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Rigorous control of the non-perturbative corrections to the double
expansion in g and g2 ln(<?) for the ^-trajectory in the hierarchical
approximation
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Abstract. We study the renormalization invariant trajectory of the ^-perturbation of the free field fixed

point in the hierarchical approximation. We parametrized it by a running ^-coupling g with linear step

/3-function. We rigorously control the non-perturbative corrections to finite order approximants from double

perturbation theory in g and g2ln(g). The construction uses a contraction mapping for the extended

renormalization group composed of a hierarchical block spin transformation with a flow of g.
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1 Introduction

The non-perturbative renormalization of (^-theory is a central problem of constructive quantum
field theory [28, 40, 7]. The state of the art includes phase cell expansions [27, 17, 35, 4, 18],
renormalization group techniques [20, 5, 3, 23, 21, 22, 25, 37], and random path representations [6,
19]. However, the non-perturbative renormalization of </>4-theory remains a mathematical enterprise
of considerable difficulty. Recent work by Brydges, Dimock, and Hurd [8, 9, 10] aims to simplify the
older constructions and to cast renormalization theory into a more conceptual form. The present
paper intends to make a modest contribution in the same direction.

A key to the understanding of renormalization theory is Wilson's renormalization group [45, 46].
The traditional starting point is a bare action So($,go)'. The goal is to compute a renormalized
action as the limit n —> oo of Sn(<J>,gn) R2(So)(4>,Oo) of an iterated renormalization group
transformation P/, with scale L. The bare couplings go are tuned in this process so as to obtain
a finite limit for gn. This process can be viewed as a trajectory in the dynamical system (on
some space of actions) generated by Pr,. If the action is a fixed point St(4>) of Pr, then its
renormalization becomes trivial: the bare action and the renormalized action become identical. This
fixed point problem has a natural generalization. Consider a curve S(cj>,g) of actions parametrized
by a (running) coupling g such that

1. 5(^,0) is a fixed point S+(<l>) of P/,,

2. dgS(cj),g)\g=o is an eigenvector ö(cf>) of the linearization of P/, at S„(<f>), and

3. RfS)(cj>,g) S(f>,Sf(g)), where <S/, is a step /3-function.

In this case, the bare action and the renormalized action have the same functional dependence of cj>

but correspond to different values of the running coupling g. Renormalization amounts to control
the flow generated by the step /3-function, a comparatively easy task.

We will study a variant of this renormalization problem, where P/, is a block spin transformation
for a three dimensional scalar lattice field theory with hierarchical covariance [32]. It is designed such
that the interaction remains local under the renormalization group evolution. The lattice interaction
Boltzmann factor factorizes into product of local Boltzmann factors Z(cf>) exp(—V(cj))) (one for
each lattice site), which are functions of a real variable cj>. In three dimensions, the hierarchical
renormalization group then reduces to the non-linear integral transformation

i?
RL(Z)(vb) y<ip(Qz(L-h + c)} - (1-1)

where dp(Q is the Gaussian measure on R with mean zero and unit covariance. This transformation
and variants of it have been studied by many authors both as a model of constructive renormalization

and also because of its properties as a non-linear theory. Rigorous work on hierarchical models
(more generally ultralocal renormalization groups) includes:

1. the e-expansion [12]

2. the 4>\ infrared fixed point [31, 33, 34]

The quantum field is understood to be rescaled to a unit ultraviolet cutoff.
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3. the massive perturbation of the cj>\ fixed point [32]

4. the renormalization group differential equation [16]

5. the cj>\ infrared problem [37, 1]

6. the 4>\ ultraviolet problem at negative coupling [24]

7. the renormalized (^-trajectory [44]

8. the 5L7(2)-lattice gauge theory [43]

9. the non-linear cr-model [26, 38]

10. the sine-Gordon model [14, 30]

11. multigrid expansions [37, 39]

12. and random surfaces [11]

Beyond the hierarchical approximation, one has to deal with non-local interactions generated by the
renormalization group. Although non-local corrections are rather small in all models brought under
control so far, the mathematical apparatus needed to control them is a lot more sophisticated, the
main tool being polymer expansions. The virtue of hierarchical models is that they allow to study
renormalization effects without this additional burden (or perhaps joy).

In this paper, we continue the work started in [44]. We look for a curve of renormalized
interaction Boltzmann factors Z(c/>,g) with the following properties:

1. Z(4>,g) exp(-g : cj>4 :) (if 0(g2 1, i.e., Z(cj>,g) emerges from the trivial fixed point

ZAf>) 1 (the free massless hierarchical field) tangent to a (normal ordered) f-vertex, and

2. Ri(Z){$,bi,(g)) Z(ip,g), i.e., Z(cj>,g) is a fixed point of the extended renormalization

group Ri x b\ with a linear step /^-function b(g) L~lg.

The problem is thus to construct a non-trivial fixed point of the extended renormalization group
Sl P/, x 5*L. We do this by means of a contraction mapping.2

For this purpose, we split Z Zi + Z2, where Zi is an approximate fixed point, and where Z2 is

a correction. We iterate the transformation of Z2 with z?i kept fixed. This transformation is shown
to contract, provided that Zi is in a certain sense a sufficiently good approximation. We compute
Zi as a polynomial approximant of finite order in a (formal) double perturbation expansion in g
and g ln(g). We then prove that this approximant is indeed sufficiently accurate provided that
the order of perturbation theory is at least seven. The result of this construction is the following
Theorem.3

The linearization of this composed transformation has an interesting marginal eigenvector, g2 : <p2 :. It appears
in the perturbative calculation (5.11). On the first sight, it seems that we are constructing a one parmater set of
curves, all of which are tangent to the : 04 : perturbation. But they are clearly related by a reparametrization g —> z g
of the coupling parameter.

3Zqu and V(r,"*,) are explained in the bulk of this paper.
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Theorem 1.1 Let F2(g) be a continuous positive function of the form

F2(g) ga exp(cg3 + c5) (1.2)

with positive constants a, c*, and c. Let ZQ\j(f>,g) be the quadratic fixed point

ZQu(<t>,9) exp LQU(g) - ^|(£) /j (1 3)

of Si- Let B2 be the Banach space of functions Z2 : R x [0,c/max] -» R with respect to the norm

Z2(d>,9)
(14)||Z2||f2 sup

(^,3)eRx[o,9mlxi ZQu((j>,9)F2(g)

Let Zi(cj>,g) exp (—V^rm^(cj>,g)), where V(rm")(<f>,g) is the polynomial approximant of order
rmax (MI <?,! 0/ r/ie perturbative solution to the fixed point equation as a double expansion in g and
g2Hg)-

For rmax 7, there exist positive constants c/max, a, c«, c, and C2 such that the transformation
•S'x, (Zi f Z2) — Zl is a contraction mapping on the ball

{zT2eß2|||zT2||F2<C2}. (1.5)

It follows that there exists a unique fixed point in this ball. Furthermore, the iteration of the
contraction mapping gives a convergent representation for this fixed point.

The renormalized (^-trajectory was constructed in [44] for all dimensions 2 < D < 4 with
the exception of a discrete set of special dimensions, where resonances of power counting factors
occur [41]. Unfortunately, the case D 3 is such a resonant case, and was therefore excluded
in [44]. The problem is that our renormalization problem does not have a formal power series
solution in g in three dimensions. However, it does have a solution as a formal double perturbation
expansion in g and g2ln(g). The main content of this paper is to deal with these logarithmic
corrections. Polynomial approximants from this double perturbation theory turn out to suffice for
the contraction mapping. The backbone of our approach is the contraction mapping. This part
is identical in resonant and non-resonant dimensions. To keep this paper selfcontained we have
included a section on the contraction mapping with fresh proofs and improved bounds as compared
to [44]. In particular, we present

1. a better scheme independent proof of the contraction property,

2. an example of bounds, which are true for all couplings and not only small couplings,

3. a better and more explicit treatment of the tree approximation,

4. and last not least a full stability analysis of the g-g2 ln(c/)-approximants.

Unlike [44], analyticity in cp is not used here. This paper is organized as follows. Section two
contains a brief review of the hierarchical renormalization group. Section three is devoted to the
contraction mapping method. In Section four, we prove a stability bound and an error bound for
the first order approximant. It serves as a template for the higher order approximants, which are
analyzed in Section five. We conclude with a few remarks and outlooks.



Wieczerkowski 449

It is well known that the unstable manifold of the trivial fixed point is two dimensional, when the
renormalization group is restricted to even vertices and a field independent normalization constant
is discarded. In this paper, we select one direction in this two dimensional manifold by imposing
the above tangent condition and by imposing the remainder to satisfy a norm condition, to be
stated below. The perturbative meaning of this particular curve is that we are constructing the
ultraviolet limit of the theory with a minimal number of counterterms. This can be thought of as

a local criterion on the flow in the vicinity of the trivial fixed point. A global criterion would be

to select the curve by demanding that the theory be massless (or critical). That is, that the curve
would end in the non-trivial infrared fixed point rather than in the quadratic high temperature
fixed point. The global behavior of our curve requires control of the strong coupling region. The
present analysis covers only partially the strong coupling region and cannot tell whether our curve
is massive or massless. (Numerical evidence suggests that our curve is massless.) It would be very
interesting to translate the global criterion into a local criterion at the trivial fixed point. A first
step in this direction would be to analyze the role of reparametrizations and the nature of the
non-C°°-ness implied by the logarithmic corrections. A second step would be to do an analogous
construction with a two dimensional /^-function. In fact, this second step is rather straight forward.
The first step is outside the scope of the present paper. The third step would be to do a construction
which is uniform in the coupling parameter. It is conceivable that this can be done in a coupling
dependent high temperature picture very much analogous to the construction of the infrared fixed

point by Koch and Wittwer [31].

2 Hierarchical renormalization group

The hierarchical renormalization group is the theory of a non-linear integral transformation P
acting on a certain space of functions Z : R -4 R. We speak of Z as a hierarchical model in
Statistical Physics if Z is positive, continuous, and in a certain sense measurable.

2.1 Renormalization group transformation

Hierarchical renormalization groups come in different versions. We mention the transformations
of Dyson [15], Wilson [45], Baker [2],and Gallavotti [20]. The latter version has been investigated
as a model for the constructive renormalization of massless scalar field theories by Gawedzki and

Kupiainen [23, 24], by Pordt [37, 39], and by Koch and Wittwer [31, 33]. Following their path, we
define P as follows.

Definition 2.1 Let L denote a positive integer, L e {2,3,4,... }, and let D 3. Let a LD,

ß L ~ 2 and 7 1. Let R be the non-linear integral transformation given by

R(Z)(ip) UdH(QZ(ß1> + C)}°, (2.1)

where d/i7(£) denotes the Gaussian measure4 on R with mean zero and covariance 7.

4The Fourier transform of the Gaussian measure is /dn,(()e,(' e"'"'' ,2.
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L is the block scale. Eventually, we will choose L to be large. D is the dimension of the (Euclidean)
space-time. We will restrict our attention to the three dimensional transformation. In the sequel,
D and 7 are constant, D 3 and 7=1. The transformation (2.1) calls to be supplemented by a
domain. The following statement defines our model space.

Definition 2.2 Let M be the space of continuous even functions Z : R —> R with finite norm
Halloo sup,6R|Zf»|.

A part of our analysis will be to restrict P to suitable invariant subspaces of M, for instance
subspaces of functions with a rapid decrease at infinity. Positive functions form a subset MA of
JA. But MA is not a linear subspace of A4. Because we intend to use Banach space theory, we
take the latter as our starting point.

Lemma 2.1 The transformation R acts on the space M. It satisfies the bound ^(Z)^ < \\Z\\%.

2.2 Trivial fixed point and tangent map

P has two trivial non-zero fixed points in MA', the ultraviolet fixed point Ziiv(4>) 11 and the
(Gaussian) high temperature fixed point

Zht(4>) Aure-^*2, (2.2)

where

aß2-lAut (a/32)2<°-» LA1^^, bHT — L2 - 1. (2.3)
7

In this paper, we will study the unstable manifold of the ultraviolet fixed point. Basic knowledge
about it is gained from the linearized renormalization group. Recall the following well known facts.

Lemma 2.2 Let O 6 R[^>2] be an even polynomial in cj> with coefficients in R of the form Of)
4>2n + lower powers of cj>2

¦ Let Z : R x R+ -> R be defined by

Z(è,g) e-»0'«. (2.4)

(I) For all g e R+, Z(-,g) € M+, and Z(cf>,0) Zr;v(f>). (II) For all g e R+, R(Z)(-,g) is
continuously differentiable in g, and lim9_)u+ dgR(Z)(-,g) defines a linear operator

Dz,v(R)(0)(iP) ajdßl(0O(ßil, + 0. (2.5)

The linear operator Dzuv(R) is the tangent map of R at Zjjv- This tangent map is diagonalizable.

Lemma 2.3 Let H2n be the Hermite polynomial of order 2n [29, 8.95]. Let P2„ £ R[?i2] be given
by

P2^,^) Q)nH2n(-|=), v=T^-2. (2.6)

We have that Dzuv(R)(P2n) ^2nP2n> where A2n aß2n L°2n with scaling dimension

a2n D + n(2 - D) 3 - n.
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In three dimensions, Po, P2, and P4 are relevant, Po is marginal, and all others are irrelevant. From
the set of eigenfunctions, we select the relevant non-quadratic member P4. Its explicit form is

PA(ê,v) f-fZ>vf + 3v2, 0-4 A-D 1. (2.7)

Another way of saying that P4 is an eigenfunction of the tangent map with eigenvalue A4 is the
following. Let V(cj>, g) gPAcj>,v). Then we have that

DZuv(R)(V)(i>,Sg) V(tl>,g), S~x aß4 L"\ (2.8)

In other words, V(cj>,g) is a fixed point of Dzuv(R) x <5*, the tangent map extended by a flow of g.
The linear function g —» Sg will serve as our step /3-function.

As in [44], the goal of this paper is to construct a non-linear analogue of (2.8), which is a

restricted homeomorphism from the tangent space at Zuv to an invariant cone in M, originating
at Zr/v-

2.3 Extended renormalization group

iFrom now on, we turn our attention from points in M to parametrized curves in M, originating
at Zuv-

Definition 2.3 Let gm3X € R+ and G [0,gmax]. Let M be the space of continuous functions

Z:8xG-tl such that Z(cj>,g) Z(-f>,g) for all (è,g) e R x G, Z(cj>,0) Zuv(cj,), and

\\Z\f s\ip{4,:g)eUxG[Z(cp,g)\ is finite.

For technical reasons, we introduced a maximal coupling gmBûi- By default, this maximal coupling
is an arbitrary large number in the following. Restrictions on gmax will be explicitely stated.

Definition 2.4 Let 04 4 - D and S L~ai. Let S be the non-linear transformation given by

S(Z)(iP,g) (RxS*)(Z)(iP,g) R(Z)(f,5g). (2.9)

Lemma 2.4 The transformation S acts on the space M. It satisfies the bound ||5(Z)||oo <: Halloo-

This bound is an immediate consequence of oG C G (since Sg < g) and

sup [S(Z)(é,g)\ < sup [Z(cb,g)\) (2.10)
(0,s)6RxG ((0,9)gRx(SG J

Functions in M are bounded but not necessarily decaying at large fields. To bound non-perturbative
contributions, we will need an exponential decay at large fields. The following observation suggests
how to select a subspace Mqu C A/", which suits this purpose.

Lemma 2.5 Let Zqu : R x G —? R+ be the positive continuous function given by

Zqu{4>,9) exp{aQ[/(g) - ^|M^j _ (2 n)
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where

n=l "• J J

bQu(9) ^^ t^7. (2-13)

where p j^y 2. T/ie function Zqu is an element of N'. It is a fixed point of S.

The assignment g >-+ Zçu(-,g) is a continuous parametrized curve in M+. There is no reason, not
to set G R+ at this point (or gmix 00). Then Zqu becomes a curve of Gauss-functions, which
connects the two trivial fixed points of P, the ultraviolet fixed point Zqu(cJ>,0) Zuv(4l) to the
high temperature fixed point Zqu(cJ>, 00) Z}jt(cJ>).

Definition 2.5 Let Mqu be the subspace of N, consisting of functions with finite norm

Z(<t>,g)
\\Z\\qu sup

(0,9)£RxG Zqu(<P,9)
(2.14)

completed to a Banach space.

Functions in A/qj/ are in particular continuous in g. Their most useful property is the inbuilt bound

\Z(<t>,g)\ < \\Z\\QU ZQU(4>,g). (2.15)

At fixed g, it compares the decay of Z at large c/> with the decay of the fixed point Zqu- (2.15)
serves as the basic large field bound in this paper.

Lemma 2.6 The non-linear transformation S acts on Mqu- (It leaves invariant Mqu C Af.) Let
ZeMQU. Then \\S(Z)\\QU < \\Z\\aQU.

We can now state our goal more precisely as to find a non-trivial fixed point of S in A'qu (besides
the p-independent trivial fixed points of P, and besides Zqu). To this aim, we need to introduce
yet another subspace of Mqu-

Definition 2.6 Let gmzx < 00. Let F : G —> R+ be a continuous positive function with finite
norm \\F\f supseG |P(g)|. Let Uf be the subspace of Nqtj consisting of functions with finite
norm

Z(f>,g)\Z\f sup
((/>,S)eRxG ZQu(4>,g)F(g)

(2.16)

(2.16) refines (2.15). Its motive is to gain control over the p-dependence of Z.b It will be crucial
to carefully choose the function P. To give a flavour of, what kind of function F should be, notice
the following fact. Z e Mf implies that

\Z(cj>,g)\ < \\Z\\F ZQU(<t>,g) F(g). (2.17)

5The information that Z is an clement of Mqv implies no more information about its ^/-dependence than that, for
all <f> e R, Z{4>,g) is a bounded function of g.
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and thus

\S(Z)(f>,g)\ < \\Z\\FZQu(4.,g)F(Sg)a. (2.18)

If P is such that the condition F(Sg)a < F(g) holds for all g € G, then Af is invariant under S.

Furthermore, the ball \\Z\[p < 1 is then mapped to itself under S. Perturbation theory suggests
functions of the form F(g) Cg" exp (cgT). Depending on the actual values of C, a, and r, the
above condition may pose a restriction on pmax-

3 Contraction mapping

In this section, we present our method to construct a non-trivial fixed point of S. As in [44], we

split Z Zi + Z2 into two parts Zi and zT2, where 2*i is an approximate fixed point, and where
zT2 is an error term. Zi will be kept fixed. We intend to estimate the non-linear mapping of the Z2
under certain assumptions on Zi.

Lemma 3.1 Let Zi and Z2 be two elements of Nqu- Then

S(Zi + Z2)-Zi Ti(Zi)+ T2(Zi,Z2), (3.1)

where

Ti(Zi) S(Zi)-Zi (3.2)

and

T2(Zi,Z2) S(Zi + Z2)-S(Zi). (3.3)

Since S acts on Nqu, the mappings Ti and T2 are both well defined. The norm of Ti(Zi) measures
the quality of the approximate fixed point Z\. Equipped with a bound on Ti(Zi), the issue is to
find bounds on Z2 which iterate under (3.1).

3.1 Invariant ball B

The dependence of Zi and Z2 on g will be controlled with two different functions Pi and P2 to be

specified below.

Lemma 3.2 Let F{ : G —> R+, i 1,2, be two continuous positive functions. Abbreviate A/i
Mf, and \\Zi\\ ||Zì||f, ¦ Assume two functions Z{ with Z, 6 Aj. Thus for all (cj>,g) € R x G,

\Zi(4>,g)\ < [\Z,[\ ZQU(4>,g) F,(g). (3.4)

Then T2(Zi, Z2) is an element of Nqu- For all (tj>,g) £ R x G we have that

\T2(Zi,Z2)(4>,g)\ <

{(\\Zi[\Fi(6g) + [[Z2\\F2(Sg)y - (||2T,|| Pi^))" J ZQU(<fi,g). (3.5)
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Proof T2(Zi, Z2) has the integral representation

T2(Zi,Z2)(iP,g) J dt~S(Zi + tZ2)(iP,g)

J dtjt |yd/xT(C) (Zi+tZ2)(ßil> + C,6g)}

j dta {|d^(C) (Zi+tZ2)(ßi>AC,6g)^

x Jdpy(0 Z2(ßiP + Ç.Sg) (3.6)

Using the bound (3.4), it follows that

\T2(ZuZ2)(f,g)\

< J dtaf\\Zi\[Fi(6g) + t\\Z2\\ F2(Sg)Y

x \\Z2[\ F2(6g) {|d/i7(0 ZQU(ßiP + (,Sg)Y

J dt^(\\Zi[\Fi(6g)+t\\Z2\\F2(Sg)\ ZQU(r/>,g)

{(\\Zi\\Fi(5g) + \\Z2\\F2(Sg)y - (\\Zi\\Fi(6g)y}

xZQU(iP,g). a (3.7)

Differing from [23], no split into small and large fields is required here. Small and large fields are
taken care of simultaneously by the (/»-dependence of Zqu- For the right hand side of (3.5), we
notice the elementary estimate

\\Zi[\Fi(Sg) + H^HP^g))0- (lIZiH Pi(07?))
Q

<

a (\\Zi\\Fi(5g) + \\Z2\\ F2(6g)Y \\Z2\\ F2(Sg). (3.8)

Lemma 3.3 Let Z{ be as in Lemma 3.2. Let Zi be such that in addition ||Ti(zTi)|| ||Ti(.Zi)||f2
is finite. Then we have that for all (cj), g) 6 R x G,

\Ti(Zi)(ó,g)\ < \\Ti(Zi)\\ ZQU(ó,g) F2(g). (3.9)

Let n be an integer, n G {1,2,3,... }. Assume that F\ and F2 conspire such that

a(\\Zi\\Fi(6g) + (n + l)\\Ti(Zi)\\F2(6g)y F2(5g) < ^-j F2(g). (3.10)

Let B be the ball in J\f2 given by

\\Z2\\ < (n+l)\\Ti(Zi)\\. (3.11)

Then it follows that B is invariant under the transformation (3.1). For all Z2 6 B and for all
(cP,g)eUxG,

[S(Zi+Z2)(<t>,g)-Zi(è,g)\ < (n + 1) \\Ti(Zi)\\ ZQU(<P,g) F2(4>,g). (3.12)
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Proof iFrom (3.5), (3.8), (3.10), and (3.11), it follows that

\\S(Zi + Z2) - Zi[\ < \\Ti(Zi)\\ f \\T2(Zi,Z2)\\

< \\Tl(Zi)\\ + -^-\\Z2\\
n + 1

< ||r1(z1)|| + -^T(n+i)||r1(z1)||
n f 1

(n+ I) \\Ti(Zi)[\. D (3.13)

We remark that the additional assumptions made in Lemma 3.3 do not clash with those made in
Lemma 3.2.

Lemma 3.3 suggests the following strategy. We look for functions Z\, F\, and F2 such that
||Zi||fi and ||Ti(Zi)||f2 are both finite. Furthermore, Pi and P2 have to satisfy (3.10). Then we
have an invariant ball of error terms Z2 in the norm associated with P2.

3.2 Contraction mapping

Our next task is to establish the contraction property for the transformation (3.1) on the ball B.

Lemma 3.4 Let Z\, Z2, and Z2 be as in Lemma 3.2. Then wc have for all (4>,g) 6 R x Ç the

bound

[S(Zi + Z'2)(é,g)-S(Zi + Z2)(ci,g)[ <

a (\\Zi\\Fi(6g) f sup [[Z2 + t(Z'2 - Z2)\[ F2(Sg)) F2(Sg)
V (6(0,1] /

xZQu(i>,g)[\Z'2-Z2\\ (3.14)

Proof £From the integral representation

S(Zi+Z'2)(iP,g)-S(Zi+Z2)(il,,g)

j dtjtS(Zi+Z2 + t(Z'2- Zi)) (ip, g)

J dtjt Udth(0(Zi+Z2At(Z'2-Z2))(ßi> + C,Sg))

JQdta Mdp-,(Ç)(Zi+Z2 + t(Z2-Z2))W + Ç,6g)]

x j dp1(Q(zl2-z2)(ßi> + Ug) (3-15)
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it follows that

\S(Zi + Z'2)(iP,g) - S(Zi + Z2)(i>,g)[

< j dta(\\Zi\\Fi(6g) + \\Z2+t(Z'2-Z2)\\F2(5g)y

x F2(Sg) ^Jdp-l(OZQu(ßiP + C,5g)^ \\Z'2 - Z2[\

<af||Z1||Fi(Jfl)+ sup \\Z2 + t(Z2-Z2)\\F2(6g)Y F2(6g)
V (e[o,i] /

x ZQU(i>,g) \\Z'2-Z2\\. o (3.16)

The contraction property follows from this estimate in cooperation with Lemma 3.3.

Lemma 3.5 Let Z\, Z2, and Z'2 be as in Lemma 3.3. For all Z2 6 B and Z2 e B, we have that

\\S(Zi f Z'2) - S(Zi f Z2)\\ < -J- \\Z'2 - Z2\\. (3.17)
n + 1

Proof Since B is convex, it follows that for all t e [0,1],

[\Z2 + t(Z2-Z2)[\F2(6g) < (n + l)||3\(Zi)||. (3.18)

We can therefore use (3.11) to conclude the asserted bound from (3.14), namely

[S(Zi+Z'2)(<t>,g)-S(Zi+Z2)(è,g)\

<^-ZQu(<j>,g)F2(g)[[Z'2-Z2\\. O (3.19)
71+1

Corollary 3.1 Let B be as in Lemma 3.3. B is invariant under the transformation (3.1). The

transformation (3.1) is a contraction mapping. The transformation (3.1) has a unique fixed point
in B.

The iteration of the contraction mapping is a convergent scheme to compute the fixed point. Let
Z2$ 0 and define a sequence of (non-perturbative) approximants by

Z2,n+i S(Zi + Z2f-Zi. (3.20)

As n -> oo, this sequence converges to the desired fixed point. We cannot say much about this
limit at this level of generality. However, if Zi is strictly positive than it follows immediately that
the fixed point is non-negative.

3.3 Estimates for all couplings

Our next subject is to construct examples of the two functions Pi and F2 with the property (3.10).
These examples are tailor made for perturbation theory.

Suppose that we are told an approximate fixed point Z\ from an independent calculation, whose

large field decay is (at least) Gaussian. Then we proceed as follows.
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1. We determine Pi such that

Zi(<P,g)
sup
<*>eR Zqu(<P,9)

< Fi(g). (3.21)

Then ||Zi||fi < 1- Since it contains information about the large field behavior of Z\, we call
this bound the stability bound on Z\.

2. We determine F2 from an estimate on Ti(Zf) such that

Ti(Zi)(ô,g)
sup
0€R ZQu(<P,g)

< Ci F2(g) (3.22)

for some finite constant C\. Then ||Ti(Zi)||f2 < Ci. We call this second bound the error
bound on Zi.

3. We check that Pi and P2 satisfy (3.10).

If Pi and P2 are functions of the type of this section, then the validity of (3.10) is guaranteed by
the below estimates.

Remember that Zi plays the role of an approximate fixed point. This means that Ti(Zi) should
be small compared with Z\. A construction for all couplings should in particular cover the case of
small couplings. Inspired by perturbation theory, we choose

F2(g) 9° Fi(g). (3.23)

It says that the error term goes to zero as the coupling goes to zero. The speed of this process is

given by the exponent a.

Lemma 3.6 Let Fi : G —? R+ be a positive continuous function. Let ||Zi||fi < 1- Let a be a

positve real number, with a > o*, where6

a, JI- 3. (3.24)

Let F2(g) g" Fi(g). Let ||Ti(Zi)||f, < C7i for some positive constant Ci. Let n e N. Put
C2 (n + l)Ci- Assume that Pi has the following property. Let there exists a positive constant

Cf such that for all g 6 G,

J«-1)Wir Fi(Sg)a < CpFi(g). (3.25)

Then we have the following estimate. There exists a positive real number Lm\n such that for L
larger than this number, we have the bound

a(\[Zi\\Fi(6g) + (n + l)[[Ti(Zi)[\F2(6g)y F2(Sg) < -^ F2(g). (3.26)

The exponent a. is such that oc6°' 1. For a > a» the block volume a is beaten by the power of the step
/3-function.
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Proof iFrom the assumptions (3.22), (3.23), and (3.25), it follows that

a (\\Zi\\Fi(6g) + (n + l)\\Ti(Zi)\\F2(6g)y F2(Sg)

< a(l + C2(6gyy (Sg)' Fi(6g)°

< ae(°-VCA69)' (Sg)" Fi(Sg)a

< a (Sg)" CF Fi(g)

aS° CF F2(g). (3.27)

For a > ct*, the L-dependent factor aS" — i,D+(D-i)a can be made arbitrary small by taking L
to be large.

We learn that (3.10) (identical with (3.26)) holds provided that Pi satisfies (3.25). An example of
a function Pi which satisfies (3.25) without a restriction on gmax is the following.

Lemma 3.7 Let c* and c be positive constants. Let a be a positive constant such that a > ct*. Let

Fi be the function

Fi(g) expfag^+cg'). (3.28)

For all positive constants C2 such that

C><~-c, (3.29)

this function Fi satisfies the bound

e(a-i)c2(W Fi(Sg)a < Fi(g). (3.30)

Proof For this particular function Pi, we have that

exp{(a-l)C2(<)sn ex.p{ctg't+ ccc(5g)a}

< exp{cga-+aSa(C2+c)ga}
< exp^g^+cg"). D (3.31)

Lemma 3.7 contains a restriction on C2. To avoid a conflict with (3.10), the constant c has to be

chosen to be sufficiently large.

The pair Ft given by (3.28) and (3.23) (with a > ct*) satisfies all properties needed for the
contraction mapping. Remarkably, it involves no restriction on the size of gmax- With this pair,
we could construct the 04-theory at arbitrary large couplings. The problem is to compute an
approximate fixed point Z\, which satisfies the stability bound (3.21) with this function Pi, and
which satisfies the error bound with a sufficiently large exponent ct. Unfortunately, we have not
succeeded to prove these bounds for approximants from perturbation theory.
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3.4 Estimates for small couplings

Therefore, we supplement the bounds for all couplings by suitable bounds for small couplings.
There are two sources of constraints on the value of gmax. One source is that we may not be able to

prove the stability bound on Zi for arbitrary large couplings. Also we may not be able to prove the

error bound on Ti(Zi) for arbitrary large couplings. In this section, we will not speak about this
source of problems. These constraints cannot be addressed before we actually compute Zi. The
second source is that the function F\, which we find from (3.21) (say by defining Pi by equality),
might not meet the requirement (3.25) for arbitrary large couplings. If both effects come together,
we have to put gmix equal to the minimum from these constraints.

Lemma 3.8 Let c* and c be a positive constants. Let r be a positive constant such that r < ff*.
Let Fi be the function

Fi(g) exp(c*p*-fcoT). (3.32)

Let C2 and Cf be positive constants, with Cf > 1- For all values of L, there exists a maximal
coupling g(L) such that, for all g less than this maximal coupling, we have that

e(a-i)c2(igy FlrSg)° < cFFi(g). (3.33)

Proof The estimate is very similar to the one for all couplings. The identity

e(a-l)C2(<>SrFi((5p)a ecK-l)j' ^(j) (3.34)

yields the condition

gfa-ijciSsl'+cK-Ds' < Cf (3 35)

on p. Given exponents a and t, together with constants c72 and c, and a scale L, (3.35) determines
9(L)- Ü

To get an idea how g(L) behaves as a function of L, we neglect the the first term in (3.35). Then

*> <- (^mf
shows that g(L) shrinks as a certain power of L. A typical value of r in our perturbation theory is

one. Since ct* 3 in three dimensions, we are in the small coupling case. The good news is that
the maximal coupling is not necessarily ridiculously small.

It is likely that there exist other functions F, which meet the requirements of the above contraction

mapping. The particular ones considered here are made for approximants Zj from perturbation
theory. The interesting question remains whether this contraction mapping works with other
approximants, for instance approximants from numerical work. This would be more in the spirit of
the fixed point construction of [31].
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4 Linear approximation

The simplest approximation is a pure d>A-vextex. In this section, we will prove a stability bound
and an error bound for this linear approximation defined by

Z(ó,g) e-W, V(ó,g) gPt{4>,v). (4.1)

(To simplify the notation, we write Z instead of Zf The linear approximation will not suffice
to obtain a contraction mapping in three dimensions. But it is a part of, and also an instructive
example for, the finer bounds to be presented below.

4.1 Stability bound

The classical stability bound for (4.1) relies on analyticity in the field variable a strip around the
real axis [23]. We proceed differently therefrom [37, 44].

Lemma 4.1 The polynomial Pi(cj>,v) is bounded from below by

P4(<P,v) > ^4-15t;2.
(4.2)

Proof

Pi(4>,v)= cj>4 -Gvf>2 + 3v2

> (1 - e2) <j>4 + 3 (l - i) v2. (4.3)

For e2 ^, the assertion follows.

Lemma 4.2 For all (tj>,g) e R x G, we have that (4-1) is bounded from above by

Z(f>,g) < ZQU(<l>,g)ea>M (AA)

with

ai(g) < 15v2g+ ±g2»-l-aQu(g).

(4.5)
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Proof For any c, we have the elementary bound

{<p2-C-)2 + c4>2-Cl > ctf-i-. (4.6)

Put c gp x to obtain

|^>Ç^-Ç. (4.7)

The values of L, D, and 7 are such that (2.13) is bounded from above by

r2 _ 1 nf r2-D
bQu(g) ttt^TT-T < ~— 9P < 9P- a (4.8)

Lw 7 1+p' 7

The bound (4.5) suggests a function Pi of the form (3.28).

Lemma 4.3 Let Z be given by (4-1)- Let F\ : G —> R+ be the function

Fi(g) exp fl5t,2<? f 9J-\ (4.9)

Then Z is bounded in the norm (2.16). We have that ||Z||fi < 1>

Proof For all g > 0, aQu(g) > 0, wherefore

I|Z||f, sup
(tf.,9)€RxG

Z(4>,g)

ZQu(<t>,9)Fi(g)
< sup e_a«c/(s) < 1. (4.10)

sec

In three dimensions, the value of p is two and that of ct* is three. (Recall (2.13) and (3.24).)
Coincidentally, 2p - 1 ct*. But the second term in the exponent in (4.9) is only linear in g.
Although the stability bound (4.9) holds for any value of g, it restricts our contraction mapping to
small couplings.

4.2 Error bound

Equipped with this stability bound, one is led to estimate Ti(Z) in the norm given by (3.23), where

ct is a suitable exponent. As we will see, in fact as we know from [44], such a bound indeed holds. But
the exponent ct is only one half and therefore smaller than ct*. The linear approximation therefore
suffices only for a construction in low dimensions. Let us nevertheless see how the exponent one
half comes about. For this purpose, we consider the following interpolation formula.

Definition 4.1 Let X : R x G x [0,1] ->¦ R be defined by

fg)X(f,g,t) m Ijdfinia exp(- Jdp{1_t)^(OV(ßiP + Cf {,<

(4.11)
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In the limit of a vanishing covariance, the Gaussian measure dp-,«) becomes a Dirac measure
d£ <$(£)• Therefore, (4.10) interpolates between the exponentiated linerarized renormalization group
transformation (2.5)

(4.12)X(ip,g,0) expU Jdp.y(i)V(ßTl> + C,6g)

and the full renormalization group transformation

X(iP,g,l) ydßy(Oexp(-V(ßil> + C,Sg))\ (4.13)

both transformations being extended by the flow of p. The usefulness of this interpolation relies
on the following property.

Lemma 4.4 For t e (0,1), X is continuously differentiable in t. We have that

—X(tp,g,t)

aljdp.fr«) e*p(-Jdp.{i_t)y(t)V(ß1> + C + C,og)

xUdpty«) exp(-JdP'i-t)itt)VW + < + t,Sg)

Q-l

7 / d
2 \dc; /Vd^W + c + ^}) (4.14)

Proof

and

jtJdptl(0 exp(-Jdp(i_t)y(t)V(ê- + Ç + 0

"/ dptj«) iw + i] **p(-J Mi-t)y(0 v(t+<;+a

jdp.fr«) exp(-JMi-t)y«) V(cj> + Ç + Ç)

2VA
d2 d

x <7\—Jdpci-t)y«)V(ch + <;At)

i^+IJ/^-^w+c+o}

2 df + dt
/d/((i_()7(0 v{<i>+ç+o » o. ü

(4.15)

(4.16)

Notice that (4.14) is of second order in V due to the cancellation (4.16). Notice furthermore that
(4.14) is non-negative. The integral of (4.14) yields a representation for T\(Z), which can be used

to derive an upper bound of the desired form.



Wieczerkowski 463

Lemma 4.5 Let Z be given by (4-1). Let X bt given by (4-11)- Then we have that

Ti(Z)(ip,g) X(iP,g,l)-X(iP,g,0) J dt ^ X(yZ,g,t). (A.17)

Proof Because V is an eigenvector of the extended linearized renormalization group (2.8),

a Jdß1«)V(ßiP + C.,Sg) V(ifi,g) (4.18)

so that X(ip,g,0) Z(ip,g). a

A cost of this representation is that we have to repeat the stability analysis for the interpolated
interaction. In the linear approximation, this follows from an explicit calculation. The following
bound is uniform in the interpolation parameter.

Lemma 4.6 For all (4>,g,t) e R x G x [0,1], we have that

jM^t)fi)V(è + i,g) > |^4-15u29. (4.19)

Proof

/<Wi_»,7(fl V(4> + Ç,g)= 9 /"dM(i_t)7v?)P40 + £,t>)

pP40,u-(l-t)7)

and

> g <r.-15[t;-(l-t)7) } (A.20)

/j 7 i,-7 < u-(l-t)7 < v ~- (4.21)
1 - ß2 ' - v " - 1-ß2

show the assertion, since ß2 L2~D < 1. D

4.2.1 Large field domination

We are now in the position to estimate the downstairs factor in (4.14), using up a fraction, say one

half, of the large field behavior of (4.19).

Lemma 4.7 Let V be given by (4-1)- For all (cp,g) 6 R x G, we have that

e-/^-lh«)V(«,) 2 (J_ JMl_tìi{i) V(é. + t,g))2 <

C(g)f^exp(-9ìf + 15gvA (4.22)
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with

C(g) < 87(A6-r9t;2A2p) (4.23)

where

A2„ sup (e-£ 02n") (4.24)
0€R \ /

Proof The stability bound (4.19), in conjunction with the elementary estimates

(¦^-PA(4>,v)\ 16 (cj>6-6vf + 9uV) < 16 (f>6 + 9v2cb2)

(4.25)

and

(4.26)

implies that

exp(-^4) é2n exp|-^(ffÌ0)4J (gh)2" 9~î < A2n gS,

exp (-Jdß{i.t)y«) V(4 + i,g?) \ (Jj Jdp.{i-th«) V{* + t,gf)

- exp(-^ + 15ws) 8792 U6 + 9v2<A

< exp(-^j-f lbvg) 8752 (a6 + 9gv2A2). G (4.27)

Eq. (4.26) shows that each <j> in the downstairs factor kills g*. Therefore, each of the two cp-

derivatives in its calculation yields g*. Two ^-derivatives give a total factor of 52.

4.2.2 Fluctuation integral

Half of the stability estimate has now been used up for the control of the downstairs factor. The
other half suffices to do the fluctuation integral.

Lemma 4.8 Let b and c be positive constants. For all iji G R, we have that

Proof iFrom (4.6), we deduce that

bf > bf^-bA. (4.29)Y - 2 v 16
v

The Gaussian convolution of a Gauss function is again a Gauss function. From its explicit form,
we find (4.28). D
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Lemma 4.9 For all (<p,g) e R x G, we have that

y'drtT(0*"/d^,-,»*(0V(*+c'K)5 (/d/i(i-t)7(€)n* + C + 0) <

(4.30)

Proof iFrom (4.22) and (4.28), with 6 f and c Ag*'1, it follows that

Jdpty«)e-SMi-t)Ai)v^c+i) 2 (Jdp.{l.t)y«) V(<p + Cf O'

< |dM(7(C)C0?)V9expr-|w + C)4 + 15v2SJ

<(?(</) VP exp^-ì^-j^^f 15t,2g + jff2"-1)- a (4.31)

In eq. (4.14), we also encounter another fluctuation integrals without downstairs factors. It is

estimated in the same manner.

Lemma 4.10 For all (<p,g) e R x G, we have that

Jdp.fr«) exp^-Jdp{i.t)y«)V(<t> + <: + 0) <

^4i^2+i5^+8-*2pi- (432)

Proof iFrom (4.22) and (4.28), with b § and c 2g"~l, we find that

Jdptl«) exp(-|d/i(1_t)7K)V(^ + C + 0)

< |dM(7(C) exp(-^4f 15t;2 <?)

^4h^2+15v2*+§*2'_1)- D (433)

4.2.3 Scale transformation

The remaining task is to combine (4.30) with (4.32) and to rescale the field and the coupling. We

insert these estimates into (4.14) to obtain the following error bound.

Lemma 4.11 Let Fi be given by (4-9)- For all e 6 (0,5) and all Le {2,3,4,... } there exists a

maximal coupling <?max, depending on L, e, such that for all (ip,g,t) 6 R x G x [0,1], we have that

jtX(iP,g,t) < g*-1 Fi(g) ZQU(cP,g). (4.34)
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Proof Insert (4.30) and (4.32) into (4.14) to conclude that

—X(ip,g,t) < (fSg)ÌC(Sg)vxp(^TMLf{fi^)2

expflbafSg+f^-J + ^ (Sg)2"^. (4.35)

We choose omax such that

aSige C(Sg) exp{l5(a<5- l)v2g)

exp | (^J f 0 (Sg)2"-1 - Ç} expi[-aQU(g) J < 1 (4.36)

and

a^TfÌ\gy ^b0v(s). 0 (4.37)

The condition (4.37) is easy to fulfill because aß2 L2 is on our side. The condition (4.36) is

also easy to fulfill, but it requires gmax to be exponentially small as a function on L.

Lemma 4.12 Let e, L, and pmax be as in Lemma 4-11- Put

F2(jg) gi-eFi(g). (4.38)

Then \\Ti(Z)\\f2 < 1.

Lemma (4.11) is the first instant in this section where we need a small coupling argument.
(Additionally, this Pi limits the contraction mapping to small couplings.) To deal with large couplings
case, we have to look for a modification of (3.9). Since also (4.9) would require a modification,
and since the exponent c \ - e is anyway too small to meet the condition (3.24), we will not
eleborate on this possibility here. Instead, we will replace (4.1) by an approximant from higher
order perturbation theory and modify the estimate of this section for this case.

5 Perturbation theory in g and g2 ln(g)

In this section, we first recall the formal power series solution to the fixed point problem T(V) V,
where T is defined by S(Z) exp(-T(V)) with Z exp(-V). As in [41], we develop V into a

double perturbation expansion in both g and p2ln(g). We then prove a stability bound for the

perturbative approximants (of odd order in g), extending the analysis in [44].

5.1 Formal power series representation

In three dimensions, the renormalized ^-trajectory is not expandable into a formal power series

in g. However, it does admit a formal power series representation in both g and g2 ln(g). See [41].
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To simplify the bookkeeping, we prefer p and k. ln(p) (instead of g2ln(g)) as formal expansion
parameters. Let V(cp,g,A) be given by a double formal power series

oo [i]
V{*,9) E E V{r'a)W9r^a (5.1)

r=l a=0

with polynomial coefficients

N(r,a)

^(r'o)W E P2n(<P,v)v£a), N(r,a) r-2a + l. (5.2)

The maximal number of fields N at a given order (r,a) is peculiar to ^-theory. For safety reasons,
we define

V£a) =0 n > N(r,a). (5.3)

Also, we set the order zero to zero. To first order, the trajectory is defined to be a pure normal
ordered cpi-\extex,

V2{na) - KO Sn,2- (5-4)

The perturbative fixed point turns out to have two free parameters one for each resonance. See

[41]. All of these solutions are suitable approximants for the contraction mapping. We set both
parameters to zero,

v(2,0) Vfl(3.0) 0 (5 5)

The choice (5.5) has the advantage is to have a minimal number of vertices.

The formal power series (5.1) supplies us with a sequence of polynomial approximants

rm»x L 2 J

Wr—>(0,s) E E v{T'a)tt)gT ln(s)a (5-6)

r=l a=0

labeled by the maximal power rmax of p. The first of which, rmax 1, is the above linear approximant.

The default value of rmax will be seven in the following.

5.1.1 Recursion relation

To be a fixed point of the extended renormalization group transformation T (the transformation
for the interaction V) in the sense of a double formal power series, the coefficients have to satisfy
the following recursion relation. Let (0\;... ;On) $

denote the cumulants associated with the
Gaussian moments

(Oi---On)^ Jdp7«)Oi(^ + 0-"O„(* + O- (5-7)
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Lemma 5.1 Let V be given by (5.1). Let K(V)2„ be the coefficients defined by7

K{V)ta)
r (-1V+1 r ^ r ™

a&T E fi E E "•¦ E E 5r,r1+.+r, 5a,a,+ ¦+ai
i=2 ' n lai=0 r, lo,=0

X(2rTjT^ Id"vW P2n{^v) (^(r"0l);--- ;V^a>^ (5.8)

Then Z e is a fixed point of S in the sense of a formal double power series if and only if

(i - £3—r) vta)

6=a+l
L'r È (jinW-'V^ + KiV)^. (5.9)

To derive this set of equations, one performs a cumulant expansion for the hierarchical renormalization

group, rescales the coupling, and compares equal double orders (r,a).

Lemma 5.2 The system of equations (5.9) has a unique solution of the form (5.1) with the
properties (5.4) and (5.5).

Proof The set of equations (5.9) can be solved recursively. The condition (5.3) iterates through
the recursion.8 One proceeds forwards in the order r-l-tr and, at the order r, backwards in
a -> a — 1. Suppose that we have computed V2„ both

1. for all (s, b) with 1 < s < r - 1 and 0 < b < [§] and

2. for all (s, b) with s r and a f 1 < fc< §.

Then this data determines the right hand side of (5.9). Therefrom, we compute V2n f°r a^
n < N(r,a). We find two cases.

1. Non-resonant case: If 3 - n - r ^ 0, then (5.9) determines V2„

2. Resonant case: If (r, n) € {(2,1), (3,0)}, then the left hand side of (5.9) is zero. In both cases,
we find a constraint on the right hand side of (5.9).

The two resonances are resolved by logarithmic corrections. Consider the mass resonance (2,1).
Since9

A'tV)^'1' 0, (5.10)

7The Gaussian integral projects onto the P2„ (VO-component of the cumulant.
8One cannot build connected diagrams with more than 2(r — 2 a 4- 1) external legs from r - 2a vertices g : <pA :„

and a vertices g2ln(g) : cj>2 :„.
9g2 ln(g) : <j>2 :„ is not generated in the contraction of two vertices g : <t>* :„.
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the equation labeled by (r, a,n) (2,1,1) is automatically satisfied. The equation with (r, a, n)
(2,0,1) becomes

0 -L'2 ln(L) vf'0 + K(V){2'0). (5.11)

The other parameter
vacuum resonance (3,0) is analogously resolved. G

We use it to determine V2 ' The other parameter V2 ' is unconstrained. We put it to zero. The

5.2 Stability bound

To any finite order, perturbation theory furnishes approximate solutions to our fixed point problem,
which are polynomials in <p with coefficients that are polynomials in both g and g2 ln(g). We intend
to a polynomial of this kind as the approximate fixed point in our contraction mapping. To this
aim, we need to prove two properties, a stability bound and an error bound. Both bounds will be

proved analogously to [44].

5.2.1 Tree approximation

We first prove stability for the tree approximation, which is defined as the polynomial in cp, whose
coefficients are simplified to their leading powers in g. This bound extends by continuity to a

stability bound for the complete perturbative approximant in a small coupling region.

The set of coefficients Vj„e Vff can be computed independently of the others. They
define a tree approximation

Vtree(ó,g) £ ^2(r+1) f Vtree (5-12)

r=l

to the renormalized 04-trajectory10. Notice that we have replaced : cp2n :v by its highest term ^>2n.

Lemma 5.3 The recursion relation for V^fJe decouples. It reads

(l - L2(^>) Vit
r ,\i+l r r

l-3-r y (-A \p Xp r ir(ri) fr,)h 2-^ 7\ 7.7. °r,r,+ --+r, Vtree Vtree

i=2 ' n=l r, l

X(2(r +
l)1)!u2(^) /<W</0-P2(r+.)W^) (P2(r1+1),- ->PW))iM

(5.13)

All vertices in the tree approximation are irrelevant in the extended powercounting. In particular,
there are no resonances in the tree approximation. The tree coefficients have a simple sign pattern.

10The sum of tree graph contributions is in fact convergent. We will not use this fact, since we are dealing with
finite order approximants, which are polynomials in <p.
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Lemma 5.4 For all r > 1, V$e (-l)r+1 V^J.

Proof An induction on the order r.

It follows that all tree approximants with even maximal order rmax are unstable. Therefore, we
will restrict our attention to the friendly approximants with odd maximal order.

The sign pattern remains valid at sufficiently small couplings. To realize this, assemble the
perturbative approximant with loop contributions.

Lemma 5.5 Let vf~? V$e 0. Then we have that

EEy(r'a)wsrMffr E ^s"-1 t"+^b)
r=l a=0 n=0 > '

(5.14)

with X2n(g) 0(g,g2 ln(g)).

The tree coefficients are the leading terms of the perturbative vertex functions at small couplings.
The loop corrections are continuous functions of g (since they are polynomials in g and g2ln(g)).
Therefore, properties like the sign pattern at g 0 extend to a finite region g e [0, <?max] of small
couplings.

5.2.2 Effective ^-coupling

All o2 ln(p)-terms are subleading. For this reason, the tree graph bound of [44] applies also to the
three dimensional model.

Let P2n(g) Vtree + ^2n(<?) (a polynomial in g and g2 ln(g)) so that the perturbative approximant

becomes

V'r—H<P,g) E <t>2n 9n~l ß2n(9)- (5.15)

Lemma 5.6 For all rmax > 1, there exists a maximal coupling <?max > 0 (depending on rmaX/) such

that for all g E G and n 6 {2,3,... rmax f 1},

ß2n(g) (-IT \p2n(g)\- (5.16)

In the following, we will assume that gm&x is sufficiently small such that (5.16) holds.

The following statements are presumably true for any finite order rmax G 2N + 1. As a part of
their proofs, we will have to compute certain coefficients recursively. I have only done this up to
the (already ridiculously high) order rmax 99.



Wieczerkowski 471

Lemma 5.7 Let rmax 6 {1,3,5,... ,99}. Then there exists a maximal coupling <?max > 0 such

that, for all g G G, (5.15) is bounded from below by

i
Vlr°"*H<P,g) > Y,<t>2n9n~ll>2n(9) + <P*gpA9), (5.17)

71 0

where p4(g) is the solution to the recursion relation

P4„(s) ^n(g) - ^n+2Ìf (5.18)
4p4n+4(ff)

with the initial condition

P2(r„„ + l)(s) M2(r,nax + 1)(5). (5-19)

Proof The proof is an induction on powers of cp4. (Notice that 2(rmax + 1) £ 4N.) The induction
step follows from

j4n „2n-l

P4n(g) + 4> 9tnn+2(g) f 4> g P4n+4(g)

fMn+fg)2 i -, ,2 P-4n+2 \P4n(g) - -. 7-T f P4n+i(g) [<t> 9 + 7

(5.20)

since p4n+4(g) is positive for small couplings.

A proof of the positivity of the effective ^"-couplings is given below. The solution of the recursion
relation (5.18) is a rational function

P(g,g2ln(0))
Pi <?) 77, 2l (5.21)

Q(g,g2ln(g))

where P and Q are polynomials in g and g2 ln(g).

Lemma 5.8 Let rmax G {1,3,5,... ,99}. There exists a positive number c > 0 and a maximal
coupling <7max > 0 such that for all g G G, we have that

p4(g) > c. (5.22)

Proof The value P4(0) is determined as the solution of the recursion relation

T/(2n)
Pm(0) Vif1] - 4n'TOfflV (5-23)

with the initial condition P2(rmax+i)(0) vf™- Therefore, it depends only on the tree graph
coefficients. An explicit computation shows that P4(0) is a positive number. Since (5.21) is a

continuous function of g, the assertion follows.

The effective ^"-couplings at order seven will be listed below. In particular, the value of P4(0) at
order seven is

P4(0) gg. (5.24)

As a side remark, we mention that the effective 04-coupling in the tree approximation is not a small
number at large orders. (It presumably converges as the order is taken to infinity.)
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Lemma 5.9 Let rmax G {1,3,5,... ,99}. There exist positive numbers gmax, c, and a (all strictly
larger than zero) such that for all (cp, g) G R x G, we have that

V^^(cp,g) > g (~<r>4-a). (5.25)

Proof i,From (5.17) and (5.19), it follows that there exist two polynomials A and B and a positive
number c such that

V^'H<P,g) > g ^A(g,g2ln(g))+B(g,g2ln(g))cp2 + cA. (5.26)

for all cp G R and g G [0,pmax], where gmax is a certain positive number. For this maximal coupling,
define HAHoo supJgG |A(g,p2ln(g)| and analogously ||P||oo- Then we have that

V<r—H+,g) > g^f\A\\00-\\B\\00cp2 + cA

> sj-IIAIIoo-^f ^4}- (5.27)

Put a \\A\\œ f iL|^°- to obtain the assertion. D

The remaining stability analysis is completely analogous to the linear case.

Lemma 5.10 Let rmax G {1,3,5,... ,99}. Let pmax be as in Lemma 5.g. Let Fi : G -> R+ be

given by

Fi(g) exp^ag + ^g2"-1^. (5.28)

Then Z'rmax) exp{-V(rm"')} is bounded in the norm associated with Pi- We have that

||Z(r»«)||Fl < 1. (5.29)

This shows that the perturbative approximants are indeed in the domain of the extended
renormalization group. The stability bound is complete aside of a proof of the positivity of p4n+4(p). By
continuity, it suffices to prove the positivity of p4n+4(0), which depends only on the tree coefficients.

5.2.3 Computation of tree coefficients

There is another way to compute the tree coefficients than by the recursion relation (5.13), which
uses a Hamilton-Jacobi differential equation. This other way is both simpler than to iterate (5.13)
and it also relies on an interpolation formula, which we will need independently in the error bound.

The perturbative renormalization group is the formal power series solution of the non-linear
transformation

T(V)(i>,g) -a ln J dp,«) exp{-V(ßij> + (Z„Sg)) (5.30)
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It can be computed in two steps. Step one is the fluctuation integral

W(ó,g,t) -ln JdpfO exp{-V(é + <:,Sg)} (5.31)

evaluated at t 1. The interpolated quantity satisfies the renormalization group differential
equation

§-W(<P,g,t) 1 $mt,gA)-{^w(cp,g,t)

in the sense of a formal powerseries, with the inital condition

W(<p,g,0) V(ó,g).

Step two is the scale transformation of the result of step one,

T(V)(i>,g) aW(ßiP,Sg,l).

(5.32)

(5.33)

(5.34)

Consider the tree approximation hereof. The tree approximation affects only step one. Eq. (5.32)
has to be replaced by the Hamilton-Jacobi equation

^AVtree(<P,g,t) -\ ^WtrAAgJ)\j^Wtree(cp,g,t)}

with the initial condition

Wtree(<P,g,0) Vtrec(cp,g).

The condition of renormalization invariance becomes

Vtree(tp,g) a Wtree (ßtp, Sg, 1)

(5.35)

(5.36)

(5.37)

Lemma 5.11 The Hamilton-Jacobi equation (5.35) has a unique formal power series solution

oo

W(é,g,t) E^nW^V-1 (5.38)
71 2

with the boundary condition

W(cp,g,l) a"1 W(ß-la,S-lg)

and P4(0) 1. It reads

B2n(t) 6L,„ {--( (J-j+M
n-2

where the coefficients l>2n Q-re recursively determined by

(n - 2) 62n 2 E ml b2m b2i

771 + 1=71+ 1

(5.39)

(5.40)

(5.41)

with the initial condition 64 1.



474 Wieczerkowski

We remark that this solution makes sense beyond a formal power series. To see this, one writes

W(<P,g,t) g-'W(fg<p,l,t) (5.42)

and shows inductively a bound on the positive coefficients b2n. However, since we only need the
formal power series solution, we leave this issue aside.

Corollary 5.1 The tree graph coefficients are given by

Vtree b2(r+l) iyZ L2
(5.43)

This confirms the sign pattern of the tree coefficients.

Once the tree coefficients are written on the blackboard, we proceed to compute the effective fn-
couplings in the tree approximation. With the i-dependence switched on, their recursion relation
reads

pin(t) Bin(t) -
B4n+2(t)2

Pin+ì(t)

starting at

P2(rmlx+l)(i) P2(rm., + l)W

Lemma 5.12 The effective cp4n-couplings are given by

Pift) r4n ^7
L2M} 2(7.-1)

with (t-independent) numbers r4n determined recursively by

Xin b4n
bJL+2

r4n +4

where

r2(rmax + l) ^(r^+ l).

(5.44)

(5.45)

(5.46)

(5.47)

(5.48)

Remarkably, the effective <£4-coupling comes out to be independent of the interpolation parameter
t. To seventh order we find the following numbers.

Tree coefficients

n (-l)n&27,
2 1

3 -8

4 96

5 -1408
6 23296

7 -417792
8 7938048

Seventh order

n r4n
4 7938048

3 33817/19
2 90032/1321
1 4306/5627
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The error bound is complete for the order seven approximant. As a sidedish, we find the following
useful bound which is uniform in the interpolation parameter.

Lemma 5.13 The tree approximant of order seven

W£1(<P,g, t) E ß2"W t*" 9n~l (5-49)
71=2

satisfies for all (cp, g, t) G R x R+ x [0,1] the lower bound

W£l(cp,g,t) > ^-gf. (5.50)

The recursion relations (5.41) and (5.47) can be solved by computer algebra. Their solution proves
the positivity of the tree approximation (at least) up to the order 99.

5.3 Error bound

To prove an error bound for the higher order approximants, we proceed analogous to the linear
case. The main tool is a generalization of the interpolation formula (4.17). ^,From perturbation
theory, we have a polynomial

rmax UI
V(r™*)(cp,g) EEy(r'a)(^rin(ff)a (5-51)

r=l a=0

which satisfies the scaling relation

f^ (_l)n+l „ /r -i7i\Tvir— \ip,g) a J2(—^7—r^^{[v^—H-,Sg);\ (5.52)

n=l

Here p(rmax) denotes a projector

P^ryinfc)«) i9Tln{9)a ifr^»and (5.53)
10 else.

The truncated cumulant expansion in (5.52) contains terms of higher order than gr"">*. These are

projected out by means of pt7™*).

Definition 5.1 Let W(r>»") : R x G x [0,1] be defined by

^(_l)n+l _,.._. Wr„(r r in^T
't-r

W^^(yj,g,t) E^—n—p(r"")(k(r""»(^s); ¦ (5.54)
*—' ro! \ 1 J / t7,i/*

This interpolation is identical with the formal power series solution of (5.31), projected to ¦p(r™«A.

Its boundary values are

W(Tm>*\l>,g,0) V(r"""')W,9) a W{r™*](ßtp,Sg,l). (5.55)

We use it to define the following generalization of (4.11) (the case rmax 1).
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Definition 5.2 Let X^™"' : R x G x [0,1] be defined by

X<r— \ip,g,t) IfdpfO exp(-W^^(ßf + C,Sg,l-t. (5.56)

To be well defined, eq. (5.56) calls for a stability bound for the interpolation (5.55). Postpone this
issue for a short while. Eq. (5.56) yields the following representation for the error term.

Lemma 5.14 Let rmax G {1,3,5,... 99}. Then (5.56) is well defined for the perturbative approximant

(5.51). We have that

Ti(Z^^)(iP,g) Xlr—Hip,g,l)-X^^(yj,g,0).

The usefulness of this representation relies on the following differential formula.

(5.57)

Lemma 5.15 Let rmax G {1,3,5,... 99}. Then (5.56) is continuously differentiable in t G (0,1).
We have that

a UdpfO exp(-W(r™*i(ßi, + (,Sg,l - tM

x Jdph«) exp(-W(r«"*HßTp + c;,Sg,l-t)\

(5.58)

Proof
d

dt.JdpfO exp -V ^lnj dp(l_tfi)exp(-V(è + Cf £,<?))}

dP-t7(C) Kt + ö-579 exP

/dp.(7(C)

d2

dt 2df -V

exp -V

d_ iff
dt

+
2 ÔC2 him }) (5.59)

and

(1 + 1*-) V I
\dt + 2dc2) \ \dt 2df

-vili2 V<9C

lv(2-v
2 \df (5.60)
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The upstairs factor is understood as a synonym for the truncated cumulant expansion. It is a

polynomial expression. The downstairs factor in (5.59) is in particular a polynomial expression and

(5.60) is a manipulation of a polynomial expression.

The important feature of (5.58) is that in the downstairs factor all orders lower than rmax are
cancelled by the t-dependent upstairs factor. To be well defined for all values of the interpolation
parameter, (5.56) requires an additional stability bound.

Lemma 5.16 Let rmax G {1,3,5,... 99}. There exist positive numbers <?max, c, and a (all dependent

on rmaX/l such that the following stability bound holds for all (cp,g,t) G R x G x [0,1]:

W<r™" \<p,g,t) > g (l^-a)- (5-61)

Proof
Since W(r"""<)(0,5,0) V^rmtx\cP,g), we know that the bound (5.61) is valid at t 0. Furthermore,
we have shown that the effective 04-coupling is independent of t in the tree approximation. The
assertion now follows from the uniform continuity of the effective 04-coupling of the complete
perturbative approximants.

As the result of a truncated cumulant expansion, we have that

7-IMX+ l
W^"\<p,g,t) E ^VWs.ffM). (5-62)

71=0

For n > 2, each coupling p2n(g,g2 A) is the sum of a tree term and loop contributions

P2n(g,g2,t) B2n(t) + \2n(g,g2ln(g),t). (5.63)

The tree term is given by (5.40). The loop contributions are higher order corrections

A2n(s,52ln(<?),t) 0(g,g2ln(g)) (5.64)

as they are polynomials in g and g2 ln(g) whose coefficients are polynomials in t.

Consider the effective 04-coupling p4(g,t) defined as above.11 As it is a continued fraction of
couplings (5.63), it is a rational function (of g, g2ln(g), and t) on some rectangle [O,«?^] x [u> !]•
Since the tree approximation has this particular ^-dependence, we have that p4(0,t) — r4 for all
t G [0,1] at g 0. Let c T4/2. By continuity, there exists a positive number gmax (with
0 < gmax < 9rnax) sucn that for a11 (gA) € [0,Pmax] x [0,1], we have that

P4(g,t)>c. (5.65)

Taking care of the constant and quadratic term in cp analogously to (5.26) and (5.27), the assertion
follows. D

As in the linear case, the stability bound on the interpolated interaction is independent of the

interpolation parameter. The remaining analysis is completely analogous to the linear case.

uTo be precise, we should consider the collections of all $4"-couplings P4n(g,t) and repeat the following reasoning
for all of them.
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5.3.1 Large field domination

The harvest of the higher order perturbation theory is a higher power of g in the bound after
dominating the large fields by part of the stability estimate.

Lemma 5.17 Let rmax G {1,3,5,... ,99}. For all (cp, g,t) G R x G x [0,1], we have that

«pj-W*"-^,*)} 1 [l-P<r— )] (jLWl™>*H<l>,g,t)j

<C(g)gr^l2 exp(-^gcp4+ag) (5.66)

for some polynomial C G R+[g,g2 ln(g)] (with positive coefficients).

Proof

The downstairs factor is a polynomial of the form

[l_p(w)] (J.W(rmax){<j)tgtt)y1
2

7-m.x + l
E 4>2ngr—+'B2n(g,g2ln(g),t)
71=0

2rm„x + l
f E <P2ngn-lB2r,(g,g2ln(g),t) (5.67)

n=rm«+2

with certain polynomials B2n. Notice that the projector affected only the first sum in (5.67). Notice
also that the highest power of cp is 2(2(rmax f 1)) — 2, where —2 comes from the two ^-derivatives.
With the help of the stability bound, we find the upper bound

expj-W*™*)^,*)} 1 [l-pc—)] (JjW(rmaxH4>,g,t)y

<exp(~fl04f g a) l E 9r""-î+lA2n\B2n(g,g2ln(g),t)\
I 71 0

2rmlx + l 1

f E 9"1'l^2n\B2n(g,g2ln(g),t)[\ (5.68)
n=rmax+2 J

where

A2n sup lexp (--<p4) cp2n\. (5.69)
•fieR

I V 4 / I

Expand the polynomials B and take the supremum of t G [0,1] in each term to arrive at the bound
(5.66). G
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5.3.2 Fluctuation integral and scale transformation

The fluctuation integral and the scale transformation are now identical to the linear case aside of
a minimal cosmetic modification to include the constant c. We therefore do not repeat them here

and jump to the following conclusion.

Lemma 5.18 Let rmax G {1,3,5,... ,99}. Let Fi be the function (5.28) from the stability bound.

For all e G (O, *A?*-) and all L G {2,3,4,... }, there exists a maximal coupling pmax such that for
(tp,g, t) G R x G x [0,1], we have that

jtX^"\i>,g,t) < gr-^-£ Fi(g) ZQU(iP,g). (5.70)

The error bound is an immediate consequence hereof.

Corollary 5.2 Let e, L, and gmix be as in Lemma 5.18. Put

FM g'-^-1 Fi(g). (5.71)

Then we have that Z(rm") exp(-V^Tm^) satisfies the bound

||Ti(Zr»")|| < 1. (5.72)

We have computed V^Tm^(g) as a polynomial approximant of a formal double expansion in g
and <?2ln(p). Then we have shown that, for sufficiently small (but finite) couplings, Z^"""1'

exp(-V(rm"') satisfies both

1. the stability bound ||iT(rm"'||Fi < 1, where Pi is a function of the form (3.32), and

2. the error bound ||Ti(Z)||f2 < 1, where P2 is given by (3.23), with exponent a *f* - e.

For rmax > 7 and e not too large, all assumptions of the contraction mapping are satisfied. The
construction is complete.

6 Conclusions and outlook

The iteration of the contraction mapping provides a convergent representation for the (^-trajectory.
It can be used to study the properties of the fixed point Z*(cp,g). One important problem, which
can be shown, but which will not be shown here, is that ZA<P, g) is positive. A brief discussion of its
positivity is contained in [44]. Other questions about ZA4>,g) could also be studied in principal, for
instance the summability of perturbation theory, and analyticity properties of its Borei transform.

A very interesting question is the behavior of Z*(cp,g) at large couplings. Conceivably, Z„(f>,g)
connects the trivial fixed point at g 0 with the non-trivial infrared fixed point at g oo. The
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contraction mapping is potentially capable of a construction, which is uniform in the running
coupling. But such an enterprise requires a better approximate fixed point Zi(cp,g) than the
one from perturbation theory. It is conceivable that one could extend the approximants from
[31, 32, 33, 34] to achieve this aim.

The underlying scheme of this paper is to compute a renormalized trajectory as a renormalization

invariant curve in the unstable manifold of a renormalization group fixed point. This scheme
is certainly translatable to virtually every theory treated so far with the renormalization group.
In particular, all hierarchical models mentioned in the introduction can be handled that way. We

hope to present an extension of this method to the framework of polymer expansions and full
models in future work. Another aspect of this theory is the question how traditionally computed
renormalized actions converge to the renormalized trajectory. In other words, what is the domain
of attraction of this extended fixed point of an extended renormalization group. This question is
related to the problem of renormalization group improved actions and also to the question how
to truncate a renormalization group such as to maintain control of the errors. We hope to make

progress on these and other questions in this context in future work.
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