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Anisotropies in the Cosmic Microwave Background:
Theoretical Foundations

By Ruth Dürrer

Département de Physique Théorique, Université de Geneève,
24, quai E. Ansermet, CH-1211 Genève 4

Abstract. The analysis of anisotropies in the cosmic microwave background (CMB) has become

an extremely valuable tool for cosmology. We even have hopes that planned CMB anisotropy
experiments may revolutionize cosmology. Together with determinations of the CMB spectrum,
they represent the first cosmological precision measurements. This is illustrated in the talk by
Anthony Lasenby. The value of CMB anisotropies lies to a big part in the simplicity of the theoretical

analysis. Fluctuations in the CMB can be determined almost fully within linear cosmological
perturbations theory and are not severely influenced by complicated nonlinear physics.

In this contribution the different physical processes causing or influencing anisotropies in the
CMB are discussed. The geometry perturbations at and after last scattering, the acoustic oscillations

in the baryon-photon-plasma prior to recombination, and the diffusion damping during the

process of recombination.

The perturbations due to the fluctuating gravitational field, the so called Sachs-Wolfe
contribution, is described in a very general form using the Weyl tensor of the perturbed geometry.

1 Introduction

The formation of cosmological structure in the universe, inhomogeneities in the matter
distribution like quasars at redshifts up to z ~ 5, galaxies, clusters, super clusters, voids and
walls, is an outstanding basically unsolved problem within the standard model of cosmology.

We assume, that the observed inhomogeneities formed from small initial fluctuations
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by gravitational clustering.

At first sight it seems obvious that small density enhancements can grow sufficiently
rapidly by gravitational instability. But global expansion of the universe and radiation
pressure counteract gravity, so that, e.g., in the case of a radiation dominated, expanding
universe no density inhomogeneities can grow significantly. Even in a universe dominated
by pressure-less matter, cosmic dust, growth of density perturbations is strongly reduced by
the expansion of the universe.

Furthermore, we know that the universe was extremely homogeneous and isotropic at
early times. This follows from the isotropy of the 3K Cosmic Microwave Background (CMB),
which represents a relic of the plasma of baryons, electrons and radiation at times before

protons and electrons combined to neutral hydrogen. After a long series of upper bounds,
measurements with the DMR instrument aboard the COsmic Background Explorer satellite
(COBE) have finally established anisotropies in this radiation [1] at the level of

(T(n)~2T(n'))2\ ~ IO"10 on angular scales 7° < 9 < 90°
/ (n-n' =cos8)

Such an angle independent spectrum of fluctuations on large angular scales is called
Harrison Zel'dovich spectrum [2], It is defined by yielding constant mass fluctuations on
horizon scales at all time, i.e., if ln(t) denotes the expansion scale at time t,

((AM/M)2(X lH)) const. independent of time.

The COBE result, the observed spectrum and amplitude of fluctuations, strongly support
the gravitational instability picture.

Presently, there exist two main classes of models which predict a Harrison-Zel'dovich
spectrum of primordial fluctuations: In the first class, quantum fluctuations expand to super
Hubble scales during a period of inflationary expansion in the very early universe and 'freeze
in' as classical fluctuations in energy density and geometry [3] (see also the contribution by
V. Mukhanov). In the second class, a phase transition in the early universe, at a temperature
of about 1016GeV leads to topological defects which induce perturbations in the geometry
and in the matter content of the universe [4], Both classes of models are in basic agreement
with the COBE findings, but differ in their prediction of anisotropies on smaller angular
scales.

On smaller angular scales the observational situation is at present somewhat confusing
and contradictory [5, 6], but many anisotropies have been measured with a maximum of
about AT/T « (3 ± 2) x 10~5 at angular scale 0 « (1 ± 0.5)°. There is justified hope,
that the experiments planned and under way will improve this situation within the next few

years (see contribution by A. Lasenby) In Fig. 1, the experimental situation as of spring '96
is presented.

In this paper we outline a formal derivation of general formulas which can be used to
calculate the CMB anisotropies in a given cosmological model. Since we have the chance
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Figure 1 : The corresponding quadrupole amplitude Qfiat is shown versus the corresponding spherical

harmonic index L The amplitude Q/iat(t) corresponds roughly to the temperature fluctuation
on the angular scale 8 ~ ir/L The solid line indicates the predictions from a standard cold dark
matter model. (Figure taken from ref. [5]).

to address a community of relativists, we make full use of the relativistic formulation of the
problem. In Section 2 we derive Liouville's equation for massless particles in a perturbed
Friedmann universe. In Section 3 we discuss the effects of non-relativistic Compton scattering
prior to decoupling. This fixes the initial conditions for the solution to the Liouville equation
and leads to a simple approximation of the effect of collisional damping. In the next Section
we illustrate our results with a few simple examples. Finally, we summarize our conclusions.

Notation: We denote conformai time by t. Greek indices run from 0 to 3, Latin indices

run from 1 to 3. The metric signature is chosen (—h ++). The Friedmann metric is thus
given by ds2 a2(t)(—dt2+%jdx*dx:'), where 7 denotes the metric of a 3-space with constant
curvature K. Three dimensional vectors are denoted by bold face symbols.
We set h c kBoitzmann 1 throughout.
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2 The Liouville equation for massless particles

2.1 Generalities

Collision-less particles are described by their one particle distribution function which lives

on the seven dimensional phase space

Vm {(x,p) € TM\g(x)(p,p) -m2}

Here A4 denotes the spacetime manifold and TM its tangent space. The fact that collisionless

particles move on geodesies translates to the Liouville equation for the one particle
distribution function, /. The Liouville equation reads [7]

Xg(f) 0 (2.1)

In a tetrad basis (e^)3=0 of .A/f, the vector field Xg on Vm is given by (see, e.g., [7])

Xg (jAeß-^ß(p)pß^-), (2.2)

where lu" are the connection 1-forms of (M,g) in the basis eß, and we have chosen the basis

(eß)3ß=Q and (—)3=1 on TVm p=p%.

We now show that for massless particles and conformally related metrics,

2-
9pv ^ 9tiv

(Xgf)(x,p) =0 is equivalent to (Xgf)(x,ap) 0 (2.3)

This is easily seen if we write Xg in a coordinate basis:

x9 bßdß-raßb"b^,

with

^aß 29lß(9aß,ßAgßß,a-gaß,ß) ¦

The variables bß are the components of the momentum p with respect to the coordinate basis:

p p% bßdß

If (eß) is a tetrad with respect to g, then eß aeß is a tetrad basis for g. Therefore, the
coordinates of of ap apßeß a2pßeß a2bßdß, with respect to the basis dß on (A4, g) are

given by a2bß. In the coordinate basis thus our statement Eq. (2.3) follows, if we can show
that

(AV)(z",a2&')=0 « (Xgf)(xß,¥) 0 (2.4)
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Setting v ap vßeß wßdß, we have vß apß and wß a2bß. Using p2 0, we obtain
the following relation for the Christoffel symbols of g and g:

2a,a ara0babß raßbabß + ^bab'.

For this step it is crucial that the particles are massless! For massive particles the statement
is of course not true. Inserting this result into the Liouville equation we find

a2Xgf Wß(dßf\b - 2^§) - f><V^ (2.5)

where dßf\b denotes the derivative of / w.r.t. xß at constant (bl). Using

dßf\b dßf\w + 2^b^,
we see, that the braces in Eq. (2.5) just correspond to «9^/1^. Therefore,

a2Xgf(x,p) wßdßf\w - raßwawß^- X-9f(x, ap)

which proves our claim. This statement is just a precise way of expressing conformai invariance

of massless particles.

2.2 Free, massless particles in a perturbed Friedmann universe

We now apply this general framework to the case of a perturbed Friedmann universe. For

simplicity, we restrict our analysis to the case K i.e., fi 1. The metric of a perturbed
Friedmann universe with density parameter fi 1 is given by ds2 gßvdxßdxv with

gß» a2(rißv + hßV) a2gßV (2.6)

where (r]ßv) diag(—, +, A, +) is the flat Minkowski metric and (hßv) is a small perturbation,
IVI < L

From Eq. (2.3), we conclude that the Liouville equation in a perturbed Friedmann
universe is equivalent to the Liouville equation in perturbed Minkowski space,

(Xsf)(x,v) 0, (2.7)

with v vßeß apßeß.1

We now want to derive a linear perturbation equation for Eq. (2.7). If eß is a tetrad
in Minkowski space, eß eß + \h"ëv is a tetrad w.r.t the perturbed geometry g. For

^ote that also Friedmann universes with non vanishing spatial curvature, K / 0, are conformally flat
and thus this procedure can also be applied for K ^ 0. Of course, in this case the conformai factor a? is

no longer just the scale factor but depends on position. A coordinate transformation which transforms the
metric of K ^ 0 Friedmann universes into a conformally flat form can be found, e.g., in [8].
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(x,vßeß) e Po, thus, (x, vßeß) € Po- Here Po denotes the zero mass one particle phase space
in Minkowski space and P0 is the phase space with respect to g, perturbed Minkowski space.
We define the perturbation, F, of the distribution function by

f(x, vßeß) f(x, vßeß) + Fix, vßtß) (2.8)

Liouville's equation for / then leads to a perturbation equation for F. We choose the natural
tetrad

eß dß- -hvßdv

with the corresponding basis of 1-forms

9ß dx" + \hßdxv

Inserting this into the first structure equation, d6ß —uiß „ A dx"', one finds

wßv — -(hß\,v —hv\,ß )9

Using the background Liouville equation, namely that / is only a function of v ap, we
obtain the perturbation equation

(of + n'dt)F --[iko - /loo,. K + (Kj - hj,i )n'nJ}j-

where we have set Vi vim, with v2 Hf=1(i't)2, i-e., n gives the momentum direction of
the particle. Let us parameterize the perturbations of the metric by

(Kv) [ Bi 2HLStJ + 2Hl} ' (2-9)

with H\ — 0. Inserting this above we obtain

(dt + n%)F -[HL + (A,t +^Bt)nl + (Äö - ^tJ)n'n>£ (2.10)

From Eq. (2.10) we see that the perturbation in the distribution function in each spectral
band is proportional to d^. This shows once more that gravity is achromatic. We thus do

not loose any information if we integrate this equation over photon energies. We define

m —^ I Fv3dv
Pr
— f
}ra4 J

4m is the fractional perturbation of the brightness t,

i a~4 f fv3dv

Setting t(n,x) t(T(n,x)), one obtains that i (7r/60)T4(n,x). Hence, m corresponds to
the fractional perturbation in the temperature,

T(n,x)=T(l + m(n,x)) (2.11)
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Another derivation of Eq. (2.11) is given in [10]. According to Eq. (2.10), the v dependence
of F is of the form v^. Using now

J -Lv4dv -4 j fv3dvdÇl -4pra4 (2.12)

we find

F(xß,n',v) -m(xß,nl)v^-
dv

This shows that m is indeed the quantity which is measured in a CMB anisotropy experiment,
where the spectral information is used to verify that the spectrum of perturbations is the
derivative of a blackbody spectrum. Of course, in a real experiment located at a fixed
position in the Universe, the monopole and dipole contributions to m cannot be measured.

They cannot be distinguished from a background component and from a dipole due to our
peculiar motion w.r.t. the CMB radiation.

Multiplying Eq. (2.10) with v3 and integrating over v, we obtain the equation of motion
for m

dtm + n'dim HL + (An A^ÊJn' + (Htj - ^Bhj )nV (2.13)

It is well known that the equation of motion for photons only couples to the Weyl part
of the curvature (null geodesies are conformally invariant). However, the r.h.s. of Eq. (2.13)
is given by first derivatives of the metric only which could at best represent integrals of the
Weyl tensor. To obtain a local, non integral equation, we thus rewrite Eq. (2.13) in terms
of V2m. It turns out, that the most suitable variable is however not V2m but x, which is

defined by

x v2m - (V2HL - l-H» - \(V2BZ - 30Vy)ns

where try - - (Buj +Bhi + - Sr] Bf A Hij.

Note that x and V2m only differ by the monopole contribution, V2Hl — (l/2)i?y,y and
the dipole term, (l/2)(V2ßi — Zd^a^n1. The higher multipoles of x and V2m agree. An
observer at fixed position and time cannot distinguish a monopole contribution from an
isotropic background and a dipole contribution from a peculiar motion. Only the higher
multipoles, I > 2 contain information about temperature anisotropies. For a fixed observer
therefore, we can identify V~2x with ST/T.

In terms of metric perturbations, the electric and magnetic part of the Weyl tensor are

given by (see, e.g. [11, 10])

ei3 ^(A-H^-àij-V^-^HtSij + H^+H^i] (2.14)

Bij —~A.eHmajm,iAejimaim,i) (2.15)

with Ay did, - (l/3)<5yV2
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Explicitly working out (dt+n'di)x using Eq. (2.13), yields after some algebra the equation
of motion for x'-

(dt A n%)x ZrìtySl3 + nkn^klldiBl3 S(t, x, n) (2.16)

where eku is the totally antisymmetric tensor in three dimensions with ei23 — 1. The spatial
indices in this equation are raised and lowered with <5y and thus index positions are irrelevant.
Double indices are summed over irrespective of their positions.

Eq. (2.16) is the main result of this paper. We now discuss it, rewrite it in integral form
and specify initial conditions for adiabatic scalar perturbations with or without seeds.

In Eq. (2.16) the contribution from the electric part of the Weyl tensor is a divergence,
and therefore does not contain tensor perturbations. On the other hand, scalar perturbations
do not induce a magnetic gravitational field. The second contribution to the source term
in Eq. (2.16) thus represents a combination of vector and tensor perturbations. If vector
perturbations are negligible (like, e.g., in models where initial fluctuations are generated
during an epoch of inflation), the two terms on the r.h.s of Eq. (2.16) yield thus a split into
scalar and tensor perturbations which is local.

Since the Weyl tensor of Friedmann Lemaître universes vanishes, the r.h.s. of Eq. (2.16)
is manifestly gauge invariant (this is the so called Stewart-Walker lemma [12]). Hence also
the variable x is gauge invariant. Another proof of the gauge invariance of x-, discussing the
behavior of F under infinitesimal coordinate transformations is presented in [10].

The general solution of Eq. (2.16) is given by

x(t,x,n)= f S(t',x + (t'-t)n,n)dt' + x(t„x + (tt - t)n,n) (2.17)
Jt,

where S is the source term on the r.h.s. of Eq. (2.16).

In Appendix A we derive the relations between the geometric source term S and the

energy momentum tensor in a perturbed Friedmann universe.

3 The collision term

In order for Eq. (2.17) to provide a useful solution, we need to determine the correct initial
conditions, xi^dec), at the moment of decoupling of matter and radiation. Before
recombination, photons, electrons and baryons form a tightly coupled plasma, and thus x can
not develop higher moments in n. The main collision process is non-relativistic Compton
scattering of electrons and photons. The only non vanishing moments in the distribution
function before decoupling are the zeroth, i.e., the energy density, and the first, the energy
flow. We therefore set

x(W) V2Q/jW(t,ec)-n-V(r)(W)) (3.1)
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where

D^it^) V"2 (ì j x(tdec)aTL) (3.2)

^-4HL + 2V~2iH\f) and

V^)(W) -V~2(~ J xiUecW dÜ^j (3.3)

-T0(r)7(^(r)) + ^-^v-2(ôvy).
£>(r' and V^ are gauge invariant density and velocity perturbation variables [9, 10].

In the tight coupling or fluid limit, the initial conditions can also be obtained from the
collision term. Setting A4 V~2x one finds the following expression for the collision integral
[10],

C[M] aaTne[^Dgr) -M + n- V{b) + ^-n^M^] (3.4)

The last term is due to the anisotropy of the cross section for non-relativistic Compton
scattering, with

Ml] ^- jirin3 - \si3)MaAl

M is a gauge invariant perturbation variable for the distribution function of photons. V^b'

denotes the baryon velocity field, rr-r and ne are the Thomson cross section and the free
electron density respectively. To make contact with other literature, we note that A4 0+$,
where O is the perturbation variable describing the CMB anisotropies defined in [13] and
$ denotes a Bardeen potential (see Section 4). Since M and 6 differ only by a monopole
term, they give rise to the same spectrum of temperature anisotropies for £ > 1. M satisfies
the Boltzmann equation

(dt + n%)M V~2S + C[M] (3.5)

where S is the gravitational source term given in Eq. (2.16). In the tight coupling limit,
tx (aerane)-1 <K t, we may, to lowest order in (tr/t), just set the square bracket on the
right hand side of Eq. (3.4) equal to zero. Together with Eq. (3.3) this yields

y-M ytr)

D« iv.y« ^), (3.6)

Neglecting gravitational effects, the right hand side of Boltzmann's equation then leads to

where the last equal sign is due to baryon number conservation. In other words, photons and
baryons are adiabatically coupled. Expanding Eq. (3.5) one order higher in tx, one obtains
Silk damping [14], the damping of radiation perturbations due to imperfect coupling.

Let us estimate this damping by neglecting gravitational effects and the time dependence
of the coefficients in the Boltzmann equation (3.5) since we are interested in time scales

tx <S t. We can then look for solutions of the form

V^ oc A4 oc exp(i(fcx — wt))
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We also neglect the angular dependence of the collision term. Solving Eq. (3.5) for A4, we
then find

(l/4)D^ + ik • nVW / xA4
y ' ' g — 3.7

1 - itT(w - fc • n) v '

The collisions also induce a drag force in the equation of motion of the baryons which is

given by

F ^ePr [C[M]n.dù 4Pr
(V(r) _ -fcT/W)

x y 3ty
With this force, the baryon equation of motion becomes

kwV<-b) + i(à/a)W{b) ikV - F/pb

To lowest order in t-r/t and ktx, this leads to the following correction to the adiabatic
condition Vm V(r):

trukV® —(ikV^ - V(r)) (3.8)
àPb

From Eq. (3.6) we obtain the relation fe • V^r' —(3/4)ujDgr^ to lowest order. Using this
approximation, we find, after multiplying Eq. (3.8) with fc,

with R 3pb/pr- The densities pb and pr denote the baryon and radiation densities respectively.

Inserting this result in Eq. (3.7) leads to

-, | 3/xqj/fc

M=l-^l)W4> (3'10)

where we have set p fc • n/k. From this result, which is valid on time scales shorter
than the expansion time (length scales smaller than the horizon), we can derive a dispersion
relation w(k). In lowest order uitx we obtain

w uio — i^ with (3-11)

*„=
*

and 7 ^/2 + 'f+ 1}. (3.12)
^3(1 + R) 6(Ä + 1)2

At recombination R ~ 0.1 so that 7 ~ 2k2tx/15.

We have thus found that, due to diffusion damping, the photon perturbations thus
undergo an exponential decay which can be approximated by

I A41 oc exp(-2A:2M/15) on scales t » 1/fc » tT (3.13)

In general, the temporal evolution of radiation perturbations can be split into three
regimes: Before recombination, t <§C t^ec the evolution of photons can be determined in the
fluid limit. After recombination, the free Liouville equation is valid. Only during recombination

the full Boltzmann equation has to be considered, but also there collisional damping
can be reasonable well approximated by an exponential damping envelope [15], which is a
somewhat sophisticated version of (3.13).
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4 Example: Adiabatic scalar perturbations

We now want to discuss Eq. (2.16) with initial conditions given by Eq. (3.1) in some examples.

Perturbations are called 'scalar' if all 3 dimensional tensors (tensors w.r.t their spatial
components on hyper-surfaces of constant time) can be obtained as derivatives of scalar
potentials.

Scalar perturbations of the geometry can be described by two gauge invariant variables,
the Bardeen potentials [16] $ and ty. The variable \f is the relativistic analog of the Newtonian

potential. In the Newtonian limit, —$ \&= the Newtonian gravitational potential. In
the relativistic situation, $ is better interpreted as the perturbation in the scalar curvature
on the hyper-surfaces of constant time [17]. In terms of the Bardeen potentials, the electric
and magnetic components of the Weyl tensor are given by [11]

£tJ ÌAy($ - *) 0y O, (4.1)

where Ay denotes the traceless part of the second derivative, Ay didj — |<5y V2. The
Liouville equation, (2.16) then reduces to

(dt + n'd,)M n'di(<è - *) (4.2)

With the initial conditions given in Eq. (3.1) we find the solution

%-(t0,Xo,n) M(t0,x0,n) [V)+ «'a,F<l» + *-$](tto,ïfa)- f° (Ò-Ì>)(t,x(t))dt,
1 4 Jtdec

(4.3)
where x<iec xo — ito — t<iec)n and correspondingly x(f) Xq — (to — t)n.

We now want to replace the fluid variables, Dgr) and V^b\ wherever possible, by perturbations

in the geometry. To this goal, let us first consider the general situation, when one part
of the geometry perturbation is due to perturbations in the cosmic matter components and
another part is due to some type of seeds, which do not contribute to the background energy
and pressure. The Bardeen potentials can then be split into contributions from matter and
seeds:

$ $m + $s * $m + *s (4.4)

To proceed further, we must assume a relation between the perturbations in the total energy
density and energy flow, Dg and V, and the corresponding perturbations in the photon
component. The most natural assumption here is that perturbations are adiabatic, i.e., that

£>(r7(l + wr) Dg/(1 + w) and V(ò) V(r) V

where w p/p denotes the enthalpy, i.e. wr 1/3. For wr / w this condition can only
be maintained on super-horizon scales or for tightly coupled fluids. For decoupled fluid
components, the different equations of state lead to a violation of this initial condition on
sub-horizon scales.
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In order to use the perturbed Einstein equations to replace Dg and V by geometric
perturbations we define yet another density perturbation variable,

D Dg + 3(1 + w)-V - 3(1 A w)$ and

D(r) D(r) + 4\(r) _ 4$ _

y a

The matter perturbations D and V determine the matter part of the Bardeen potentials via
the perturbed Einstein equations (see, e.g. [10]). The following relation between $m and D
can also be obtained using Eqs. (4.1) and (A16) in the absence of seeds.

D ~\{~a) 2^rn~ikt)2<S>m and

^m-$ 3(à\2 )K
a I \aJ

The term D rsp. D^f is much smaller than the Bardeen potentials on super-horizon scales

and it starts to dominate on sub-horizon scales, tì » 1, For this term therefore, the
adiabatic relation is not useful and we should not replace D^ by öttt^jD. The same

holds for 9,-VW which is of the order of kt$m. However, (à/a)V^ is of the same order
of magnitude as the Bardeen potentials and thus mainly relevant on super horizon scales.

There the adiabatic condition makes sense and we may replace (à/a)V by its expression
in terms geometric perturbations. Keeping only D^ and 9,-V^ in terms of photon fluid
variables, Eq. (4.3) becomes

%-(x0,t0,n) [tt. + l±|^gro+ 2 fa\ '$ +lD(r) + nifliV(.)]( t j
1 3 + 3w 3(1 + w) \aj 4

*°(*-*)(*(i),i). (4.5)
''dec

L

This is the most general result for adiabatic scalar perturbations in the photon temperature.

It contains geometric perturbations, acoustic oscillations prior to recombination and
the Doppler term. Silk damping, which is relevant on very small angular scales (see the
contribution by [6]) is neglected, i.e., we assume 'instantaneous recombination'. Eq. (4.5) is
valid for all types of matter models, with or without cosmological constant and/or spatial
curvature (we just assumed that the latter is negligible at the last scattering surface, which
is clearly required by observational constraints). The first two terms in the square bracket
are usually called the ordinary Sachs-Wolfe contribution. The integral is the 'integrated
Sachs-Wolfe effect'. The third and fourth term in the square bracket describe the acoustic
Doppler oscillations respectively. On super horizon scales, kt <C 1, they can be neglected.

To make contact with the formula usually found in textbooks, we finally constrain
ourselves to a universe dominated by cold dark matter (CDM), i.e., w 0 without any seed

perturbations. In this case *s $s 0 and it is easy to show that <£ —$ and that
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$ \P 0 (see, e.g., [10]). Our results then simplifies on super-horizon scales, kt <C 1, to
the well-known relation of Sachs and Wolfe [18]

— =-\H(x0- t0n, tdec (4.6)
1 J sw 6

5 Conclusions

We have derived all the basic ingredients to determine the temperature fluctuations in the
CMB. Since the fluctuations are so small, they can be calculated fully within linear
cosmological perturbation theory. Note however that density perturbations along the line of
sight to the last scattering surface might be large, and thus the Bardeen potentials inside
the Sachs Wolfe integral might have to be calculated within non-linear Newtonian gravity.
But the Bardeen potentials themselves remain small (as long as the photons never come
close to black holes) such that Eq. (4.5) remains valid. In this way, even a CDM model can
lead to an integrated Sachs Wolfe effect which then is known under the name 'Rees Sciama
effect'. Furthermore, do to ultra violet radiation of the first objects formed by gravitational
collapse, the universe might become reionized and electrons and radiation become coupled
again. If this reionization happens early enough (z > 30) the subsequent collisions lead to
additional damping of anisotropies on angular scales up to about 5°. However, present CMB
anisotropy measurements do not support early reionization and the Rees Sciama effect is

probably very small. Apart from these effects due to non-linearities in the matter distribution,

which depend on the details of the structure formation process, CMB anisotropies can
be determined within linear perturbation theory.

This is one of the main reason, why observations of CMB anisotropies may provide
detailed information about the cosmological parameters (see contribution by A. Lasenby):
The main physics is linear and well known and the anisotropies can thus be calculated within
an accuracy of 1% or so. The detailed results do depend in several ways on the parameters
of the cosmological model which can thus be determined by comparing calculations with
observations.

There is however one caveat: If the perturbations are induced by seeds (e.g. topological

defects), the evolution of the seeds themselves is in general non-linear and complicated.
Therefore, much less accurate predictions have been made so far for models where
perturbations are induced by seeds (see, e.g., [19, 20, 21]). In this case, the observation of CMB
anisotropies might not help very much to constrain cosmological parameters, but it might
contain very interesting information about the seeds, which according to present understanding

originate from very high temperatures, T ~ 1016GeV. The CMB anisotropies might thus
bury some 'fossils' of the very early universe, of the physics at an energy scale which we can
never probe directly by accelerator experiments.
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A An equation of motion for the Weyl tensor

The Weyl tensor of a spacetime (A4, g) is defined by

C»\P « W., - 2<?[V<1 + \R9[%9v]p] (Al)

where [p...v] denotes anti-symmetrization in the indices p and v. The Weyl curvature has

the same symmetries as the Riemann curvature and it is traceless. In addition the Weyl
tensor is invariant under conformai transformations:

Cmp{g) C"mp(a2g)

(Careful: This equation only holds for the given index position.) In four dimensional space-
time, the Bianchi identities together with Einstein's equations yield equations of motion for
the Weyl curvature. In four dimensions, the Bianchi identities,

Rßv[ap;\] 0

are equivalent to [8]

Caßl6;6 Rf[a;ß] - -gl[aRß] (A2)
6

This together with Einstein's equations yields

Caßl6.s 87rG(T7[a;/i] _ ]-gl\aTß]) (A3)

where Tßv is the energy momentum tensor, T — T£.

Let us now choose some time-like unit vector field u, u2 —1. We then can decompose

any tensor field into longitudinal and transverse components with respect to u. We define

hßv gßv + ußuv,

the projection onto the subspace of tangent space normal to u. The decomposition of the
Weyl tensor yields its electric and magnetic contributions:

Sßv C^tiV (A4)

BßV \c^eux rftX \ (A5)

where rfßi0 denotes the totally antisymmetric 4 tensor with 770123 \f—~9- Due to symmetry
properties and the tracelessness of the Weyl curvature, E and B are symmetric and traceless,
and they fully determine the Weyl curvature. One easily checks that Sßu and BßV are also

conformally invariant. We now want to perform the corresponding decomposition for the

energy momentum tensor of some arbitrary type of seed, Tßv. We define

Ps

Ps

Tf)ußuv (A6)

\T$hr (A7)

ee -hfTJgu* q, -1-Toif) (A8)

ee h"hfT{af - hßvPs (A9)
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We then can write
ri? Psußuv + pshßv A qßuv + ußqv + rßv (AIO)

This is the most general decomposition of a symmetric second rank tensor. It is usually
interpreted as the energy momentum tensor of an imperfect fluid. In the frame of an observer

moving with four velocity u, ps is the energy density, ps is the isotropic pressure, q is the

energy flux, u ¦ q 0, and r is the tensor of anisotropic stresses, rßvhßv rßVuß 0.

We now want to focus on a perturbed Friedmann universe. We therefore consider a four
velocity field u which deviates only in first order from the Hubble flow: u (l/a)<9o+ first
order. Friedmann universes are conformally flat, and we require the seed to represent a
small perturbation on a universe dominated by radiation and cold dark matter (CDM). The
seed energy momentum tensor and the Weyl tensor are of thus of first order, and (up to
first order) their decomposition does not depend on the choice of the first order contribution
to u, they are gauge-invariant. But the decomposition of the dark matter depends on this
choice. Cold dark matter is a pressure-less perfect fluid We can thus choose u to denote the

energy flux of the dark matter, Tßu" —pcuß. Then the energy momentum tensor of the
dark matter has the simple decomposition

Tjg* Pcußuv (All)

With this choice, the Einstein equations Eq. (A3) linearized about an fi 1 Friedmann
background yield the following 'Maxwell equations' for E and B [22]:

i) Constraint equations

dlBl3 4rrGmßßvußq^ (A12)

d%j S^G(^a2pcD,J+^a2ps,}-^d'Tl3-^q3). (A13)

ii) Evolution equations

aBl3+aB,3-a2h(iari3)ßlSuß£ar-6 -4irGa2ha{yn3)!ißvußTaß>v (A14)

£y + -Sij + ah^ari3)ßj6u0Ba 7;é -4irG(aqi3 ri3 + fy + apcui3), (A15)

where (i...j) denotes symmetrization in the indices i and j. The symmetric traceless tensor
fields qßv and ußv are defined by

Qßv Q'w) - 7.hßvq ;A

ußu u(y\v) — ~^hßvu .^

In Eqs. (A14) and (A15) we have also used that for the dark matter perturbations only scalar

perturbations are relevant, vector perturbations decay quickly. Therefore m is a gradient
field, Ui U-i for some suitably chosen function U. Hence the vorticity of the vector field u
vanishes, U[ß.u] 0. With

Voijk aiel3k ps a~2T0So and q% -a"1^
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we obtain from Eq. (A13)

d'£l3 MG(\Pca2D,3 +l-ToSo,3 -^cVy + -TQS3) (A16)

In Eq. (A16) and the following equations summation over double indices is understood,
irrespective of their position.

To obtain the equation of motion for the magnetic part of the Weyl curvature we take
the time derivative of Eq. (A14), using u (l/a)d0 + border and r)oi3k a4ei3k. This leads

to

(aBij)" -a(cim^\£3)i + -£3)i],m -47rGeiro(i[r,-)l,m H—r3y,m]) (Al7)

where we have again used that u is a gradient field and thus terms like Ci3kui3,k vanish. We

now insert Eq. (A15) into the first square bracket above and replace product expressions of
the form Ci3keum and ti]ktimn with double and triple Kronecker deltas. Finally we replace
divergences of B with the help of Eq. (A12). After some algebra, one obtains

eim{i[£j)i + -£j)i],m -V Bi3 — 4irGelm(i[2aqi,mj) ATj)i,m —2Tj)hm] •

Inserting this into Eq. (A17) and using energy momentum conservation of the seed, we finally
find the equation of motion for B:

a-\aB)ij - V2/3y ZrrGS^ (A18)

with
«% =C|m(i[-ÎM,j)m+îj)|,m]. (A19)

Eq. (A18) is the linearized wave equation for the magnetic part of the Weyl tensor in an
expanding universe. A similar equation can also be derived for S.

Since dark matter just induces scalar perturbations and ßy is sourced by vector and
tensor perturbations only, it is independent of the dark matter fluctuations. Equations
Eqs. (A16) and (A18) connect the source terms in the Liouville equation of section 2, dl£i3
and Bij to the perturbations of the energy momentum tensor.
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