
Inflation with a complex scalar field

Autor(en): Scialom, David

Objekttyp: Article

Zeitschrift: Helvetica Physica Acta

Band (Jahr): 69 (1996)

Heft 3

Persistenter Link: https://doi.org/10.5169/seals-116917

PDF erstellt am: 24.05.2024

Nutzungsbedingungen
Die ETH-Bibliothek ist Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an
den Inhalten der Zeitschriften. Die Rechte liegen in der Regel bei den Herausgebern.
Die auf der Plattform e-periodica veröffentlichten Dokumente stehen für nicht-kommerzielle Zwecke in
Lehre und Forschung sowie für die private Nutzung frei zur Verfügung. Einzelne Dateien oder
Ausdrucke aus diesem Angebot können zusammen mit diesen Nutzungsbedingungen und den
korrekten Herkunftsbezeichnungen weitergegeben werden.
Das Veröffentlichen von Bildern in Print- und Online-Publikationen ist nur mit vorheriger Genehmigung
der Rechteinhaber erlaubt. Die systematische Speicherung von Teilen des elektronischen Angebots
auf anderen Servern bedarf ebenfalls des schriftlichen Einverständnisses der Rechteinhaber.

Haftungsausschluss
Alle Angaben erfolgen ohne Gewähr für Vollständigkeit oder Richtigkeit. Es wird keine Haftung
übernommen für Schäden durch die Verwendung von Informationen aus diesem Online-Angebot oder
durch das Fehlen von Informationen. Dies gilt auch für Inhalte Dritter, die über dieses Angebot
zugänglich sind.

Ein Dienst der ETH-Bibliothek
ETH Zürich, Rämistrasse 101, 8092 Zürich, Schweiz, www.library.ethz.ch

http://www.e-periodica.ch

https://doi.org/10.5169/seals-116917


Helv Phys Acta 0018-0238/96/030190-04$1.50+0.20/0
Vol. 69 1996) (c) Birkhäuser Verlag, Basel

Inflation with a Complex Scalar Field

By David Scialom

Institute of Theoretical Physics, University of Zürich,
Winterthurerstrasse 190, CH-8057 Zürich, Switzerland

Abstract. We discuss the coupled Einstein-Klein-Gordon equations for a complex scalar field with
and without a quartic self-interaction in a zero curvature Friedman-Lemaitre Universe. The complex
scalar field, as well as the metric, is decomposed in a homogeneous, isotropic part (the background)
and in first order gauge invariant scalar perturbation terms. The background equations can be

written as a set of four coupled first order non-linear differential equations. These equations are

analyzed using modern theory of dynamical system. It is shown that, in all singular points where

inflation occurs, the phase of the complex scalar field is asymptotically constant. The analysis of
the first order equations is done for the inflationary phase. For the short wavelength regime the

first order perturbation term of the complex scalar field is smeared out and the Bardeen potential
oscillates around a nearly constant mean value. Whereas for the long wavelength regime the first
order perturbed quantities increase.

1 Basic equations

We will consider the linear scalar mode perturbations since they are the only ones which
contribute to the energy density fluctuations [1], We will, as usual, expand the scalar
perturbations in terms of a complete set of harmonic functions Y^, which are the eigenfunctions
with eigenvalue — k2 of the Laplace-Beltrami operator A defined on constant time slices £,,.
In the following, we omit for simplicity to write the subscript k on Y.

Taking the zero curvature Friedmann-Lemaitre metric—including the first order scalar
mode perturbations—given in Ref. [1] and using the following action

R
¦ \sT (e„$e„$* + e^e^*) + m2$$* + A ($$*)2] (1.1)jV^gd* 16ttG 2-
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the equations of motion of the background as well as the first order perturbations equations
can be derived. To obtain the latter, the scalar field has to be expanded in a background
part, (j> and in a first order term, ô(f>. We get for the background

H2 ^f-W + m2#* + A(#*)2) (1.2)

-2H - 3H2 8ttG(#* - m2#* - A(#*)2) (1.3)

'f> + 3H(j> + m24> + 2A(00*)0 0 (1.4)

where H à/a and dot means derivative with respect to the real time, t.
Expressing the first order perturbation equations directly with respect to gauge invariant

quantities [2] we obtain

0*V + é'ôip*' + 2<AW + a2—b(p + <?-ïrrM* > (L5)

il> +hif>= -4itG {f'öip + (j)'Sip*) (1.6)

tp" + 6hip' + (fc2 + 167rGo2u) V 8ttGo2 (^<p + ^ip*) (1.7)

ßV r)2V fi2V
6<p" + 2hS(p' + k26<p + 40V - 2a2^^ + ^^0^ + «'^^^ °' (L8)

where ip is the Bardeen potential, h a /a, 6ip is the gauge invariant quantity corresponding
to ö(f) and prime means derivation with respect to the conformai time, r\.

Since the matter action is U(l)-globally invariant we get the conservation with respect to
the conformai time of the bosonic charge

3 =Ì|-(*•>-*>*). (1.9)

It should be noticed that the first order terms are entirely determined by eqs.(1.5)-(1.6),
eq.(1.8) and their complex conjugate. The background solution is established by eq.(1.2),
eq.(1.4) and their complex conjugate.

2 The background
We will only consider here the case where m ^ 0. For a complete discussion of the

background see Ref. [3]. The only singular point not lying at infinity of the phase space
is the coordinate origin. This singular point is an asymptotically stable winding point. It
correspond to the oscillatory phase of the complex scalar field.

In order to find the singular points lying at infinity we have to perform a transformation
which maps them on the boundary of a unit three-sphere. We extend the phase space to the

boundary to analyze their behavior. It turns out that, whatever the value of A is, there is a
line of singular points lying at infinity which meet the criteria of inflation. For A 0, the

asymtotical behavior of the scalar field and the Hubble parameter near line of singular points
is given by

^e^, H=^, (2.1)
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for t —> — oo. Setting $30 0, we recover the result found in Ref.[4]. Similarly, for the case
A ^ 0, we have

A
¥> W^30 exp (-2MM/^ i (2.2)

where t -» —00 and (fo is a negative integration constant. Using eq.(1.2), one gets the asymptotic

behavior of the Hubble parameter. We see that the above given asymptotic solutions
correspond to outgoing séparatrices in phase space. The fact that along these séparatrices
the phase of tp remains constant is important and shows that inflation is essentially driven
by one component of the field. Notice that this conclusion is also valid for the massless case.

3 Perturbation during inflation
We will consider the long wavelength and the short wavelength limits separately. To solve

the Einstein equations, we first define the complex valued function U(n) as the solution of
the following system of differential equations

if + hU -4wG(j>*'6ip, (3.1)

U" + 2 (h - ^-r j if + U2 + 2h' - 2h^-r j (7 0. (3.2)

To simplify the notation we omit to write the explicit k dependence on U. As long as

10* Isi I'M* one easily sees that the sum (U + U*) fulfills the two Einstein eqs.(1.5)-(1.6) and

thus can be identified with ip. Setting U 4-Jii g -^ and using the background equations,

eq.(3.2) can be rewritten as

u + k2u + i&-*j)(»'-«)-97 u 0. (3.3)

By solving this last equation we obtain ip and Sip. In order to solve some problems of the
standard cosmological model (e.g. the flatness problem a sufficiently long inflationary
stage is needed. Hence, inflation starts with ß close to a constant. Writing f> \è\ elû, we
get from eq.(1.9)

a2|0|V=S, (3.4)

where E is the constant bosonic charge. On the separatrix, where inflation occurs, we have,
whatever the values of m and A are, that a2|0| is growing exponentially. From eq.(3.4) we
see that, immediately after the beginning of inflation, ß' can be taken to be zero within first
order approximation. Thus, d will be constant as long as inflation lasts. As à consequence
eq.(3.3), reduces to

u" A k2u - —u 0. (3.5)
9
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Since during inflation, a?H » g"/g, we get immediately for wavelength perturbations smaller
than the Hubble radius that the dominant terms of ip and 5tp are given by [5, 6]

ip 2Re <j> 7i cos k J — j + 72 sin f k j — j j (3.6)

SV-- T~n~ [72 cos(fc?7) - j* sm(kn)}, (3.7)
47TG a

where Re denotes the real part and 71,72 are complex integration constants. The slow-

rolling approximation, required for having a sufficiently long inflationary stage, leads to a

slowly variation of the mean value of ip. The behavior of Sep is governed by the I/o factor,
which decreases rapidly. It follows, as expected, that the short wavelength fluctuations of the
scalar field are smeared out.

For fc <C g /g—the long wavelength perturbations— eq.(3.5) can also be solved. Hence,

we obtain for the dominant terms

0: 2Re(k)[l-^fadt]c-2Re(k)§-2, Stpc-^. (3.8)

with fc2 and fc fc2e~2"'/87rG being complex integration constants. We consider an initial
perturbation with wavelength inside the Hubble radius, which will be outside it at the end

of inflation. There are wavelengths that fulfill these conditions. At the end of inflation, the
evolution of the gauge invariant metric potential is given by eq.(3.8). Later, when the universe
is dominated by relativistic particles, the scale factor scales as a oc f. Hence, the Hubble
radius increases more rapidly than the fixed comoving wavelength. The metric perturbation
can re-enter inside the Hubble radius and induce fluctuations on the ordinary matter. At
Hubble radius crossing, using eq.(3.8), the metric perturbation is given by

ip 2Re (fc) —!—-, (3.9)

During the inflationary phase the behavior of the perturbations is similar to the one of the
real scalar field. This is not surprising, since along the séparatrices the phase of the complex
scalar field remains constant and thus inflation is essentially driven by one component of the
field.
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