was pointed out to us by the referee the argument we use is more
general and applies to some families of non-self-adjoint Fredholm operators of index zero -
see Remark 3.2t

Results of this type are now well-known for eigenvalues ([11, 12]) and the minor new
difficulties here come from dealing with non-self adjoint operators. We were motivated by

'We would like to thank the referee for clarifying our earlier argument and for suggesting the generalized
formulation of the result. The second author is also grateful to the National Science Foundation for partial
support.
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the fact that many statements about resonances are easy in the case of no multiplicity
but become complicated in general. For instance, the correspondence between the poles
of the meromorphic continuation of the resolvent and the scattering matrix for compactly
supported perturbations in odd dimensions is now standard when the poles are simple (see

[3]). The generic simplicity combined with the continuity of resonances in compact sets
[8], shows that this correspondence persists in general. Similarly one obtains that the poles
of the scattering matrix agree with multiplicities with the poles of its determinant (in the
hyperbolic case where complex scaling cannot be globally used a direct argument, applicable
in the Euclidean case as well, is presented in [2]).

We should stress that the above applications are probably known but we are not aware of
a convenient reference. The variational formula for the resonance used here (see (3.2) below)
is also probably well-known. In deriving it we were motivated by a formula of LaVita for a

variation of an eigenvalue of non-self adjoint operator which we learned from [4],

We will state the result in the abstract setting introduced in [10] (see [13] for more
references). Let H be a complex Hilbert space with an orthogonal decomposition

H HBo®L2{Rn\B(0,'R0))

where R0 > 0 is fixed, B(0, R) {y G R™ : \x — y\ < R} and the corresponding orthogonal
projections are denoted by uh» u\b(o,Ro), u i—> u[l™\B(o,fl0)- The operator

P :H^H
is unbounded self-adjoint with the domain T> C H which satisfies

Vh«\B(o,R0)C H2(Rn\B(0,R0)),

and {u G H2(Rn\B(0, Ro)), u 0 near 5(0, Ro)} C T>. The crucial assumptions are

(Pu)\r^\b(o,Ro)= -A(Mfm«\B(o,Äo)) for all u G £> (1.1)

1b(o,r0)(P + 0_1 is compact (1.2)

Pü Pu. (1.3)

The spaces rHcomp, 1d.\oc, T>\oc are defined in the obvious way. The resolvent of P is defined
as a bounded operator in the upper half-plane:

R(X) (P- A2)"1 : H -? V Im A > 0 A2 0 <7point(P)

and the assumptions (1.1) and (1.2) guarantee its meromorphic continuation

R(X) ¦ ncomp -? vloc (1.4)

for A G C when n is odd and A G A, the logarithmic plane when n is even (strictly speaking
[10] treats only the odd dimensional case but the proof of Theorem 1.1 there applies for n
even as well). The poles of this continuation are called resonances or scattering poles. The

multiplicity of a scattering pole Aq is defined as the rank of

I R(\)XdX 7: [0,2tt) 3 ìh-> Ao + ee"
J-i

for e sufficiently small. As we shall see this is the same as the dimension of the image of the
full polar part of R(\) (see the definition in [7]). Let us put A^ {A G A : 8 < arg A < «/»}.
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Theorem Let P satisfy the assumptions above and let i?x satisfy Rq < Ri. Then there exists
a dense G$ subset of Cox(B(0, Ri)\B(0, Ro);R), U, such that for any V Ç.U the resonances
of P + V in A_X]o are simple.

Remark 1.1. Proceeding in this generality we cannot eliminate multiplicities of either
negative or embedded eigenvalues by adding a potential supported outside of the perturbation.
For practically any specific perturbation that is however much easier either by the variational
formula for eigenvalues or by the Fermi Golden Rule [6, 9].

2. Preliminaries

We will briefly recall the complex scaling of Section 3 of [10]. For \9\ < it there exists
a totally real submanifold Te C Cn such that r« fl R" C B(0, Ri), Tg n {\z\ > R2}
e'eRn n {\z\ > R2}, Ri < R2. Considering the Laplacian, -A J27=i Dl, as a holomorphic
differential operator in C", £ D2Z we obtain — Ar„ z3 Dl, lre (where the restriction can be

uniquely defined by, for instance, using almost analytic extensions).

The deformed space is defined as

n6 HRo®L2(Te\B(o,R0)),

where the measure on Tg is dzi A • ¦ • A dzn\re, (zi • • • zn) G C", and the deformed operator as

Peu\B(o,Ro) P(xu)\b(o,Ro) r2 1)
Pt>u\re\B(o,Ro) -Are(w[rs\B(o,fio)) 1

where x € C^f(B(0,Ri)) is equal to 1 in a neighborhood of B(0,Ro) and u G Vg with the
domain T>$ defined by

ve {uene:xu£ v, (1 - x)« e H2(Te\B(0, Ro))}

Section 3 of [10] gives the following

Proposition 1. If z G C\e~2'9R, |0| < it, then (Pg — z) : Vg —> rig is a Fredholm operator
of index 0.

Hence Pg has discrete spectrum in C\e~2'eR and its resolvent behaves near its singularities
like the resolvent of a matrix. The relation with the scattering poles (defined as poles of the
meromorphic continuation of (P — A2)-1) is given in the following proposition, quoted again
from [10]:

Proposition 2. For n even or odd, A G A_0iO, 0 < 9 < it, is a scattering pole if and only
if A2 is an eigenvalue of Pg or P_g respectively. The multiplicity of the scattering pole A is

equal to the algebraic multiplicity of the corresponding eigenvalue A2.

We recall that for n odd the poles satisfy the symmetries A 1—> —A and hence A-^o, f <
6 < I + e, is sufficient for a complete study. For n even the same symmetry holds in the
sense of identifying A_X|0 and AT?27r as subset of the logarithmic plane.
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If we define a bilinear form on rig

rig 3 u,v i-> (u,v)g (u,v)g (2.2)

where (•, •)# is the Hilbert inner product on Jig, then (•, •)# is non-degenerate and it identifies

Hg antiholomorphically with ri*e. If u,v G Vg then we have

(Pgu,v)e (u,Pgv)g. (2.3)

From the self-adjointness of P, (1.3) and the fact that the usual inner product can be used
in Hr0 we only need to check this for — Ape Yfi=i D2 fry That follows in turn from

/ Dzjü\re -v\re dzi A ••• Adzn\re= - / ü|r9 -DZjv\r$ dzi A ••• A dzn\re
¦Te ¦'r,, /2 ^\

where ü and ù are almost analytic extensions of u and v, u,v G C^°(rs) which, as i(DZjMÜ +
DZjvû)dzi A • • • A (i«n —l)J+1cl,(î('i;<i«i A • • • A dz3^i A dz]+i A • ¦ ¦ A <izn), is a consequence
of Stokes's theorem.

The structure of the resolvent (Pg — z)_1 in a neighborhood of an eigenvalue is given by

Lemma 1. For z0 G <C\e-z,9[0,-|-oo]; an eigenvalue of Pg, one has, for some iVgN

(Pg - Z)-1 Gg,zo(z) - £ {P" ~ %'rg,zo (2.5)
k=l \z ~ zo>

where:

1- Ge,z0(z) is analytic and bounded for \z — z0\ sufficiently small
2. Tfl,zo EtJ o-ij(pi ® <t>, and tf>t G Vg, (pi®<pj (•, <pi)g(p3

3- ((«y)).-,j (((&, &)»ki)_1-

Proof. As Pg is Fredholm, zo is an isolated eigenvalue and for e0 > 0 small enough, we define:

*•«,*, 7T- f(z~ Pe)~ldz with 7 : [0,2tt) 9 i h^ 7(i) z0 + £0e" (2.6)

The Fredholm property guarantees that the range Ran itg^ is finite dimensional and an
argument based on Cauchy's Theorem and on the resolvent identity gives 7rf rtgiZr> and
[rtg,z0,Pg] 0. Hence for z 0 ff(Pg) (Pg - z)"1 (Pg - z^itg^ + Gg,zo(z) where

G ><20(Z) (Pg - Z)'1 - ~ [(Pg - Z)-\Z' - Pg)-Hz'liti J-,

So if we choose z inside the disk of boundary 7, we get Gg,zo(z) l/(2tti) f^(z' — z)"1(Pg —

z'Y^dz' which gives (1) and (2.5).

Since Pg is symmetric with respect to (•, •)#, (2.6) shows that so is itg,za, that is (itg,zo u,v)g
(u, irgiZ0v)g. If <j>i, ¦ • • (j>M form a basis of Ran itg,Zo, we can write TtgtZa as YaLi 4>i ® <t>i, m the
sense of (2), where f>i € Tdg. The symmetry of the bilinear form shows that r/>, YljLi Qijéj
where (ay),-j is a symmetric matrix of full rank. Checking the projection property of rrgiZ0

immediately gives ((a,ij))i,j (((&,<!>])e)i,j)~x which is (3). D
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Remark 2.1. There exist some natural choices for the basis {tpj}i<j<M- For instance,
we can take a basis in which the matrix of PgitgtZa takes the Jordan normal form (see, for
instance [6], Sect.1.5.4). In that case the matrix (a!;)i<i,j<M will in general be rather far
from the identity matrix. On the other hand the non-degeneracy and the symmetry of the
form (•,•)# allow a basis for which <z,j f5y. Then the resulting matrix for PgtrgtZ0 is not in
the Jordan normal form unless N 1.

3. Proof of Theorem

Let W G C^(B(0, Ri)\B(0, R0); R) and set Pg Pg + W which is well defined as TgC\Rn D

B(0,Ri). For the same reason,
Pg (P + W)g

and it is clear that Pg is Fredholm with index 0 and symmetric with respect to (•,•}#.

We define a family of open sets (the eigenvalues of Pg are discrete by the Fredholm
property), Erg, which consist of all potentials W G Cox(B(0, Ri)\B(0, R0); R) for which all the
eigenvalues of Pg Pg + W in A.g n {\z\ < r} are simple. Then we have a Gs set

Eo R Ee-
ngN

The theorem in Sect.l will follow directly from:

Proposition 3. If Fg C^(B(0,Ri)\B(0, R0);R)\Eg then the interior of Fg is empty.

By the Baire category theorem and the discreteness of the spectrum we only need to
prove that if W G Fg and z0 an eigenvalue of Pg then for any e > 0 there exists V G

Crf(jB(0, Ri )\B(0, R0); R) with HVH«, < e such that Pg + V has only simple eigenvalues in
a neighbourhood of z0.

Thus we take W G Fg and let z0 be a multiple eigenvalue of Pg Pg + W. For V G

C*o°°(5(0, Ri)\B(0,Ro)) satisfying [[V]^ < e we define P9V Pg + V. If D(z0,6) is the disk
of center zq and radius <5 (6 chosen small enough so that cr(Pg) fl D(z0, 6) {z0}) and with
7 its boundary, then for z G 7,

z - Pvg (z - Pg) (l + Gg,Z0(z)V - £ {P(e ~^ *e,*Bv)
\ k=i \z ~ z°) I

Consequently, for || VH^ small enough, (z — Pg), z G 7, is invertible with a bounded inverse.
We define

-aï
itti J-1

PY)-ldz
27i

which is a finite rank projection, and, moreover, it is analytic in V for ||l^||oo < £• The

analyticity is meant in the following sense: rts1+z 2 is analytic in r for r G C, 14, V2 G

C{?(B(0,Ri)\B(0,Ro);R) such that ||\4 + rV^ < e. We also note that for HU^ <
£, ll^'Hoo < £ (with £ small enough),

ii^-^rii<ciiu-viu
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Hence the rank of ttJ is constant and equal to M, say, and ttJ is the projector on the
generalized eigenspace associated to the eigenvalues of Pg contained in D(zç,,6).

To prove the proposition, we will proceed by induction. Either of the following two cases

occurs

(1) Ve 3 V G Cox(B(0,Ri)\B(0,Ro);R), WV^ < e such that Pj has at least two distinct
eigenvalues in D(z0, S)

(2) 3 e V V G Cg°(B(0, Ri)\B(0, R0);R), WV]^ < e, there exists a unique eigenvalue z(V)
for Pj in D(z0, 6), that is 3 1 < k < M and z(V) such that

(Py-z(V))kxï 0. (3.1)

If the first case occurs, we choose a V which splits the eigenvalues and set Pg1 Pg

We then perturb P} by some potential Vi: Pg' Pg1 + Vi, where ||Vi||oo < e/2 and

Vi G Cox(B(0, Ri)\B(0, Ro); R). For each of the distinct eigenvalues of P}, we apply the
same procedure as for z0 choosing HViH^ small enough so that distinct eigenvalues remain
separated. Applying the same argument inductively, after at most M such steps we get
either only simple eigenvalues or we encounter case (2) to which we now turn. We will show
that it cannot in fact occur.

Lemma 2. Assume that case (2) above holds. Then, for e small enough, z(V) is analytic
in V (for \\V\loc < e) in the sense that, for Vi, V2 G Cox(B(0, Ri)\B(0, Ro); R) and r such
that WVi+rViWoo <e

z(Vi + tV2) is analytic in r.

Proof. From (3.1) we deduce that z(V) is the unique eigenvalue of of P( rtg ¦ Recalling that
the rank of wj, M, is constant for V small, we obtain that z(V) tr P^Ttg7/M. Hence the

analyticity of z(V) follows from that of PgVrrJ. D

For V G Cox'(B(0,Ri)\B(0,Ro);R), ||V||oo < £, and assuming that (2) holds, we define

k(V) M{k : (Pev - z(V))k^ 0},

so that k(V) satisfies

(Pgv - z{V))W*ï 0 and (Pgv - z(V))^-^ # 0

The function k(V) is lower semi-continuous and we have the obvious bounds 1 < k(V) < M.

Let ke sup{k(V) : V G C*o°°(5(0, Ri)\B(0, R0);R), ||U|U < £>¦ Then for any e > 0

small enough there exists V£ such that Ve G Cqx(B(0,Ri)\B(0,Ro);R), ||K||oo < £ and

k(Vs) ke. Hence there exists ge > 0 such that for all V" G C™(B(0,Ri)\B(0,Ro);R) with
||U' — K||oo < ne, k(V) ke. Consequently, we may now assume that k(V) is constant, that
is the maximal size of the Jordan blocks of PgVTtg7 is constant equal to k, say. We first treat
the easier case where the geometric multiplicity is equal to the algebraic one (i.e k 1):
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Lemma 3. Let us assume that for some e0 > 0 and for all

V G C™(B(0,Ri)\B(0,Ro);R), \\V\\M < e0,

(PgV-z(V))^=0.
Let {<pi\i<t<M be a sequence of eigenvectors of Pg and let z(e) z(eV) for some fixed
V G Crf (5(0, Ri)\B(0, Ro); R). Then

(V<P;,<Pj)g z(0M,h)g. (3.2)

Proof. Abusing notation slightly let P| Pf for some fixed V G Co°°(5(0, Ri)\B(0, Ro); R)
such that ||V||oo < I- We put cj>e3 ng(pj so that (Pg — z(e))cj)e] 0. We now differentiate
this identity and this yields

(V-z(e))4>) + (PI-z(e)){rg^=0.
Pairing with f>\ under the bilinear form (•,•)» gives

(Vtf, $)„ - i(£)(<p), tf)g -<(#) ; (PI - z(eM)g 0

We now set e 0 and obtain the 'variational formula' (3.2) D

An analogue of this standard argument works also when the algebraic multiplicity exceeds

the geometric one:

Lemma 4. Let us assume that for some e0 > 0, k G N, k > 1 and for all

V G Co°°(5(0, i?i)\5(0, Äo); R), ||U|U < s0,

(Pgv - z(V)f*v 0, (P^ - z(V))k-^J + 0

Let if ^ 0 be an eigenfunction of the form ip (Pg — z(0))k~1h. Then for all V above

(Vip,4>)g 0. (3.3)

Proof. Using the same notation as in the proof of Lemma 3 we put tfi (Pg — z(e))k~l7igh
which is now an eigenfunction of Pg depending analytically on e. As in Lemma 3 the
differentiation of the eigenequation gives (3.2) with f>, f>j t/>. But now we also have

(rp, ip)g ((Pg - s(O))*-1 A, rp)o ((Pg - z(0))k~2h, (Pg - z(Q))i>)g 0

and (3.3) follows.

Lemmas 3 and 4 exclude case (2): if fc 1 then (3.2) for all V G Co°°(5(0, Äi)\5(0, Ro); R),
with ||V||oo < 1 would imply that 4>i\b<0r )\b(or

® ^or some 1 < i < M since we can

take ((p,,<pj) 8t] (see Remark 2.1) Since (-Ar„ + W - z0)<pt \b(o,r,)\b(o,r0)= °' unique
continuation for second order elliptic operators (see for instance [5], Sect.17.2) implies that
(j>l\r \B,0R -= 0 and thus f>i G L2(Tg) for all 9. Hence z0 is an eigenvalue of P, and z0 =£ A2

for any A G Aoj7r. The same contradiction is clearly obtained from (3.3) in the case when
k > 1.

Remark 3.1. The formula (3.2) is the obvious analogue of the standard variational formula
for eigenvalues of a self-adjoint operator and that analogy is particularly valid when the
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resonances are simple and some differentiability is allowed (here it was guaranteed by Lemma
2 under the degeneracy hypothesis). But as the bilinear form is not positive definite there
is no control on the speed of motion of the resonance. The standard example is A + eV,
V G C0M(R") where as e —> 0 the resonances escape to (imaginary) infinity in 'finite time'.
Even more striking examples come from considering a pair of 6 functions potential on R (see

[1]) where the same phenomenon occurs with the non-zero limiting potential!

Remark 3.2. The argument above works in much greater generality, in particular without
the assumption (1.3) - however, one does not have then the exact analogues of the statements
of the self-adjoint case with the inner product replaced by the indefinite form (see (3.2)).
We could also consider a family of (unbounded) operators, H(V), on a Hilbert space Ti,
depending smoothly on a parameter V in a Banach space B. We would then assume that
for z in an open set ft C C, H(V) — z is a Fredholm operator with index zero. The simplest
abstract condition replacing the unique continuation argument above is

V W G B (dHv(W)u,v)n 0, H(V)u zu, H(V)"v zv, z G 11 =-> u v 0.

We can now use the same argument as in Lemmas 2 and 3 but with the Hilbert space inner
product and with pairing with the eigenfunctions of the adjoint of H(V) (which were equal
to <j>j and ip above so that we could use (•,•)» and drop the complex conjugate). Hence,
generically, in the sense of a Gg dense subset of V's in B the spectrum of H(V) in fi is

simple.

It would be somewhat cumbersome to devise an optimal abstract setting and the one
described in this remark does not completely apply to Theorem in Sect.l (see Remark 1.1

and for instance the case of scattering on finite volume surfaces with hyperbolic ends - see

Sect.l of [10] or [2]).
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