Solution of Wannier exciton for electron and hole spatially separated in perpendicular 1d quantum wires in terms of 2d exciton states

Autor(en): Reyes, J.A. / Del Castillo-Mussot, M. / Molero, M.A.
Objekttyp: Article
Zeitschrift: Helvetica Physica Acta

Band (Jahr): 72 (1999)
Heft 3

$$
\text { PDF erstellt am: } \quad \mathbf{2 5 . 0 5 . 2 0 2 4}
$$

Persistenter Link: https://doi.org/10.5169/seals-117174

Nutzungsbedingungen

Die ETH-Bibliothek ist Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an den Inhalten der Zeitschriften. Die Rechte liegen in der Regel bei den Herausgebern.
Die auf der Plattform e-periodica veröffentlichten Dokumente stehen für nicht-kommerzielle Zwecke in Lehre und Forschung sowie für die private Nutzung frei zur Verfügung. Einzelne Dateien oder Ausdrucke aus diesem Angebot können zusammen mit diesen Nutzungsbedingungen und den korrekten Herkunftsbezeichnungen weitergegeben werden.
Das Veröffentlichen von Bildern in Print- und Online-Publikationen ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Die systematische Speicherung von Teilen des elektronischen Angebots auf anderen Servern bedarf ebenfalls des schriftlichen Einverständnisses der Rechteinhaber.

Haftungsausschluss

Alle Angaben erfolgen ohne Gewähr für Vollständigkeit oder Richtigkeit. Es wird keine Haftung übernommen für Schäden durch die Verwendung von Informationen aus diesem Online-Angebot oder durch das Fehlen von Informationen. Dies gilt auch für Inhalte Dritter, die über dieses Angebot zugänglich sind.

Solution of Wannier exciton for electron and hole spatially separated in perpendicular 1D quantum wires in terms of 2 D exciton states.

By
J.A. Reyes ${ }^{1}$, M. del Castillo-Mussot, M. A. Molero and G.J. Vázquez

Instituto de Física, Universidad Nacional Autónoma de México, Apdo. Postal 20-364, 01000 México, D.F., México
(30.III.1999)

Abstract. We analyze a Wannier-Mott exciton in which the electron is constrained to move freely in a one-dimensional quantum wire (1DQW) and the hole moves freely in another perpendicular 1DQW. The resulting two-dimensional (2D) exciton Schródinger equation in the laboratory frame of reference is solved in terms of the common 2D exciton equation in the center of mass frame when both electron and hole are in the same 2D quantum layer.

1 Introduction

Studies of excitons in confined systems are interesting due to the possibility of growing high-quality nanostructures with prescribed configurations. Within the spirit of studying Wannier-Mott excitons in novel systems that exhibit spatial separation between electron and hole (such as type II semiconductor heterostructures), we investigate here from a theoretical point of view Wannier-Mott excitons in which the electron is confined within a one dimensional quantum wire (1DQW) and the hole is confined in another perpendicular 1DQW as shown in Fig. 1 .To our knowledge, excitons in such configuration has not been investigated before. Analogous systems presenting spatial separation between electron and hole have been theoretically investigated in Refs. [1], [2] and [3]. Reyes and del Castillo-Mussot

[^0]

Figure 1: Diagram of the system formed by two infinite perpendicular 1D quantum wires (1DQWs) where both electron e and hole h experience transverse harmonic potential confinement in the x and y directions. Their dimensions are given in terms of the standard deviations $\sigma_{y 1}$ and $\sigma_{x 2}$, which are inversely proportional to the stiffness of the corresponding harmonic potential. The transverse harmonic potential and the corresponding wavefunctions are indicated at the positions y_{1} and x_{2}.
[1] analyzed a Wannier-Mott exciton in which the electron is confined in one 1DQW and the hole is confined in another parallel 1DQW. Lozovik and Nishanov [2] studied excitons in which the electron is confined within a two-dimensional quantum layer (2DQL) and the hole is confined in another parallel 2DQL assuming layers with vanishing widths. Bastard et al. [3] performed a variational calculation of the exciton binding energy of a type II semiconductor heterostructure consisting of a hole in InAs well confined between two semi-infinite GaSb layers where the electron lied.

2 2D exciton Schrödinger equation

Without loss of generality, we restrict our system of two perpendicular 1DQWs to be a 2D system, that is, the system lies in the $x y$ plane and has a vanishing width in the z-direction. The 2D system assumes that in the confinement direction (x-direction for the hole and y direction for the electron) both charged particles are in their respective ground state of a
harmonic potential, and each one of them is free to move in one of the two perpendicular 1DQW (Fig. 1). The widths of the 1DQWs are $\sigma_{x 1}$ for the hole and $\sigma_{y 2}$ for the electron. We neglect all possible variations and defects which could be present in the 1DQW walls, and we assume that in the region were both 1DQWs overlap ($|x|<\sigma_{x 1}$ and $|y|<\sigma_{y 2}$) there is no tunneling. For small $\sigma_{x 1}$ and $\sigma_{y 2}$ this latter assumption is reasonable from both the theoretical and experimental point of views since, in the first place, that region is small as compared with the spatial extension of the exciton, and a very thin layer could be positioned at the interface between the 1DQWs to avoid contact between them.

We proceed to solve the Schrödinger equation given by

$$
\begin{equation*}
\widehat{H} \Psi\left(x_{1}, y_{1}, x_{2}, y_{2}\right)=E_{t} \Psi\left(x_{1}, y_{1}, x_{2}, y_{2}\right) \tag{2.1}
\end{equation*}
$$

where E_{t} is the total energy of the system and we use the labels 1 and 2 for particles p_{1} and p_{2} (but later we will study the particular case of an electron and a hole). \widehat{H} is defined as

$$
\begin{equation*}
\widehat{H}=\widehat{H}_{1}+\widehat{H}_{2}+\widehat{V}_{i n t}, \tag{2.2}
\end{equation*}
$$

and the Hamiltonian of each particle is

$$
\begin{equation*}
\widehat{H}_{1}=\frac{-\hbar^{2}}{2 m_{\nu}} \nabla_{\nu}^{2}+V_{\nu}\left(y_{\nu}\right) \tag{2.3}
\end{equation*}
$$

with $\nu=1,2, m_{\nu}$ are the effective masses, $V_{\nu}\left(y_{\nu}\right)$ is the transverse confinement potential of each carrier and the Coulomb interaction potential is

$$
\begin{equation*}
\widehat{V}_{\text {int }}\left(\overrightarrow{r_{1}}-\overrightarrow{r_{2}}\right)=\frac{q_{1} q_{2}}{\epsilon \sqrt{\left(x_{1}-x_{2}\right)^{2}+\left(y_{1}-y_{2}\right)^{2}}} \tag{2.4}
\end{equation*}
$$

where ϵ is the appropriate dielectric screening of the semiconductor media.
The two-particle wave function can be separated as

$$
\begin{equation*}
\Psi\left(x_{1}, y_{1}, x_{2}, y_{2}\right)=\Psi_{1}^{0}\left(y_{1}\right) \Psi_{2}^{0}\left(x_{2}\right) S\left(x_{1}, y_{2}\right) \tag{2.5}
\end{equation*}
$$

where $\Psi_{1}^{0}\left(y_{1}\right), \Psi_{2}^{0}\left(x_{2}\right)$ are the groundstate wave functions of the transverse confinement satisfying

$$
\begin{align*}
& \frac{-\hbar^{2}}{2 m_{1}}\left(\frac{\partial^{2}}{\partial y_{1}^{2}}\right) \Psi_{1}^{0}\left(y_{1}\right)+V_{1}\left(y_{1}\right) \Psi_{1}^{0}\left(y_{1}\right)=E_{1}^{0 t} \Psi_{1}^{0}\left(y_{1}\right) \tag{2.6}\\
& \frac{-\hbar^{2}}{2 m_{2}}\left(\frac{\partial^{2}}{\partial x_{2}^{2}}\right) \Psi_{2}^{0}\left(x_{2}\right)+V_{2}\left(x_{2}\right) \Psi_{2}^{0}\left(x_{2}\right)=E_{2}^{0 t} \Psi_{2}^{0}\left(x_{2}\right) \tag{2.7}
\end{align*}
$$

and $S\left(x_{1}, y_{2}\right)$ is the part of the wave function that contains the interparticle Coulomb potential

We calculate

$$
\begin{equation*}
\left\langle\Psi_{1}^{0}\left(y_{1}\right) \Psi_{2}^{0}\left(x_{2}\right)\right| \widehat{H}|\Psi\rangle=E_{t} S\left(x_{1}, y_{2}\right) \tag{2.8}
\end{equation*}
$$

to obtain

$$
\begin{equation*}
\left[\frac{-\hbar^{2}}{2}\left(\frac{1}{m_{1}}\left(\frac{\partial^{2}}{\partial x_{1}^{2}}\right)+\frac{1}{m_{2}}\left(\frac{\partial^{2}}{\partial y_{2}^{2}}\right)\right)+E_{1}^{0 t}+E_{2}^{0 t}+V_{e f f}\right] S\left(x_{1}, y_{2}\right)=E_{t} S\left(x_{1}, y_{2}\right) \tag{2.9}
\end{equation*}
$$

where

$$
\begin{equation*}
V_{e f f}\left(x_{1}, y_{2}\right)=\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty}\left|\Psi_{1}^{0}\left(y_{1}\right)\right|^{2}\left|\Psi_{2}^{0}\left(x_{2}\right)\right|^{2} \widehat{V}_{\text {int }} d y_{1} d x_{2} \tag{2.10}
\end{equation*}
$$

is the effective interparticle Coulomb potential and the excitonic energy E is defined as

$$
\begin{equation*}
E=E_{t}-E_{1}^{0 t}-E_{2}^{0 t} \tag{2.11}
\end{equation*}
$$

Eq. (2.9) is general for two particles p_{1} and p_{2} except for the fact that both particles are in their respective transverse groundstate. For the exciton problem they represent the hole and the electron respectively ($p_{1}=h$ and $p_{2}=e$), and in the case of $m_{1} \neq m_{2}$ this equation is similar to the Schrödinger equation of an isotropic 2D exciton. For convenience we will choose for both particles harmonic potentials as transverse confined potentials, that is, $\hat{V}_{1}\left(y_{1}\right)=k_{1} y_{1}^{2} / 2$ and $\hat{V}_{2}\left(x_{2}\right)=k_{2} x_{2}^{2} / 2$. The choice of a harmonic confinement has the advantage over a hard-well confinement that it could physically represent either soft or hard possible confinements. In terms of standard deviations $\sigma_{y 1}=\left\langle\left(y_{1}\right)^{2}\right\rangle_{0}$ and $\sigma_{x 2}=\left\langle\left(x_{2}\right)^{2}\right\rangle_{0}$ (which are of the order of magnitude of the thickness of 1DQS and subindex 0 indicates groundstate) these potentials yield the normalized groundstate transverse wavefunctions

$$
\begin{align*}
& \left|\Psi_{1}^{0}\left(y_{1}\right)\right|^{2}=\frac{e^{\frac{-y_{1}^{2}}{2 \sigma_{y 1}^{2}}}}{\sqrt{2 \pi} \sigma_{y 1}} \tag{2.12}\\
& \left|\Psi_{2}^{0}\left(x_{2}\right)\right|^{2}=\frac{e^{\frac{-x_{2}^{2}}{2 \sigma \sigma_{x 2}^{2}}}}{\sqrt{2 \pi} \sigma_{x 2}}
\end{align*}
$$

In Eq. (2.9) we choose $m_{1}=m_{2}=m$ to give

$$
\begin{equation*}
\left[\frac{-\hbar^{2}}{2 m}\left(\left(\frac{\partial^{2}}{\partial x_{1}^{2}}\right)+\left(\frac{\partial^{2}}{\partial y_{2}^{2}}\right)\right)+E_{1}^{0 t}+E_{2}^{0 t}+V_{e f f}\right] S\left(x_{1}, y_{2}\right)=E_{t} S\left(x_{1}, y_{2}\right) \tag{2.13}
\end{equation*}
$$

which is similar to the isotropic 2 D exciton equation for the relative radial coordinate with one particle is at position $\left(x_{2}, y_{1}\right)$ and the other is fixed at the origin (see Fig. 2), namely,

$$
\begin{equation*}
\left[\frac{-\hbar^{2}}{2 \mu}\left(\left(\frac{\partial^{2}}{\partial x_{1}^{2}}\right)+\left(\frac{\partial^{2}}{\partial y_{2}^{2}}\right)\right)-\frac{e^{2}}{\epsilon \sqrt{x_{2}^{2}+y_{1}^{2}}}\right] S\left(x_{1}, y_{2}\right)=E_{n, 2 D}^{(o)} S\left(x_{1}, y_{2}\right) \tag{2.14}
\end{equation*}
$$

Eqs. (2.13) and (2.14) are similar except for the use of the reduced mass $\mu=m_{1} m_{2} /\left(m_{1}+m_{2}\right)$ with m_{1} and m_{2} are the effective masses, a different $e-h$ potential, and the addition of a transverse energy constant. Notice that the distance $\rho=\sqrt{x_{1}^{2}+y_{2}^{2}}$ between the expected value of the quantum particles p_{1} and p_{2} (dashed line), is the same as that of the electron e and the hole h at the origin (solid line) as indicated in Fig. 2.

Figure 2: Equivalence of interaction distances for two different systems . A fictitious 2D exciton with a hole at the origin and our system.

3 Numerical results and discussion

Eq. (2.14) has as solutions the following eigenenergies and eigenfunctions [4]:

$$
\begin{equation*}
E_{n, 2 D}=-\left|E_{o}^{3 D}\right| \frac{1}{\left(n+\frac{1}{2}\right)^{2}} \text { with } n=0,1, \ldots \tag{3.1}
\end{equation*}
$$

$$
\begin{equation*}
\Phi_{n, l}(\rho, \phi)=\Xi_{n, l}(\rho) \exp (i l \phi)=A_{n, l} \rho^{\prime|l|} \exp \left(-\frac{\rho^{\prime}}{2}\right) L_{n+|l|}^{2|l|}\left(\rho^{\prime}\right) \exp (i l \phi) \text { with } l=0, \pm 1, \pm 2, \ldots \tag{3.2}
\end{equation*}
$$

where $E_{o}^{3 D}=-e^{2} /\left(2 \epsilon a_{o}^{3 D}\right)$ is the $3 D$ exciton ground state binding energy [6], $a_{o}^{3 D}=\hbar^{2} \epsilon /\left(e^{2} \mu\right)$ is the 3D exciton Bohr radius, $|l| \leq n, \rho^{\prime}=\frac{2 \rho}{(n+1 / 2) a_{0}^{3 D}}, \quad L_{q}^{p}\left(\rho^{\prime}\right)=\sum_{\nu=0}^{p-q}(-1)^{\nu+p} \frac{(q!)^{2}}{(q-p-\nu)!(p+\nu)!\nu!}$ are the associate Laguerre polynomials [5] and $A_{n, l}$ is a normalization constant. Notice that $E_{o, 2 D}=4 E_{o}^{3 D}$.

Using polar coordinates; $\rho^{2}=x_{1}^{2}+y_{2}^{2}$ and $\tan \phi=\frac{y_{2}}{x_{1}}$ yields

$$
\begin{equation*}
\widehat{V}_{\text {int }}\left(\overrightarrow{r_{1}}-\overrightarrow{r_{2}}\right)=-\frac{e^{2}}{\epsilon \sqrt{\rho^{2}-2 \rho x_{2} \cos \phi+x_{2}^{2}+y_{1}^{2}-2 \rho y_{1} \sin \phi}} \tag{3.3}
\end{equation*}
$$

and

Figure 3: Normalized exciton groundstate energy of the two perpendicular 1DQWs. E_{0} is plotted as function of $\sigma / a_{o}^{3 D}$ when $m_{1}=m_{2}=m=0.05 m_{e}$ with $E_{o, 2 D}=4 E_{o}^{3 D}=$ $-2 e^{2} /\left(\epsilon a_{o}^{3 D}\right)$ and $a_{o}^{3 D}=\hbar^{2} \epsilon /\left(e^{2} m\right)$.

$$
\begin{align*}
V_{e f f}(\rho, \phi) & =-\frac{e^{2}}{2 \pi \epsilon \sigma^{2}} \int_{0}^{2 \pi} \int_{0}^{\infty} e^{-\frac{1}{2 \sigma^{2}}\left(\gamma^{2}+\rho^{2}-2 \gamma \rho \cos (\eta-\phi)\right)} d \gamma d \eta \\
& =-\frac{e^{2}}{\epsilon \sigma^{2}} e^{\frac{1}{2} \rho^{2}} \sigma_{0}^{\infty} I_{0}\left(\frac{\gamma \rho}{\sigma^{2}}\right) e^{-\frac{\gamma^{2}}{2 \sigma^{2}}} d \gamma . \tag{3.4}
\end{align*}
$$

where we have used $\gamma \cos \eta=x_{2}-\rho \cos \phi$ and $\gamma \sin \eta=y_{1}-\rho \sin \phi$ together with $\sigma_{y 1}=\sigma_{x 2}$. Last integral can be calculated exactly to yield

$$
\begin{equation*}
V_{e f f}=-\frac{e^{2} \sqrt{\pi}}{\epsilon \sigma} \operatorname{Exp}\left[-\frac{\rho^{2}}{4 \sigma^{2}}\right] I_{0}\left(\frac{\rho^{2}}{4 \sigma^{2}}\right) \tag{3.5}
\end{equation*}
$$

where I_{0} is the modified Bessel function of zero order.
Since $V_{\text {eff }}$ does not depend on ϕ, Eq. (2.13) in polar coordinates

$$
\begin{align*}
& {\left[\frac{-\hbar^{2}}{2 m}\left(\frac{\partial^{2}}{\partial \rho^{2}}+\frac{1}{\rho} \frac{\partial}{\partial \rho}+\frac{1}{\rho^{2}} \frac{\partial^{2}}{\partial \phi^{2}}\right)+V_{e f f}\right] S(\rho, \phi) } \\
= & E S(\rho, \phi) \tag{3.6}
\end{align*}
$$

can be separated to yield

$$
\begin{equation*}
\frac{d^{2} \Theta(\phi)}{d \phi^{2}}=-l^{2} \Theta(\phi) \tag{3.7}
\end{equation*}
$$

Figure 4: Same as Fig. 3 but for exciton first excited state energies E_{1} and E_{2} and with a different scale. Notice that E_{2} is double degenerated.
and

$$
\begin{equation*}
\left[\frac{-\hbar^{2}}{2 m}\left(\frac{d^{2}}{d \rho^{2}}+\frac{1}{\rho} \frac{d}{d \rho}-\frac{l^{2}}{\rho^{2}}\right)+V_{e f f}\right] Q(\rho)=E Q(\rho) \tag{3.8}
\end{equation*}
$$

where $S(\rho, \phi)=Q(\rho) \Theta(\phi)$ and the angular quantum number l must be an integer.
We can easily solve radial equation (3.8) perturbately by taking the behavior of $V_{\text {eff }}$ for $\rho \ll \sigma$ and the asymptotic behavior of $V_{e f f}$ for $\rho \gg \sigma$:

$$
\begin{gather*}
V_{e f f}=-\frac{e^{2} \sqrt{\pi}}{\epsilon \sigma}\left[1-\left(\frac{\rho}{\sigma}\right)^{2}+\frac{9}{2}\left(\frac{\rho}{\sigma}\right)^{4}+O\left(\left[\frac{\rho}{\sigma}\right]^{6}\right)\right], \quad \rho \ll \sigma \tag{3.9}\\
V_{e f f}=-\frac{e^{2}}{\epsilon \rho}+O\left(\left[\frac{\sigma}{\rho}\right]^{3}\right), \quad \rho \gg \sigma \tag{3.10}
\end{gather*}
$$

if we realize that Eq. (3.6) together with last equation is almost identical to the 2 D exciton (Eq. (2.14)). If σ is small as compared with the size of the 2 D exciton, the region where $V_{\text {eff }}$ differs from the aforementioned 2D exciton behavior is small. Therefore we employ the 2D exciton states (Eqs. (3.1) and (3.2)) to solve Eq. (3.8) by common time-independent degenerate perturbation theory with a perturbing potential operator $V_{p}(\sigma)=V_{e f f}-\left(-\frac{e^{2}}{\epsilon \rho}\right)$. Here the natural dimensionless perturbation parameter is $p_{n}=2 \sigma /\left[(n+1 / 2) a_{o}^{3 D}\right]$, which should be in fact a small number for typical values of σ.

For the anisotropic case when the values of m_{1} and m_{2} are close together, then also perturbation theory can be employed. In order to illustrate numerically our results, we present in Figs. 3 and 4 model calculations of $E_{0}(\sigma)=E_{o, 2 D}+<\Phi_{0,0}\left|V_{p}\right| \Phi_{0,0}>, E_{1}(\sigma)=E_{1,2 D}+<$ $\Phi_{1,0}\left|V_{p}\right| \Phi_{1,0}>$ and $E_{2}(\sigma)=E_{1,2 D}+<\Phi_{1,1}\left|V_{p}\right| \Phi_{1,1}>=E_{1,2 D}+<\Phi_{1,-1}\left|V_{p}\right| \Phi_{1,-1}>$ with $\epsilon=10$ and $m=0.05 m_{e}$ (m_{e} is the electron mass) yielding for the 3D exciton the values
$E_{o}^{3 D}=0.0425 \mathrm{meV}$ and $a_{o}^{3 D}=150$. As expected, the first order corrections of the groundstate exciton energy are larger than those of the first excited states since the probability density of the ground state wavefunction near the origin (where the perturbing potential effects are more important) is larger than those of the excited states. In turn, changes in $E_{1}(\sigma)$ are larger than in $E_{2}(\sigma)$ since $\Phi_{1,0}$ is finite at the origin while $\Phi_{1, \pm 1}$ vanishes at the origin. Since V_{p} does not depend on ϕ, its corresponding matrix in the basis of the $n+1$ degenerate states $\Phi_{n, l}$ is diagonal, and degeneracy is only partially removed by V_{p} because the states coming from the $\Phi_{n, l}$ and $\Phi_{n,-l}$ remain degenerate.

In summary, we found for our system a 2 D exciton Schrödinger equation which for the case of vanishing thickness ($\sigma_{1}=\sigma_{2}=0$) and $m_{1}=m_{2}$ is mathematically identical to the well known 2D exciton equation but with the difference that in the former case the equation is set in the laboratory frame of reference whereas in the latter case the equation is set for the relative coordinates in the center of mass reference. We assumed that in the confinement directions both electron and hole were in their respective groundstate of a harmonic potential which yielded an analytical expression for the effective interparticle Coulomb potential for the case $\sigma_{1}=\sigma_{2}$, and we solved our main equation perturbately by employing the eigenenergies and eigenfunctions of the 2 D exciton when both electron and hole lie in the same 2D quantum layer in the $x y$ plane. Since our results for small σ are not mathematically very different from the two dimensional exciton, we obtain the surprising outcome that the spatial separation between electron and hole is approximately the same as in the 2 D exciton. This fact can be explained in terms of the same number of degrees of freedom of two different systems. As shown in Fig. 2, a two-particle system like ours with only one degree of freedom per particle is equivalent to a system where one particle is fixed at the origin and the other particle has the remaining two degrees of freedom. We hope that our efforts can stimulate further experimental and theoretical work on the study of novel heterostructure systems that exhibit spatial separation between the electron and the hole.

Acknowledgments

We acknowledge partial financial support by DGAPA-UNAM and CONACYT-México through Grants Nos. IN-114498 and 3042PE, respectively.

References

[1] J. A. Reyes and M. del Castillo-Mussot, Wannier-Mott exciton formed by electron and hole separated in parallel quantum wires, Phys. Rev. B 203, 143 (1997).
[2] Y. E. Lozovik and V. N. Nishanov, Wannier-Mott excitons in layer structures and near an interface of two media, Fiz. Tverd Tela (Leningrad) 18, 3267 (1976) (Sov. Phys. Solid State, 18, 1905 (1976)).
[3] G. Bastard, E. E. Mendez, L. L. Chang and L. Esaki, Exciton binding energy in quantum wells, Phys. Rev. B 26, 1974 (1982).
[4] S. Flugge and H. Marshall, Rechenmethoden der quantentheorie (Springer Verlag, Berlin, 1952), Sec. 1.3; T. Ando, A. B. Fowler and F. Stern, Electronic properties of twodimensional systems, Rev. Mod. Phys. 54, 437 (1982).
[5] This definition of the Laguerre polynomials is taken from L. D. Landau and E. M. Lifshitz, Quantum Mechanics (Pergamon Press, London, 1958) and differs from some other textbooks.
[6] C. Kittel, Introduction to Solid State Physics, 5th Ed. (John Wiley \& Sons, New York, 1976) Chapter 8.

[^0]: ${ }^{1}$ Correspondence author. e-mail: adrian@fenix.ifisicacu.unam.mx

