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Relativistic Maclaurin Discs and Bifurcations

By Wilhelm Kley
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Abstract. Sequences of rotating relativistic discs with internal two-dimensional pressure have

been constructed. It is shown that in weaker relativistic configurations the sequences undergo
a bifurcation from a disc to a ring structure, while in stronger relativistic cases the sequences

terminate at the mass-shed limit where gravitational forces are exactly balanced by centrifugal
forces.

1 Introduction

Relativistic discs may play an important role during the process of galaxy formation in
the early universe. In addition, the final state of a close binary system, consisting of two
neutron stars just after coalescence, can be described as a highly flattened disc-like structure.
Relativistic discs with zero internal pressure have been studied previously [1] and recently an

analytical solution has been presented [2]. In the case of non-vanishing internal pressure the
bifurcation process has been studied recently in the Newtonian limit [3]. This work extends
the analysis of relativistic discs with zero pressure and the Newtonian calculations including
pressure.

We have constructed simple models of self-gravitating discs which are infinitesimally
thin, having zero vertical extent. A constant angular velocity Q, has been assumed. We use

a cylindrical coordinate system (p, z, tp, t) where the disc is located in the equatorial plane
(z 0). The line element is written in the form used in [1]

ds2 e2ß (dp2 + dz2) + p2B2e-2»(dip - uidt)2 - e2vdt2, (1.1)
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which describes axisymmetric, rotating and stationary configurations in general relativity.
Four metric functions (p, v, B, and ui) which depend only on the coordinates p and z have to
be determined. For the energy-momentum tensor Tab we use the expression for an ideal gas
where the pressure acts only in the equatorial plane. The vacuum Einstein equations Gab 0

yield four second order partial differential equations for the four metric potentials, see [1].

Flat relativistic discs can indeed be described by the vacuum Einstein equations, where the
surface mass and pressure distributions create just the jump conditions for the derivatives of
the metric potentials in the equatorial plane. These jump conditions are obtained by vertical
integration of the Einstein equations [1]. Two different equations of state relating surface

density with pressure were used.

PP Ke}, (1.2)

where pp and ap denote the proper values of the surface pressure and total mass energy
density and, in analogy to the three-dimensional case, we use the isentropic relations:

pp Kal (y-l)al. (1.3)

Here a0 denotes the proper rest mass density, Oi the proper internal energy density. K is

constant and the adiabatic exponent 7 is set to 3, in both cases. In these cases there exists

an analytic disc solution in the Newtonian limit, where 0 and K are related by

K/Kmax 1 - (0/f2c)2, (1.4)

where Kmax is the maximum possible value of K which is taken for zero rotation, and f2c is

the maximum rotation rate in the case of a pressure-less disc of dust.

The partial differential equations are solved using numerical methods. To properly treat
the boundary conditions at large distances from the disc, new coordinates u p/(p+a),v
z/(z + a) were used, where infinity has been transformed onto a finite distance, where

a denotes the disc radius (normalised to 1). To obtain a numerical solution, the set of
partial differential equations are discretised on a grid of typically 128 x 128 grid cells. The
resulting matrix equations are solved by the successive over relaxation method. The jump
conditions of the potentials in the disc region and the radial hydrostatic equation are iterated
simultaneously with the matrix iterations. The numerically generated solutions where tested

on the known dust disc solution [2]. In the case with internal pressure the bifurcation
diagramm of the limiting Newtonian case [3] was reproduced accurately.

2 Results

The non-rotating discs with f2 0, which are supported purely by the pressure have a
maximum mass, similar to stars (Fig. la). The dashed line refers to the first equation
of state (1.2) and the solid line to (1.3). For higher relativistic cases the surface density
is concentrated more and more towards the centre, terminating finally into a black hole
configuration.
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Figure 1: a) The gravitational mass of the disc as a function of the central redshift z in the
case of zero rotation for two different equations of state, b) The pressure constant K versus
angular velocity Çl given in units of the angular velocity of the dust disc Çlc. Sequences
for different values of the central redshift (solid z 0.025, long-dashed z 0.05, dashed

z 1.89) are shown. The dotted line refers to the Newtonian Maclaurin disc. f2 0 refers
to purely pressure supported discs having K
dust disc.

Kmax- Çl Çlc implies K=0 and refers to the

Rotating discs were studied for the second equation of state only (1.3), and the results are
displayed in Fig. lb. Weaker relativistic discs (solid line) follow the Newtonian curve closely
and bifurcate continuously into a ring-like structure at Çl/Çlc « 0.84. For intermediate central
redshifts (long-dashed line), the discs and rings coexist with no apparent connection between
them. Stronger relativistic (short-dashed line) discs terminate in a mass shed limit, where

gravity is balanced exactly by centrifugal forces. It should be noted that the angular velocity
reached in these stronger relativistic cases exceeds the value of the pressure-free case Çl Çlc

for the same central redshift. This is caused by the non-linearity of the Einstein-equations.

In Fig. 2 an enlargement of the bifurcation region is displayed. The ring bifurcates
smoothly from the disc solution through a sequence of dumb-bell shaped density distributions
(line 2 in Fig. 2b). At point 3 the density in the centre has reached zero, and the ring
structures begin (line 3 and 4). The solid line in Fig. 2b is given approximately by the

Newtonian relation a(r) Jl — (r/a)2. With increasing inner ring radius the maximum
surface density increases (Fig. 2b), and the ring sequence terminates eventually into a ring
with zero radial extent.
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Figure 2: a) Enlargement of Fig. lb displaying in detail the bifurcation from the disc to
the ring configuration. The dotted line refers to the Newtonian disc solution. The solid line
refers to the disc solution which turns into a ring struture (dashed line) at point (3). b) Plot
of the surface density distribution at the locations marked in a).

Numerically, it was not possible to find the connection to the pressure-free dust case
which is known to exist in the Newtonian case (dotted line). Even in the purely Newtonian
calculations [3] this could not be achieved. This may be related to the fact, that the dust
disc is (at least in the Newtonian case) dynamically unstable. The developed method can
be extended relatively easily to the three-dimensional case and the study of bifurcations for
extended objects may be possible.
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