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Abstract. We build up and analyze the constrained cohomology set-up for the anti-BRS structure

of the Witten's topological Yang-Mills field theory. We also discuss a conjecture on the existence

of a novel class of topological observables arising within the context of the anti-BRS differential

algebra. The anti-BRS counterparts of the Witten's observables are then identifyed in terms of

the method of the spectral sequences.

1 Introduction

For one decade now, Witten's topological Yang-Mills field theory remains outstanding in

both domains of theoretical high-energy physics and algebraic geometry [1].

From a physical viewpoint, this class of models have been conjectured to describe

gravity in a rather unusual regime, the so-called topological phase, in which the metric

tensor would appear as an expectation value of a more fundamental set of quantum fields.

Moreover, due to the existence of a certain topological twist algorithm, the topological

theories display an intimate connection with N=2 supersymmetric gauge models which, in

turn, are known to possess a wide range of applications in both two- and four-dimensional

field theory (see e.g. [2]).

In mathematics, the topological field models of the Witten's type are also interesting

as an useful tool in the solution of thorny problems in intersection number theory. As a

matter of fact, these models were originally conceived to provide a lagrangian framework

for the evaluation of the Donaldson's polynomials in terms of specific field correlators

of certain topological observables. More specifically, it can be shown that to each

correlation function of that type, there corresponds some intersection number of homology

cycles belonging to the moduli space of the instantonic configurations of the gauge

potentials. Indeed, it is precisely because of the topological nature of the Witten's theory

that these correlators turn out to be integer numbers, allowing thus for such a remarkable

correspondence.
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Mainly for this last reason, several authors addressed the issue of providing an accurate

characterization framework for the aforementioned topological observables in terms of a

geometrical and (or) cohomological-algebraic formalism [3, 4, 5, 6, 7, 8, 9, 10]. Furthermore,

in a more recent effort, Delduc, Maggiore, Piguet and Wolf succeded in specifying

the topological observables in a fully BRS-algebraic context, by making use of the so-

called constrained cohomology set-up [11]. Roughly speaking, the Witten's observables

are seen to belong not to the ordinary functional space of the BRS cohomology classes,

but rather to the more restricted set of the gauge observables which remain invariant

under the action of the topological shift part of the BRS transformations.

On the other hand, the anti-BRS structure of the topological Yang-Mills field theories

has attracted a good deal of interest due, in part, to its complementary role with respect

to the better understood BRS symmetry transformations, as well as to the hope of

revealing itself as a further invariance of the theory [12, 13]. It turns out moreover that,

in order to be consistently implemented, the anti-BRS differential algebra demands the

introduction of extra fields to complete the Witten's original set of variables, entailing

thus a more complicated pattern of transformation laws. In fact, thanks to the uncommon

mixing of both gauge-free and gauge-fixing sectors, the anti-BRS differential algebra of

the topological theory may eventually tempt someone to enquire about the existence of a

novel class of topological observables. Actually, such a conjecture has been proposed by

Perry and Teo in ref.[12] and, in view of the cohomological techniques now at our disposal,

deserves a closer investigation.

This is the aim of the present letter: to identify all possible classes of topological

observables corresponding to the anti-BRS structure of the topological Yang-Mills field

theory. The method employed is the constrained cohomology technique of [11] adapted

to the case of the anti-BRS differential algebra. We shall then be able to give a precise -
and negative - answer to the conjecture of Perry and Teo: the pure anti-BRS observables

are essentially the barred counterparts of the BRS ones, despite of the presence of new

scalar field variables in the formalism.

The work is organized as follows: in Section 2 we describe the role of each field

variable of the theory, including the new ones introduced in [12]; we show afterwards

how to obtain the specific constrained cohomology set-up for the anti-BRS structure,

solving the respective cohomological problem by means of the by now standard method

of the spectral sequences; in Section 3 we interpret our results and present our concluding

remarks.
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2 The Anti-BRS Structure and its Cohomology

We begin our discussion by recalling the relevant field variables appearing in the set-up

introduced by Perry and Teo in ref. [12]. One introduces1 a one-form gauge connection

A, a couple of one-forms consisting of a topological ghost and its respective antighost (to

be regarded here as an anti-BRS partner with opposite ghost charge) (ip, ip), a pair of

zero-forms standing for the Faddeev-Popov ghost-antighost system (c, c) and a further

pair of zero-forms (tp, (p), assuming the role of gauge ghosts for the topological ghost

and its anti-BRS counterpart. We need moreover a set of Lagrange multiplier fields: the

one-form2 B (which eventually gives rise to the well-known two-form multiplier of the anti-

self-duality condition), the usual gauge-multiplier zero-form b and the zero-form f], the

multiplier of the covariant gauge-fixing condition upon the topological ghost. To complete

the anti-BRS framework consistently, Perry and Teo defined other two zero-forms: the

field3 b, which has to be understood as the barred partner of the gauge-multiplier, and r\,

the non-barred companion of the topological multiplier.
We attribute here a grading to each p-form which is the sum of its degree (or rank) plus

the ghost number of the corresponding component tensor. According to this attribution,

a p-form will be regarded as a commuting (resp. anticommuting) object provided its

grading is even (resp. odd), as may inferred from Table 1 below:

A i> c 9 Îj B c b V V b V

deg. 1 1 0 0 1 1 0 0 0 0 0 0

*, 0 1 1 2 -1 0 -1 0 -2 -1 0 1

gr. 0 e 0 e e 0 0 e e 0 e 0

Table 1: Degrees, ghost numbers and gradings (even or odd) of the p-form field variables.

It is a long standing fact that the gauge-fixed action functional of the topological

Yang-Mills field theory4 is left invariant by a set of infinitesimal field transformations
1 Unless otherwise stated in the course of the paper, we will work in a notation in which a generic

differential p-form ujp writes as:

u)p(x) i uv,...„p(z) dx^ A Adi"'

in D 4 Euclidean space dimensions. All the p-form fields employed here are Lie algebra valued.

2This form is named k in ref. [12]; we, however, use a capital letter to stress its one-form character.

3This scalar is called A by the authors of [12]; we interpret it as the Lagrange multiplier's partner.
4The topological action principle is assumed to be the same as the one obtained by Perry and Teo.
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described by a differential operator s, the BRS operator, which is nilpotent, i.e. s2 0

(see refs.[14, 15, 16]). Indeed, as explained in detail in [12], the BRS operation is a

symmetry of the model when the above introduced set of variables is required to vary as5:

sA VcAip,
sip [c, ip] + Vip,

sc= \{c, c} + tp,

sf [c, tp],
(1s

sip -B, sB 0,

sc b, sb 0,

sip fj, sfj 0,

sb rj, sn 0,

where the differential operator V is the graded covariant exterior derivative acting upon

the p-forms6:

Vu du) + [A, u>}, (2)

the commutator (resp. anticommutator) being understood whether the p-form u> is even

(resp. odd) with respect to the grading. Now, to obtain the full anti-BRS structure of the

theory, one defines a further infinitesimal operation s onto the field variables, possessing

the following properties:

{s, §} s2 0. (3)

As an immediate consequence of (3), the anti-BRS transformations will write as:

s A Vc + 7/J,

sip [c, ip] + Vtp,

sc= \{c, c} + (p,

s<f> [c, tp],

sip [c, ip] - [ip, c] + Vò + B,

sB {c, B} - [f b] - Vf?- [tp, Vc-r xp],

sc {c, c} — b + b,

sb= [c, b] -fj- [tp, c],

sip [c, tp] - [b, c] - n,

sn {c, 7]} + [6, 6] + {?), c} + [tp, \{c, c} A tp],

sb [c, b] - fj,

sfj {c, fj} + [<p, b].

5Apart from minor minus sign modifications, the BRS transformations presented here are essentially

the same as the ones employed in [12].

6The operator d is the usual exterior derivative with d dx^d^ and, as a consequence, with d2 0.



de Oliveira and Zerrouki 163

As a matter of fact, the anti-BRS transformation laws for the fields B and i] were not

supplied in [12]. We present them here for the first time and regard the full set of laws in

(4) above as the complete anti-BRS structure of the topological Yang-Mills field theory.

We are now ready to start our cohomology analysis along the lines envisioned by Delduc

et al. in ref.[11]. In that paper, a suitable global ghost (supplemented with a counting

operation) was introduced into the BRS differential algebra in order to rephrase an usual

cohomology problem into a constrained cohomology one. With this same purpose in mind,

we decompose the s operator at hand in terms of three new operators (5(oj, 5(i), -0(2))

as given below:

(5)s D,o) + ëDm A ê2D{'tß) A2),

where e is a bosonic parameter7. The counting operator is given accordingly by:

Af di'
The action of the three operators defined above is then found to be:

(6)

D{o)A Vc, D(l)A if, D{2)A 0,

5(0)T/S [c, ip], D(i)ip Vip, D{2)ip 0,

5(0)5= \{c, c}, 5(1,5=0, 5(2)5 cp,

D(o)<p= [c, ip], 5(i)^ 0, D(2)f> 0,

D(o)tp [c, ip], D(l)iP= -[ip, c] + Vb + B, 5(2)i/' o,

Di0)B {c, B} - [ip, b] - Vr?, D{i)B -[tp, Vc + V], D(2)B 0,

5(0)c {c, c} -b 1 5(i)C= b, D(2)c 0,

5(0)6 [c, b] - fj, 5(1)6= -[tp, c] 5(2)6 0,

5(0)tp [c, tp], D(i)tp= -[6, c] -v, D(2)tp 0,

5(0)7? {c, 77} + b, b] + {ff, f, D(i)V= [<P, \{c, c} + tp] 5(2)7? 0,

5(o)ò [c, b], 5(i)6 -fj, 5(2)ò 0,

5(0)7? {C, fj}, 5(i)7? [tp, 6], 5(2)7? 0.

Here, due to the nilpotency of s, the following algebra emerges:

(5(o))2 0, {5(0), 5(1)} 0, (5{1))2 + (5(o), D,(2) }

(7)

(8)

The structure in (8) is the anti-BRS analogue of the constrained cohomology algebra

obtained by Delduc et al. and, in much the same way as in [11], will enable us to

7Here, we refrain from assigning any ghost number to the parameter i and insist in maintaining the

(anti-)ghosty interpretation of the barred p-form fields. One will see shortly that this choice will not

modify the essence of the reasoning followed in the solution of our constrained cohomology problem.
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completely evaluate the s-cohomology. Still, the set of transformations in (7) are not

in the most convenient form to develop our analysis. At this point, it proves useful to

introduce a second counting operator JV:

J\f w w, ü> { c, b, tp, r], b, fj } (9)

according to which, the 5(0) and the 5(i) operators in (8) decompose as follows:

5(o) d(o) + d(!), 5(i) J(o) + <5(i),

Af, d (0) 0, [Af, 6,(0)

[Af, d(i)\ d(i),

with the corresponding transformation laws:

[Af, 6,1)] 5(1),

(10)

d(o)>l Vc, d(i)A 0, 5(o)A $, 6WA 0,

d(o)ip [c, ip], d(i)ip 0, 5<o)î> V<p, 5(1)^ 0,

d(o)C= \{c, c}, d(i)5 0, 5(0)5 0, 5(i)5=0,
d(o)<p [5, <p], d(i)<p 0, S{o)<p 0, 5(i)<p 0,

d(o)i> [5, ip], d(i)i> 0, 5(o)V B, 5(i)^ -[ip, c] + V

d(o)B {5, B}, d(i)B - f, b]- V??, 5(o)B ~[^> V»]. 5(i)ß -[ip, Vc],

d(o)C= {5, c} - 6, d(i)C 0, ^(C 6, 5(i)C=0,
d(o)6 [5, 6] - fj, d(i)6 0, 5(0)6= -[<£, c], 5(i)6 0,

d(o)<P [5, tp], d(i)tp 0. 5(0) V -7?1 5(i)V -ßi c],

d(o)V= {c, r?}, d(i)V [b, b] + {v, c) 5(0)7? - [<?, v], fy^ [<?. Hc>c}]
d(0)6= [5, 6], d(i)b 0, 5(o)6 -r?, 5(„6 0,

d(o)fj {5, ?7}, d(i)fj - 0, 5(0)7? [tp, 6], 5(i)7? 0.

(11)

The above introduced operators obey the algebraic relations:

(d"(o))2 0,

[d(o), d(i)| 0,

°(0), 5;(v),

{5(0), 5(1)} 0, (12)

(rf(i)j 0, (5(d) 0,

with the bosonic operator 5i$) denoting a gauge transformation with parameter tp, and

also to:

\d(o), 5(o)} 0, {d(o), 5(1)} + {d(1), 5mj 0, d(i). fyi)} : 0.

(13)
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By observing the first line in (12) and the first anticommutator in (13), one notices that

the operators d(o) and 5(o) characterize a set of algebraic relations which suggest once

more a constrained cohomology study. In fact, one can easily convince himself that 5(o)

is indeed nilpotent when applied upon gauge invariant monomials. Actually, from the

theory of the spectral sequences [18], it can be shown that the cohomologies W(D[o))
and "H*(5(i)) are respectively isomorphic to subspaces of the cohomologies H*(d{p)) and

H*(5(o)), i.e. the usual cohomology of the nilpotent operator d(0) and the constrained

cohomology of 5(o). We here take advantage of these facts to simplify our task, focusing

our attention firstly on the identification of the larger space H*c(6(p)) instead of ri*c(Dr\)).

Later on, we will be able to sharpen our results to the specific case of that latter (see also

ref. [17], page 202).

Following [11], we find it useful to perform a change of basis for the above

introduced fields. Actually, as in the more familiar case of the Yang-Mills theory, our present

cohomology problem enforces us to consider the space of the tensor field components

together with their respective symmetric covariant derivatives, instead of the smaller space

of p-form fields and their covariant exterior derivatives, where antisymmetrization is of

course implicit. To this aim, we switch to the tensorial notation and choose a new set of

independent field variables as given below8:

A', 6{0)X, c, tp, ipß, Bß, tp, n], (14)

with X standing for
1 ßu,

X <^

Vf)u + Vyipv,

Vmt/v, VßBv, Vßip, Vßi],

together with all the symmetric covariant derivatives of the following type:

(15)

V^.-.V^F^, V^.-.V^V^i/v + V^t/v). V^.-.V^IV^, VßBv, Vß<p, Vßn },
(16)

where we notice the presence of the covariant derivatives of ipß through a symmetrization

8The fields c, 5, b, fj are naturally excluded from (14) as they can be shown to constitute doublets. To

see this, one defines a counting assigning weight one to the antighost c and zero to the other fields: the

d(o) transformations of (11) will thus separate in such a way that the couples (c, b) and (b, rj) define the

trivial pattern. Clearly, the doublets cannot give rise to monomials belonging to H*(d^).
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(i.e. the third line of (15)) and through 5(0)J),„. With respect to (14), d(0) and 5(0) act as:

*P> E {fe *}± A [5, Wj4^} + Ifc *>| + fe ^+
(17)

+{c, ^u^+fe s^+fe V5]é+{5, ^l-
and

5(0) Ç {(*<<>)*) Jf "te Al-(H5(o,X)j+ß^-^'^W+
a .s

-% + [^]5V

(18)

In order to study the constrained cohomology ?^*(5(o)), we introduce a further operator:

which entails the following crucial property:

{5(o),5(0)}=j-, (20)

with the filtering operator, T, reading as below

Y [ dX \{> ya(5(o)A')j dip» 9Bß dtp dn

One has moreover the two algebraic relations:

[d"(0), f]=Q, [5(0), ?]=0. (22)

We now identify H'c(5(o))- Let us expand a generic element Â of "H*(5(o)) in terms of the

eigenvalues of the filtering operator f:
Ä £A(n), (23)

n>0

where

f K{n) =7iÂ(n). (24)

From the property (20), one gets the relation

5(o)5;o)A(")=nAW, (25)



de Oliveira and Zerrouki 167

for each level n > 0. This allows one to write:

Ä<"> ì 5(o) 5{0) Ä<"\ (26)

for the levels n > 1. As a consequence, Ä in (23) can be written as:

Â Ä<°> + 5(o) Â', (27)

with

Â' £ ì S[0) Ä<">. (28)
»>i n

Eq.(27) identifies the constrained cohomology W*(5(0)) by expressing it as the set of d(oj-

invariant monomials which are independent of the following variables:

{ X, 5(0)*, t/v, B„, v», 77 } (29)

H*(5(o)) is hence the space of d(0)-cohomology classes given by functionals of the type:

* (Vinv(c), Qinv(<fi)) (30)

the functionals Vlnv(c) and Qi,lv(ip) being group invariant monomials depending on the

(non-differentiated) antighosts 5 and tp, respectively9.

The subsequent and final step in our analysis corresponds to the identification of the

constrained cohomology ri*c(Dri)). As it was mentioned previously, H*(5(i)) C Wc(5(o))

and one is left with two mutually independent possibilities: either H*c(Dii)) is empty,

or some of the gauge invariant classes Vinv(c) and Qtnv(tp) do belong to H*c(Dci)). A

simple inspection of the set of 5(i)-transformations in (7) reveals that the whole set of

functional classes Vinv(c) and Qinv(tp) - as well as their products - are indeed in the

constrained cohomology of 5(i), implying that H*c(Dii)) rl*c(5(o))- The functionals (30)

are precisely the anti-BRS counterparts of the cohomology classes obtained in ref.[11] for

the BRS formulation of the topological Yang-Mills model.

As regards the anti-BRS zero-form observables, (5(o), we adopt here the definition given

by Witten in [1] and discard from the analysis all the c-dependent functionals appearing

in the class $ above. Finally, the conclusion is that:

{0(0)} {Qinv(<p)}. (31)

9It should be noticed that VMc, together with all its symmetric covariant derivatives, are known to be

excluded from the space of anti-BRS invariant operators H*(d(o)), in much the same way as it occurs for

their counterparts in the BRS framework for the usual Yang-Mills field theory (see refs.[19, 20, 21, 22, 23]).
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To obtain the higher rank topological observables one may employ, for example, the

vectorial transformation of Birmingham et al. [24], adapted to the anti-BRS case (see

also ref.[25]). Therefore, the conjecture of ref.[12] is not confirmed in this pure anti-BRS

study, the set observables in (31) being simply the anti-BRS counterparts of the ordinary
BRS ones. One has to keep in mind, however, that new classes of topological observables

may possibly arise in a more general algebraic framework, i.e. by combining both BRS and

anti-BRS transformations into a unique nilpotent operator and by studying its constrained

cohomology. This latter context is being considered in full detail in [26].

3 Concluding Remarks

We have analyzed the anti-BRS differential algebra of the topological Yang-Mills field

theory in the context of the constrained cohomology set-up introduced by Delduc et

al. in ref. [11]. In particular, we obtained all possible classes of anti-BRS topological

observables in an explicitly algebraic manner, i.e. in terms of the method of the spectral

sequences [18]. Unfortunately, our results do not confirm the conjectured feature of the

existence of new topological invariants in the model [12]. As a matter of fact, despite of

the presence of additional scalar variables nedeed for the consistent closure of the anti-

BRS structure, the anti-BRS versions of the Witten's observables are given essentially

by the barred counterparts of the originary observables identifyed by Witten in [1]. We

remark, however, that new topological structures could possibly show up in a combined

BRS-anti-BRS formalism where the constrained cohomulogy technique may be again of

great usefulness.
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