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Rigorous control of the non-perturbative corrections to the double
expansion in g and g?In(g) for the ¢3-trajectory in the hierarchical
approximation

By Christian Wieczerkowski
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Wilhelm-Klemm-Strafie 9, D-48149 Miinster
wieczer@uni-muenster.de

Abstract. We study the renormalization invariant trajectory of the ¢*-perturbation of the free field fixed
point in the hierarchical approximation. We parametrized it by a running ¢*-coupling g with lincar step
B-function. We rigorously control the non-perturbative corrections to finite order approximants from dou-
ble perturbation theory in g and g%In(g). The construction uses a contraction mapping for the extended
renormalization group composed of a hierarchical block spin transformation with a flow of g.
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1 Introduction

The non-perturbative renormalization of ¢%-theory is a central problem of constructive quantum
field theory (28, 40, 7). The state of the art includes phase cell expansions [27, 17, 35, 4, 18],
renormalization group techniques [20, 5, 3, 23, 21, 22, 25, 37], and random path representations [6,
19]. However, the non-perturbative renormalization of ¢*-theory remains a mathematical enterprise
of considerable difficulty. Recent work by Brydges, Dimock, and Hurd [8, 9, 10] aims to simplify the
older constructions and to cast renormalization theory into a more conceptual form. The present
paper intends to make a modest contribution in the same direction.

A key to the understanding of renormalization theory is Wilson’s renormalization group [45, 46].
The traditional starting point is a bare action Sp(¢,go)!. The goal is to compute a renormalized
action as the limit n — oo of Sn(¢,9.) = R}(So0)(¢,90) of an iterated renormalization group
transformation R; with scale L. The bare couplings gy are tuned in this process so as to obtain
a finite limit for g,. This process can be viewed as a trajectory in the dynamical system (on
some space of actions) generated by Ry. If the action is a fixed point S.(¢) of Ry then its
renormalization becomes trivial: the bare action and the renormalized action become identical. This
fixed point problem has a natural generalization. Consider a curve S(¢, g) of actions parametrized
by a (running) coupling g such that

1. S(¢,0) is a fixed point S,(¢) of Rz,
2. 045(¢,9)|g=0 is an eigenvector O(¢) of the linearization of Ry, at S.(¢), and
3. R1(S)(¢,9) = S(¢,31"(g)), where ., is a step S-function.

In this case, the bare action and the renormalized action have the same functional dependence of ¢
but correspond to different values of the running coupling g. Renormalization amounts to control
the flow generated by the step S-function, a comparatively easy task.

We will study a variant of this renormalization problem, where Ry, is a block spin transformation
for a three dimensional scalar lattice field theory with hierarchical covariance [32]. It is designed such
that the interaction remains local under the renormalization group evolution. The lattice interaction
Boltzmann factor factorizes into product of local Boltzmann factors Z(¢) = exp(—V(¢)) (one for
each lattice site), which are functions of a real variable ¢. In three dimensions, the hierarchical
renormalization group then reduces to the non-linear integral transformation

RU2)W) = { [ a0 2 (1 +<)}L3, (1)

where dy(¢) is the Gaussian measure on R with mean zero and unit covariance. This transformation
and variants of it have been studied by many authors both as a model of constructive renormaliza-
tion and also because of its properties as a non-linear theory. Rigorous work on hierarchical models
(more generally ultralocal renormalization groups) includes:

1. the e-expansion [12]

2. the ¢} infrared fixed point [31, 33, 34]

'The quantum field is understood to be rescaled to a unit ultraviolet cutoff.
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. the massive perturbation of the ¢3 fixed point [32]
. the renormalization group differential equation [16]

. the ¢} infrared problem [37, 1]

. the renormalized ¢f-trajectory [44]

3
4
5
6. the ¢} ultraviolet problem at negative coupling [24]
'
8. the SU(2)-lattice gauge theory [43]

9

. the non-linear o-model (26, 38]
10. the sine-Gordon model [14, 30]
11. multigrid expansions [37, 39]

12. and random surfaces [11]

Beyond the hierarchical approximation, one has to deal with non-local interactions generated by the
renormalization group. Although non-local corrections are rather small in all models brought under
control so far, the mathematical apparatus needed to control them is a lot more sophisticated, the
main tool being polymer expansions. The virtue of hierarchical models is that they allow to study
renormalization effects without this additional burden (or perhaps joy).

In this paper, we continue the work started in [44]. We look for a curve of renormalized
interaction Boltzmann factors Z(¢, g) with the following properties:

1. Z(¢,9) = exp(-g : ¢* 1) (1 + 0(92), i.e., Z(¢,9) emerges from the trivial fixed point

Z.(¢) =1 (the free massless hierarchical field) tangent to a (normal ordered) ¢*-vertex, and

2. RL(Z)(¥,dL(9)) = Z(¥,9), i.e., Z(¢,g) is a fixed point of the extended renormalization
group Ry x &} with a linear step B-function d(g) = L™!g.

The problem is thus to construct a non-trivial fixed point of the extended renormalization group
Sr = Ry, x 85. We do this by means of a contraction mapping.?

For this purpose, we split Z = Z; + Z,, where Z; is an approximate fixed point, and where Z; is
a correction. We iterate the transformation of Z, with Z; kept fixed. This transformation is shown
to contract, provided that Z; is in a certain sense a sufficiently good approximation. We compute
Z, as a polynomial approximant of finite order in a (formal) double perturbation expansion in g
and g?In(g). We then prove that this approximant is indeed sufficiently accurate provided that
the order of perturbation theory is at least seven. The result of this construction is the following
Theorem.3

2The linearization of this composed transformation has an interesting marginal eigenvector, 92 : ¢? .. It appears
in the perturbative calculation (5.11). On the first sight, it seems that we are constructing a one parmater set of
curves, all of which are tangent to the : ¢* : perturbation. But they are clearly related by a reparametrization g — z g
of the coupling parameter.

3Zqu and V("msx) are explained in the bulk of this paper.
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Theorem 1.1 Let F,»(g) be a continuous positive function of the form

Fy(g) = g7 exp(c.g® +cg) (1.2)

with positive constants o, c., and c. Let Zgy($,g) be the quadratic fized point

Zau(8.9) = exp (agule) - "5 ) (19

of Sp. Let By be the Banach space of functions Zs : R x [0, gmax] — R with respect to the norm

ZQ(¢1 g)
Zau (4,9 Folo) ‘ ‘ (14)

1Z2ls, = sup |
(¢.Q)ERX[0,gmax]

Let Z1(¢,9) = exp (—V(’m‘*)(¢,g)), where V{rmax) (¢, g) is the polynomial approzimant of order
Tmax (in g) of the perturbative solution to the fized point equation as a double ezpansion in g and

9% In(g).

For rmax = 7, there exist positive constants gmax, 0, €4, ¢, and Co such that the transformation
SL(Z1 + Z,) — Z, is a contraction mapping on the ball

{Z: € Bs| |1 22|, < Ca}- (1.5)

It follows that there exists a unique fixed point in this ball. Furthermore, the iteration of the
contraction mapping gives a convergent representation for this fixed point.

The renormalized ¢} -trajectory was constructed in [44] for all dimensions 2 < D < 4 with
the exception of a discrete set of special dimensions, where resonances of power counting factors
occur [41]. Unfortunately, the case D = 3 is such a resonant case, and was therefore excluded
in [44]. The problem is that our renormalization problem does not have a formal power series
solution in g in three dimensions. However, it does have a solution as a formal double perturbation
expansion in g and ¢g?In(g). The main content of this paper is to deal with these logarithmic
corrections. Polynomial approximants from this double perturbation theory turn out to suffice for
the contraction mapping. The backbone of our approach is the contraction mapping. This part
is identical in resonant and non-resonant dimensions. To keep this paper selfcontained we have
included a section on the contraction mapping with fresh proofs and improved bounds as compared
to [44]. In particular, we present

1. a better scheme independent proof of the contraction property,

2. an example of bounds, which are true for all couplings and not only small couplings,

3. a better and more explicit treatment of the tree approximation,

4. and last not least a full stability analysis of the g-g° In(g)-approximants.
Unlike [44], analyticity in ¢ is not used here. This paper is organized as follows. Section two
contains a brief review of the hierarchical renormalization group. Section three is devoted to the
contraction mapping method. In Section four, we prove a stability bound and an error bound for

the first order approximant. It serves as a template for the higher order approximants, which are
analyzed in Section five. We conclude with a few remarks and outlooks.
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It is well known that the unstable manifold of the trivial fixed point is two dimensional, when the
renormalization group is restricted to even vertices and a field independent normalization constant
is discarded. In this paper, we select one direction in this two dimensional manifold by imposing
the above tangent condition and by imposing the remainder to satisfy a norm condition, to be
stated below. The perturbative meaning of this particular curve is that we are constructing the
ultraviolet limit of the theory with a minimal number of counterterms. This can be thought of as
a local criterion on the flow in the vicinity of the trivial fixed point. A global criterion would be
to select the curve by demanding that the theory be massless (or critical). That is, that the curve
would end in the non-trivial infrared fixed point rather than in the quadratic high temperature
fixed point. The global behavior of our curve requires control of the strong coupling region. The
present analysis covers only partially the strong coupling region and cannot tell whether our curve
is massive or massless. (Numerical evidence suggests that our curve is massless.) It would be very
interesting to translate the global criterion into a local criterion at the trivial fixed point. A first
step in this direction would be to analyze the role of reparametrizations and the nature of the
non-C*®-ness implied by the logarithmic corrections. A second step would be to do an analogous
construction with a two dimensional S-function. In fact, this second step is rather straight forward.
The first step is outside the scope of the present paper. The third step would be to do a construction
which is uniform in the coupling parameter. It is conceivable that this can be done in a coupling
dependent high temperature picture very much analogous to the construction of the infrared fixed
point by Koch and Wittwer [31].

2 Hierarchical renormalization group

The hierarchical renormalization group is the theory of a non-linear integral transformation R
acting on a certain space of functions Z : R -+ R We speak of Z as a hierarchical model in
Statistical Physics if Z is positive, continuous, and in a certain sense measurable.

2.1 Renormalization group transformation

Hierarchical renormalization groups come in different versions. We mention the transformations
of Dyson [15], Wilson [45], Baker [2],and Gallavotti [20]. The latter version has been investigated
as a model for the constructive renormalization of massless scalar field theories by Gawedzki and
Kupiainen [23, 24], by Pordt [37, 39], and by Koch and Wittwer [31, 33). Following their path, we
define R as follows.

Definition 2.1 Let L denote a positive integer, L € {2,3,4,...}, and let D = 3. Leta = LR,
B = Ll‘%, and v = 1. Let R be the non-linear integral transformation given by

o

R2OW = { [ 260+0} . (2.1)

where dp,(¢) denotes the Gaussian measure! on R with mean zero and covariance 7.

“The Fourier transform of the Gaussian measure is [ du,(() €Y = eV /2,
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L is the block scale. Eventually, we will choose L to be large. D is the dimension of the (Euclidean)
space-time. We will restrict our attention to the three dimensional transformation. In the sequel,
D and <y are constant, D = 3 and v = 1. The transformation (2.1) calls to be supplemented by a
domain. The following statement defines our model space.

Definition 2.2 Let M be the space of continuous even functions Z : R — R with finite norm
IZ]lo = supger |Z(4)]-

A part of our analysis will be to restrict R to suitable invariant subspaces of M, for instance
subspaces of functions with a rapid decrease at infinity. Positive functions form a subset M* of
M. But M7 is not a linear subspace of M. Because we intend to use Banach space theory, we
take the latter as our starting point.

Lemma 2.1 The transformation R acts on the space M. It satisfies the bound ||R(Z)| < ||1Z]|%,.

2.2 Trivial fixed point and tangent map

R has two trivial non-zero fixed points in M™, the ultraviolet fixed point Zyv(4) = 1, and the
(Gaussian) high temperature fixed point

b
Zyr(¢) = Agpe 1 ¢, (2.2)
where
o 2_
Agr = (af?)TD = L7, byp = o 21 = e, (2.3)

In this paper, we will study the unstable manifold of the ultraviolet fixed point. Basic knowledge
about it is gained from the linearized renormalization group. Recall the following well known facts.

Lemma 2.2 Let O € R[¢?] be an even polynomial in ¢ with coefficients in R of the form O(¢) =
" + lower powers of ¢*. Let Z: R x RY — R be defined by

Z(¢,9) = 799, (2.4)

(I) For all g € RY, Z(-,9) € MY, and Z(¢,0) = Zyv(¢). (II) For all g € RY, R(Z)(-,g) 1is
continuously differentiable in g, and limg_,o+ ,R(Z)(-,g) defines a linear operator

Dzy (RO)¥) = a [ dur(€) OB+ ). (25)
on R[¢?].
The linear operator Dz, (R) is the tangent map of R at Zyy. This tangent map is diagonalizable.

Lemma 2.3 Let Hy, be the Hermite polynomial of order 2n [29, 8.95]. Let P, € R[¢?] be given
by

Puio) = (3)" Hn (=), v = g (26)

We have that Dz, (R)(P2n) = Aon Pan, where dyp = aff®™ = L°n with scaling dimension
oom = D+n(2-D) =3-n.
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In three dimensions, Py, Po, and Py are relevant, Py is marginal, and all others are irrelevant. From
the set of eigenfunctions, we select the relevant non-quadratic member Py. Its explicit form is

Pi(¢,v) = ¢* —6v¢? +30?, o4 =4-D = 1. (2.7)

Another way of saying that P; is an eigenfunction of the tangent map with eigenvalue A4 is the
following. Let V(¢,9) = g P4(¢,v). Then we have that

Dzyy (R)(V)(¥,69) = V(¢,9), 6 = aft = L% (2.8)

In other words, V (¢, g) is a fixed point of Dz, (R) x 6*, the tangent map extended by a flow of g.
The linear function g — dg will serve as our step S-function.

As in [44], the goal of this paper is to construct a non-linear analogue of (2.8), which is a
restricted homeomorphism from the tangent space at Zyy to an invariant cone in M, originating
at Zyy.

2.3 Extended renormalization group

(From now on, we turn our attention from points in M to parametrized curves in M, originating
at Zyy.

Definition 2.3 Let gmax € RY and G = [0,9max]. Let N be the space of continuous functions
Z :RxG — R such that Z(¢,9) = Z(—¢,g) for all (¢,9) € R x G, Z(¢,0) = Zyv(¢), and

1Z]lc = SUP(¢,0)erxG |Z(#, 9)| is finite.

For technical reasons, we introduced a maximal coupling gmax. By default, this maximal coupling
is an arbitrary large number in the following. Restrictions on gnax Will be explicitely stated.

Definition 2.4 Let 04 =4 — D and § = L™%. Let S be the non-linear transformation given by

S(2)(,9) = (Rx6")(Z)(¢,9) = R(Z)(¥,09). (2.9)
Lemma 2.4 The transformation S acts on the space N. It satisfies the bound ||S(Z)] < ||Z]|%.

This bound is an immediate consequence of G C G (since g < g) and
Q
sup |S(Z2)(¢,9)| < { sup |Z(¢, g)l} (2.10)
(¢,9)ERXG (¢,9)ERX G

Functions in A" are bounded but not necessarily decaying at large fields. To bound non-perturbative
contributions, we will need an exponential decay at large fields. The following observation suggests
how to select a subspace Ngy C N, which suits this purpose.

Lemma 2.5 Let Zgy : R x G — Rt be the positive continuous function given by

Zou($,9) = exp {aqulo) - 2502} 2.11)
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where
a-1gn 0 [14+("g)°
agul(g) = E a log{———— (2.12)
2a o 1+ g°
and
af?-1 g°
b = 2.1
QU(g) oy 1+gpa ( 3)

where p = ﬁ = 2. The function Zgy is an element of N'. It is a fized point of S.
The assignment g — Zgy(+, g) is a continuous parametrized curve in M*. There is no reason, not
to set G = RY at this point (or gmax = 00). Then Zgu becomes a curve of Gauss-functions, which
connects the two trivial fixed points of R, the ultraviolet fixed point Zgy(¢,0) = Zyv(¢) to the
high temperature fixed point Zgy (¢, 00) = Zyr(¢).

Definition 2.5 Let Ngu be the subspace of N, consisting of functions with finite norm
Z(¢,9)

Zqu($,9)| 21

IZllgu = sup
(6,9)€RXG

completed to a Banach space.

Functions in Mgy are in particular continuous in g. Their most useful property is the inbuilt bound

1Z($,9)] < IZllqu Zqu (¢, 9)- (2.15)

At fixed g, it compares the decay of Z at large ¢ with the decay of the fixed point Zgy. (2.15)
serves as the basic large field bound in this paper.

Lemma 2.6 The non-linear transformation S acts on Ngy. (It leaves invariant Noy C N.) Let
Z € Ngu. Then ||S(Z)llqu < IIZ113y-

We can now state our goal more precisely as to find a non-trivial fixed point of S in Ngy (besides
the g-independent trivial fixed points of R, and besides Zgy). To this aim, we need to introduce
yet another subspace of Mgy .

Definition 2.6 Let gnax < oo. Let F : G — RY be a continuous positive function with finite
norm ||Flle = supyeg |F(g)|- Let NF be the subspace of Nqu consisting of functions with finite
norm

IZllr = sup
(4,9)ERXG

Z(¢,9)
Zau (6 9) F(3) . ‘ (2.16)

(2.16) refines (2.15). Its motive is to gain control over the g-dependence of Z.5 It will be crucial
to carefully choose the function F. To give a flavour of, what kind of function F' should be, notice
the following fact. Z € N implies that

1Z(6,9)1 < IZIlF Zqu(d,9) F(g). (2.17)

SThe information that Z is an element of Ny implies no more information about its g-dependence than that, for
all ¢ € R, Z(9,g) is a bounded function of g.
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and thus
1S(Z2)(¢,9)| < IZ|F Zqu(d,9) F(69)". (2.18)

If F is such that the condition F(§9)* < F(g) holds for all g € G, then N is invariant under S.
Furthermore, the ball ||Z||r < 1 is then mapped to itself under S. Perturbation theory suggests
functions of the form F(g) = Cg” exp(cg”). Depending on the actual values of C, o, and T, the
above condition may pose a restriction on gmax.

3 Contraction mapping

In this section, we present our method to construct a non-trivial fixed point of S. As in [44], we
split Z = Z; + Z, into two parts Z; and Zs, where Z; is an approximate fixed point, and where
Z is an error term. Z; will be kept fixed. We intend to estimate the non-linear mapping of the Zs
under certain assumptions on Z;.

Lemma 3.1 Let Z, and Z; be two elements of Noy. Then

B8 +3) — & = TilZ) + Tl5 . %), (3.1)
where
Ti(Z,) = S(2)) - % (3.2)
and
Ty(2,,22) = S(Z) + Z,) — S(2y). (3.3)

Since S acts on Ny, the mappings 7} and T» are both well defined. The norm of T1(Z;) measures
the quality of the approximate fixed point Z;. Equipped with a bound on T)(Z;), the issue is to
find bounds on Z; which iterate under (3.1).

3.1 Invariant ball B

The dependence of Z; and Z, on g will be controlled with two different functions /7 and F, to be
specified below.

Lemma 3.2 Let F; : G — R*, i = 1,2, be two continuous positive functions. Abbreviate N =
NE, and || Zi|| = || Zi]|F,. Assume two functions Z; with Z; € N;. Thus for all (¢,g) € R x G,

1Zi(¢,9)| < |IZill Zqu(¢,9) Fi(g)- (3.4)
Then Ta2(Z1, Z3) is an element of Noy. For all (¢,9) € R x G we have that
|T2(ZhZ2)(¢:g)| S

{(12007:060) + 12 Pa60))” - (120 F260)) } Zewto) (3.5)
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Proof T3(Z,, Z7) has the integral representation

;.
T2, Z)W0) = [ dt 5 S(1+tZ)(9)

- foldt% {[d,u.,(() (2, +t22)(ﬂ¢+C,59)}

o

a—1

1
- [ ata { [amio (zl+tz2>(5¢+c,ag)}
x ] duy(C) Za(B + ¢, 80) (3.6)

Using the bound (3.4), it follows that
|T2(Zla Z?)("l)ag)l

1 a—1
< fo A (uzln Fi(8g) + 11 Za] F2(59))

« |1 Za]| Fa(b0) { [ ) Zav(sw + c,ag)}

Il

1 [0
[ e : (uzlnmwg)+t||zzuF2<ag)) o

3
- {(nzlu Fi(d9) + 112 Fz(éa))a - ("21“ Fi(‘sg))a}
X Zqu($,g). O o0

Differing from [23], no split into small and large fields is required here. Small and large fields are
taken care of simultaneously by the ¢-dependence of Zgy. For the right hand side of (3.5), we
notice the elementary estimate

(nzln Fi(3g) + “22|IF2(59)) - (nzl n Fl(csg)) <
a—1
" (nzxn Fu(3) + 1 Za) Fg(ag)) 1Zal| Fa(6). (3.8)

Lemma 3.3 Let Z; be as in Lemma 3.2. Let Z; be such that in addition |T1(2))| = |T1(Z1)||R
is finite. Then we have that for all (¢,9) € R x G,

IT1(21)(¢,9)| < [Ti(Z0)l Zqu(¢,9) F2(g). (3.9)
Let n be an integer, n € {1,2,3,...}. Assume that F\ and F» conspire such that

n
n+1

a—1
o (uzluFl(ag)+(n+1) I3 (20)] F2(59)) Bg) < - Flg). (310

Let B be the ball in Ny given by
|1Z2]] < (n+1) T2 (21)]]- (3.11)

Then it follows that B is invariant under the transformation (8.1). For all Z, € B and for all
(¢,9) eRXG,

1S(Z1 + Z2)(¢,9) = Z1(¢,9) < (n+1) ITW(Z)I Zou(é,9) Fal¢,9)- (3.12)
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Proof ;From (3.5), (3.8), (3.10), and (3.11), it follows that

15(21+ 22) - 21l < 1T (201 + |1 To(21, Z2)]
< T (20l + — 12l

< T2 + =5 (n+ 1) ITi(Z)]
= (n+1) IB(Z)] D (3.13)

We remark that the additional assumptions made in Lemma 3.3 do not clash with those made in
Lemma 3.2.

Lemma 3.3 suggests the following strategy. We look for functions Z;, Fi, and F> such that
|Z:i||F, and ||T1(Z1)||F, are both finite. Furthermore, F} and F have to satisfy (3.10). Then we
have an invariant ball of error terms Z; in the norm associated with F;.

3.2 Contraction mapping

Our next task is to establish the contraction property for the transformation (3.1) on the ball B.

Lemma 3.4 Let Zy, Z;, and Z} be as in Lemma 3.2. Then we have for all (¢,9) € R x G the
bound

15(2) + Z3) (¢, 9) — S(2) + Z2)(,9)| <
a—1
a (uzul Filds) + sup |12+ (2 - 2| F2(59)) Fy(89)

x Zou(¥,9) 1125 — Z|| (3.14)

Proof ;From the integral representation
S(Zl +F Zé)(’%l’-g) - S(Zl + Z?)(V’wg)

1
=f dt (-% S(Z)+ Zy+ (2 — 22)) (¥, 9)
0

1 03
=/0 dt;% {/duv(C) (2, +Z2+t(Z§—Zz))(ﬁ¢+C:5g)}
a-1

1

= / dt a {/du~,(() (Z1+ 22+ t(Z3 - Z,))(By +<159)}
0

x [ dus(€) (24— Z) (B9 + ¢, 89) (3.15)
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it follows that
|S(21 + Z3)(¥, 9) — S(Z1 + Z2) (¥, 9)|

1 a—1
< [0 dt @ (uzln Fi(69) + || Z2 + (23 - Zo) || Fz(ég))
y F2(59){ dynr(€) zQu(ﬁw+c,ag)} 12, - 2

a-1
<a (uzm Rido) + sup |72 +4(2; - 2 Fz(ag)) Fa(d)
tel0,1
% Zou(hg) 125 - Zoll. O (3.16)

The contraction property follows from this estimate in cooperation with Lemma 3.3.

Lemma 3.5 Let Z,, Z;, and Z5 be as in Lemma 3.3. For all Z € B and Z; € B, we have that

15(2:+23) = S(21 + 2| < — 123~ Zl| (3.17)

Proof Since B is convex, it follows that for all ¢ € [0, 1],
122+ (25 = Zo)|| F2(69) < (n+1) I Ta(Z0)I- (3.18)
We can therefore use (3.11) to conclude the asserted bound from (3.14), namely

15(21 + 23)(¢,9) — S(Z1 + Z2) (4, 9)|

n
B e g i 3
S = Zou(d,9) Fa(9) 123 — Z2||. O (3.19)

Corollary 3.1 Let B be as in Lemma 3.8. B is invariant under the transformation (3.1). The
transformation (8.1) is a contraction mapping. The transformation (3.1) has a unique fized point
in B.

The iteration of the contraction mapping is a convergent scheme to compute the fixed point. Let
Z20 = 0 and define a sequence of (non-perturbative) approximants by
Zyn+1 = S(Z1+ Zon) - 21 (3.20)

As n — oo, this sequence converges to the desired fixed point. We cannot say much about this
limit at this level of generality. However, if Z; is strictly positive than it follows immediately that
the fixed point is non-negative.

3.3 Estimates for all couplings
Our next subject is to construct examples of the two functions F; and F, with the property (3.10).
These examples are tailor made for perturbation theory.

Suppose that we are told an approximate fixed point Z; from an independent calculation, whose
large field decay is (at least) Gaussian. Then we proceed as follows.
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1. We determine F; such that

Zl(¢s Q)
sup| 2L < Fito) 320

Then ||Z,||r, < 1. Since it contains information about the large field behavior of Z;, we call
this bound the stability bound on Z;.

2. We determine F from an estimate on T)(Z;) such that

sup
¢€R

Ti(Z1)(¢,9)
A ‘ < €1 Fylg) (3.22)

for some finite constant C). Then ||T1(Z,)||r, < Ci. We call this second bound the error
bound on Z;.

3. We check that F; and F; satisfy (3.10).

If F| and F, are functions of the type of this section, then the validity of (3.10) is guaranteed by
the below estimates.

Remember that Z; plays the role of an approximate fixed point. This means that T}(Z;) should
be small compared with Z,. A construction for all couplings should in particular cover the case of
small couplings. Inspired by perturbation theory, we choose

Fy(g) = g¢° Fi(g) (3.23)

It says that the error term goes to zero as the coupling goes to zero. The speed of this process is
given by the exponent o.

Lemma 3.6 Let F| : G = R* be a positive continuous function. Let ||Z1||r, < 1. Let o be a
positve real number, with o > o,, where®

Oy = —— = 3. (3.24)

Let Fo(g) = ¢° Fi(9). Let |Tv(Z:)|lr, < Cy for some positive constant C,. Let n € N. Put

Cy = (n + 1)C,. Assume that F| has the following property. Let there ezists a positive constant
CF such that for all g € G,

ele0C: 697 Fy(5g)° < Cr Filg). (3.25)

Then we have the following estimate. There ezists a positive real number Luin such that for L
larger than this number, we have the bound

a—1
n
a (21 A6 + @+ D ILENRECY)  RGY < 2 RE. (6:20)
5The exponent ¢. is such that ad’ = 1. For ¢ > o, the block volume a is beaten by the power of the step

B-function.
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Proof ;From the assumptions (3.22), (3.23), and (3.25), it follows that
a-1
o (”ZIH Fi(6g) + (n + 1) [Ta (2l Fz(ﬁg)) F3(dg)

a—-1
<a (1+02 (ég)a) (69)° F1(6)°
< a el NG9 (50)7 Fy(6g)°
< a (8g)° Cr Fi(g)
= ab? Cp Fy(g). (3.27)

For ¢ > oy, the L-dependent factor a6’ = LPT(P~49¢ can be made arbitrary small by taking L
to be large. O

We learn that (3.10) (identical with (3.26)) holds provided that F; satisfies (3.25). An example of
a function F; which satisfies (3.25) without a restriction on gmax is the following.

Lemma 3.7 Let ¢, and c be positive constants. Let o be a positive constant such that o > o,. Let
F\ be the function

Fi(g) = exp(cig® +c¢g°). (3.28)

For all positive constants Cy such that

1= o
C, < ad

N (3.29)

this function F| satisfies the bound

e C2 (89" [ (59)® < Fi(g). (3.30)

Proof For this particular function Fj, we have that

exp{(a —1)C2 (69)°} exp{ck g™ +ac(dg)’}
< exp{c g’ +ad’(C2+c)g”}
< exp{ce 9’ +cg’}. O (3.31)

Lemma 3.7 contains a restriction on Cy. To avoid a conflict with (3.10), the constant ¢ has to be
chosen to be sufficiently large.

The pair F; given by (3.28) and (3.23) (with ¢ > o,) satisfies all properties needed for the
contraction mapping. Remarkably, it involves no restriction on the size of gmax. With this pair,
we could construct the ¢*-theory at arbitrary large couplings. The problem is to compute an
approximate fixed point Z;, which satisfies the stability bound (3.21) with this function F;, and
which satisfies the error bound with a sufficiently large exponent o. Unfortunately, we have not
succeeded to prove these bounds for approximants from perturbation theory.
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3.4 Estimates for small couplings

Therefore, we supplement the bounds for all couplings by suitable bounds for small couplings.
There are two sources of constraints on the value of gmax. One source is that we may not be able to
prove the stability bound on Z; for arbitrary large couplings. Also we may not be able to prove the
error bound on T)(Z;) for arbitrary large couplings. In this section, we will not speak about this
source of problems. These constraints cannot be addressed before we actually compute Z;. The
second source is that the function Fy, which we find from (3.21) (say by defining F; by equality),
might not meet the requirement (3.25) for arbitrary large couplings. If both effects come together,
we have to put gmax equal to the minimum from these constraints.

Lemma 3.8 Let ¢, and ¢ be a positive constants. Let T be a positive constant such that T < o,.
Let Fy be the function

Fi(g) = exp(cig® +cg"). (3.32)

Let Cy and Cp be positive constants, with Cp > 1. For all values of L, there exists a mazimal
coupling g(L) such that, for all g less than this mazimal coupling, we have that

@V 09 Fy(89)* < Cr Filg). (3.33)

Proof The estimate is very similar to the one for all couplings. The identity
ela—1) Cz2 (é9)° Fi(8g)® = ec(ad™—1)g" Fi(9) (3.34)

yields the condition

(a1 C2(é9)7 +e(ad™-1)9" < (3.35)

on g. Given exponents o and 7, together with constants Cs and ¢, and a scale L, (3.35) determines
g(L). O

To get an idea how g(L) behaves as a function of L, we neglect the the first term in (3.35). Then

In(Crp) \*
9(L) < (c(aT—T)) (3.36)

shows that g(L) shrinks as a certain power of L. A typical value of 7 in our perturbation theory is
one. Since o, = 3 in three dimensions, we are in the small coupling case. The good news is that
the maximal coupling is not necessarily ridiculously small.

It is likely that there exist other functions F; which meet the requirements of the above contrac-
tion mapping. The particular ones considered here are made for approximants Z; from perturbation
theory. The interesting question remains whether this contraction mapping works with other ap-
proximants, for instance approximants from numerical work. This would be more in the spirit of
the fixed point construction of [31].
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4 Linear approximation

The simplest approximation is a pure ¢*-vertex. In this section, we will prove a stability bound
and an error bound for this linear approximation defined by

Z(p,g) = e V@9 V(g,9) = gPi(4,v). (4.1)

(To simplify the notation, we write Z instead of Z;.) The linear approximation will not suffice
to obtain a contraction mapping in three dimensions. But it is a part of, and also an instructive
example for, the finer bounds to be presented below.

4.1 Stability bound

The classical stability bound for (4.1) relies on analyticity in the field variable a strip around the
real axis [23]. We proceed differently therefrom [37, 44].

Lemma 4.1 The polynomial Py(¢,v) is bounded from below by

Py(¢,v) > %454—151)2.

(4.2)
Proof
Py(¢,v) = ¢* —6v¢® + 307
2 2
= (e¢2— %3) — (37) +(1—€%) " + 30
> (1-¢€2)¢t+3 (1 = %) v, (4.3)
For ¥ = 1, the assertion follows. O
Lemma 4.2 For all (¢,9) € R x G, we have that (4.1) is bounded from above by
Z($,9) < Zou(s,g) 2@ (4.4)

with

1 5, _
ai(g) < 15v29+§g2" ' —aqulg)-

(4.5)
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Proof For any ¢, we have the elementary bound

B = (- SPred - s - S (4.6)
= 2 g = ° 4 ;
Put ¢ = ¢g°~! to obtain
p 2p-1
29t 2 %&'—QT. (4.7)

The values of L, D, and - are such that (2.13) is bounded from above by

I2-1 g° [2-P

p p
By I+ 3 < 5 g < ¢gf. O (4.8)

bou(g) =

The bound (4.5) suggests a function F} of the form (3.28).
Lemma 4.3 Let Z be given by (4.1). Let F\ : G — R* be the function
g2p—1
Fi(g) = exp (151)29 + T) : (4.9)
Then Z is bounded in the norm (2.16). We have that || Z||r, < 1.

Proof For all g > 0, agy(g) > 0, wherefore

IZll,, = sup
(¢,9)ERXG

geG

Z(¢,9) ‘ < -u(9) « 1. O 4.10
Zqu(9,9) F1(9) e ' 10

In three dimensions, the value of p is two and that of o, is three. (Recall (2.13) and (3.24).)
Coincidentally, 20 — 1 = o,. But the second term in the exponent in (4.9) is only linear in g.
Although the stability bound (4.9) holds for any value of g, it restricts our contraction mapping to
small couplings.

4.2 Error bound

Equipped with this stability bound, one is led to estimate T (Z) in the norm given by (3.23), where
o is a suitable exponent. As we will see, in fact as we know from [44], such a bound indeed holds. But
the exponent o is only one half and therefore smaller than o,. The linear approximation therefore
suffices only for a construction in low dimensions. Let us nevertheless see how the exponent one
half comes about. For this purpose, we consider the following interpolation formula.

Definition 4.1 Let X : R x G x [0,1] = R be defined by

X(wagvt) = {/dﬂtﬁ(C) exp(—/.dﬂ(l—t)v(f) V(ﬁ¢+c+§169))}
(4.11)
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In the limit of a vanishing covariance, the Gaussian measure du~(() becomes a Dirac measure
d¢ 6(¢). Therefore, (4.10) interpolates between the exponentiated linerarized renormalization group
transformation (2.5)

X(5,9,0) = exp(-a [ durle) V(EY +6,60) (112)
and the full renormalization group transformation
X(,9,1) = {/d#'r(C) exp(—V(ﬁ¢+C,59))} ; (4.13)

both transformations being extended by the flow of g. The usefulness of this interpolation relies
on the following property.

Lemma 4.4 Fort € (0,1), X is continuously differentiable in t. We have that

d
aXW,Q:t) =

o { [ dmre) exp(= [ dua-n(6) ViEw +¢+.09)) }a_l

x{ [ st exp(— JETENG V(ﬁ¢+c+£,69))

2
xg(a% JENG V(ﬁ¢+c+£,ég)) } (4.14)
Proof
2 [ asat©) exo (= [ ausgn(© V¢ +6)
2
= [0 |F 57 + 1] o0(- [ awa-on(@ vie+c+)
= /d,up,(C) ex;)(—/dun—t)v(i) V(¢+C+f))
2
x {g(%[dﬂ(l_t)v(e) Vig++E)
2
- [gg"—cg 2| [asagn@ vie+c+ e)} (415)
and
2
[;163_42 + %J [du(1-t)7(§) Vig+¢+¢€) =0 O (4.16)

Notice that (4.14) is of second order in V' due to the cancellation (4.16). Notice furthermore that
(4.14) is non-negative. The integral of (4.14) yields a representation for 7}(Z), which can be used
to derive an upper bound of the desired form.
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Lemma 4.5 Let Z be given by (4.1). Let X be given by (4.11). Then we have that

T(Z)(%,9) = X(9,1) — X(,9,0) = [ at 2 X (4, 0,0). (4.17)

Proof Because V is an eigenvector of the extended linearized renormalization group (2.8),

a / dus(6) V(BY +C,69) = V(¥,9) (4.18)

so that X(¢,9,0) = Z(¢,9). O

A cost of this representation is that we have to repeat the stability analysis for the interpolated
interaction. In the linear approximation, this follows from an explicit calculation. The following
bound is uniform in the interpolation parameter.

Lemma 4.6 For all (¢,9,t) € R x G x [0,1], we have that

[ 04 Vo +E0) 2 § 4t - 1507, (4.19)

Proof
[ 402 V@ +E9) = 3 [ i) Pilg+60)
= g Py(pv—(1-1)7)
>4 {; 15 (U~(1 -¢)7)2} (4.20)
and
1’3_2;2 =U—7§U—(1—t)’)’SU=-1—:7-EE (4.21)

show the assertion, since 82 = L*~P < 1. O

4.2.1 Large field domination

We are now in the position to estimate the downstairs factor in (4.14), using up a fraction, say one
half, of the large field behavior of (4.19).

Lemma 4.7 Let V be given by (4.1). For all (¢,9) € R x G, we have that

a 2

C(9) Va9 exp(—% ¢t + 159v2) (4.22)



464

with
C(g) < 8« (-46 +9v? 4, 9)

where

4
Agn = sup (eJT ¢2") :
¢ER

Proof The stability bound (4.19), in conjunction with the elementary estimates

2
(%P4(¢,U)) = 16 (¢° —6v¢* +9v?¢?) < 16 (4% + 90?¢?)
and
1 1 \4 1 2n n
exp (—%«ﬁ“) ¢ = exx){—4— (g? ¢) } (gw) 977 < Amg
implies that

exp ([ da-aa@ V6 +£9) T (2 [ drroan® V6+9)

¢
< e g4 2 [ 6 2 .2
< exp ——2—+15vg 8vg° ¢ +9v°¢

g¢4 1 2
< exp —T+15vg 8vg2 | Ag+9gv°Ax|. O
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(4.23)

(4.24)

(4.25)

(4.26)

(4.27)

Eq. (4.26) shows that each ¢ in the downstairs factor kills g%. Therefore, each of the two ¢-

derivatives in its calculation yields g%. Two ¢-derivatives give a total factor of g%.

4.2.2 Fluctuation integral

Half of the stability estimate has now been used up for the control of the downstairs factor. The

other half suffices to do the fluctuation integral.

Lemma 4.8 Let b and c be positive constants. For all 1 € R, we have that

be Y2 bc?
d =¥+ <« - e e }
,/ mC)e S P\ "TFbey 2 T 16

Proof ;From (4.6), we deduce that

(4.28)

(4.29)

The Gaussian convolution of a Gauss function is again a Gauss function. From its explicit form,

we find (4.28). D
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Lemma 4.9 For all (¢,9) € R x G, we have that
2
[ (@) om0 T ( [y g vig+c+0) <

C(9) Vg exp (—5 : fgp ”

1
¢* + 1502 g + s ng’“). (4.30)

Proof ;From (4.22) and (4.28), with b = § and ¢ = 4¢#7, it follows that

2
/ Ayt () eI =02 VIeHH0) 2 ( [ dp(1-04(6) V(e + ¢ + 6))

< [dual0) Cl0) V3 exp(-g(¢ +O'+150%)

21+P

< C(9) V3 exp( —¢2 +150v% g + igz" 1) O (4.31)

In eq. (4.14), we also encounter another fluctuation integrals without downstairs factors. It is
estimated in the same manner.

Lemma 4.10 For all (¢,9) € R x G, we have that
[ ama@ exp( [auaon(@ Ve +c+0) <

9 g 1geemt 132
ep( 217 p’yqb + 1502 g+89 ) (4.32)

Proof ;From (4.22) and (4.28), with b = { and ¢ = 2¢”~!, we find that
f dpse(€) exp(— [ dit(1-0,(E) V($+C + e))
_9.4 2
< fd,un(C) exp( 2¢ +15v g)

ol 9” 2 2 1 951

4.2.3 Scale transformation

The remaining task is to combine (4.30) with (4.32) and to rescale the field and the coupling. We
insert these estimates into (4.14) to obtain the following error bound.

Lemma 4.11 Let Fy be given by (4.9). For all e € (0,3) and all L € {2,3,4,...} there ezists a
mazimal coupling gmax, depending on L, €, such that for all (1,g9,t) € R x G x [0,1], we have that

g 1
5 X00.9.0| < 94 Fila) Zoulo,9) (439



466 Wieczerkowski

Proof Insert (4.30) and (4.32) into (4.14) to conclude that

|ZxX a0 < a6t 06 e (-3 22 (5up2)
exp (15aU269+ (QT_I %) (Jg)z"_l) : (4.35)

We choose gmax such that

aéég‘ C(8g) exp {15(ad —1)v? g}

_ 2p-1
BXP{(aTl % %) (6g)%" - %} exp{—aqu(g)} <1 (4.36)
and
af Tl 2 boul): O (4.37)

The condition (4.37) is easy to fulfill because a f*> = L? is on our side. The condition (4.36) is
also easy to fulfill, but it requires gmax to be exponentially small as a function on L.

Lemma 4.12 Let ¢, L, and gmax be as in Lemma 4.11. Put
| S
Fy(g) = g2 F1(g)- (4.38)

Then | Ty (2], < 1.

Lemma (4.11) is the first instant in this section where we need a small coupling argument. (Addi-
tionally, this F; limits the contraction mapping to small couplings.) To deal with large couplings
case, we have to look for a modification of (3.9). Since also (4.9) would require a modification,
and since the exponent ¢ = 21, — ¢ is anyway too small to meet the condition (3.24), we will not
eleborate on this possibility here. Instead, we will replace (4.1) by an approximant from higher
order perturbation theory and modify the estimate of this section for this case.

5 Perturbation theory in g and g%In(g)

In this section, we first recall the formal power series solution to the fixed point problem T'(V) = V,
where T is defined by S(Z) = exp(—T(V)) with Z = exp(-V). As in [41], we develop V into a
double perturbation expansion in both g and g?In(g). We then prove a stability bound for the
perturbative approximants (of odd order in g), extending the analysis in [44].

5.1 Formal power series representation

In three dimensions, the renormalized ¢*-trajectory is not expandable into a formal power series
in g. However, it does admit a formal power series representation in both g and g*In(g). See [41].
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To simplify the bookkeeping, we prefer g and k = In(g) (instead of g?In(g)) as formal expansion
parameters. Let V(¢,g,x) be given by a double formal power series

E

o0 2
V(g,g) = Z v(ra)(g) g" K (5.1)
with polynomial coefficients
N(r,a)
vedg) = 3 Pulgv) Vi®,  Nina) = r-2a+1 (5.2)
n=0

The maximal number of fields N at a given order (r,a) is peculiar to ¢*-theory. For safety reasons,
we define

v =0 n > N(ra). (5.3)

Also, we set the order zero to zero. To first order, the trajectory is defined to be a pure normal
ordered ¢*-vertex,

Vz(:’a) = (53’0 (5,1,2. (5.4)

The perturbative fixed point turns out to have two free parameters one for each resonance. See
[41]. All of these solutions are suitable approximants for the contraction mapping. We set both
parameters to zero,

| S VAL ) (5.5)
The choice (5.5) has the advantage is to have a minimal number of vertices.

The formal power series (5.1) supplies us with a sequence of polynomial approximants

T'max

Vm(g,9) = ZZ vel(g) g7 In(g)® (5.6)

r=1 a=0

labeled by the maximal power rmax of g. The first of which, rmax = 1, is the above linear approxi-
mant. The default value of rp,,x will be seven in the following.

5.1.1 Recursion relation

To be a fixed point of the extended renormalization group transformation T' (the transformation
for the interaction V') in the sense of a double formal power series, the coefficients have to satisfy

the following recursion relation. Let (Ol; s ;On): o denote the cumulants associated with the
Gaussian moments '

(01 Op), 4 = /’d,u,y(g) O1(@ +) -+~ On(® + ). (5.7)
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Lemma 5.1 Let V be given by (5.1). Let K(V)gr;a) be the coefficients defined by’

KW)) =
r )i+l I [#] _
ad” Z Z Z Z E i B s
1:2 1=1a;=0 ri=1a;=0 i
x G / N ) .

Then Z = eV is a fized point of S in the sense of a formal double power series if and only if

(1-L3) v =
- > (a) In(L)?-2 V{0 4+ K (v)ire), (5.9)

b=a+1

To derive this set of equations, one performs a cumulant expansion for the hierarchical renormal-
ization group, rescales the coupling, and compares equal double orders (r,a).

Lemma 5.2 The system of equations (5.9) has a unique solution of the form (5.1) with the prop-
erties (5.4) and (5.5).

Proof The set of equations (5.9) can be solved recursively. The condition (5.3) iterates through
the recursion.® One proceeds forwards in the order r — 1 — r and, at the order r, backwards in

a — a — 1. Suppose that we have computed VQ(,':’b) both

1. forall (s,b) withl1 < s <r—-1land0 < b< [%] and

2. for all (s,b) withs = randa+1 < b< 5.
Then this data determines the right hand side of (5.9). Therefrom, we compute Vz(,’;’“) for all
n < N(r,a). We find two cases.

1. Non-resonant case: If 3 —n —r # 0, then (5.9) determines Vz(;‘“).

2. Resonant case: If (r,n) € {(2,1),(3,0)}, then the left hand side of (5.9) is zero. In both cases,

we find a constraint on the right hand side of (5.9).

The two resonances are resolved by logarithmic corrections. Consider the mass resonance (2,1).
Since?

KWV)&) = o, (5.10)

"The Gaussian integral projects onto the Pa,(1))-component of the cumulant.

80ne cannot build connected diagrams with more than 2(r — 2a + 1) external legs from r — 2a vertices g : ¢* 1y
and a vertices g%In(g) : ¢? :y.

°9% In(g) : #* :v is not generated in the contraction of two vertices g : ¢* :,.
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the equation labeled by (r,a,n) = (2,1,1) is automatically satisfied. The equation with (r,a,n) =
(2,0,1) becomes

0 = —L~2 In(L) VY + K (V)0 (5.11)

We use it to determine 1/2(2‘1). The other parameter Vz(z,o) is unconstrained. We put it to zero. The

vacuum resonance (3,0) is analogously resolved. O

5.2 Stability bound

To any finite order, perturbation theory furnishes approximate solutions to our fixed point problem,
which are polynomials in ¢ with coefficients that are polynomials in both g and g% In(g). We intend
to a polynomial of this kind as the approximate fixed point in our contraction mapping. To this
aim, we need to prove two properties, a stability bound and an error bound. Both bounds will be
proved analogously to [44].

5.2.1 Tree approximation

We first prove stability for the tree approximation, which is defined as the polynomial in ¢, whose
coefficients are simplified to their leading powers in g. This bound extends by continuity to a
stability bound for the complete perturbative approximant in a small coupling region.

The set of coeflicients Vt(r';)e = 172((’;}?31) can be computed independently of the others. They

define a tree approximation

e o]

Viree(d,9) = Z ¢2(r+1) q Vts-::)e (5.12)

r=1

to the renormalized ¢*-trajectory!?. Notice that we have replaced : ¢?" :,, by its highest term ¢*".

(r)

TEe

(1-2207) v =
SPETNT
!

3T Z (_]; Z e Z Or,ry -t Vt(r::le) T ts‘,:?ie)

1=2 ’ r=1 ri=1

Lemma 5.3 The recursion relation for V., decouples. It reads

1 T

X R0 T 1)) o2 /d#u(TP) Pori1) (¥, v) <P2(n+1);“' ;Pz(rﬁ+1)>

1,89
(5.13)

All vertices in the tree approximation are irrelevant in the extended powercounting. In particular,
there are no resonances in the tree approximation. The tree coefficients have a simple sign pattern.

®The sum of tree graph contributions is in fact convergent. We will not use this fact, since we are dealing with
finite order approximants, which are polynomials in ¢.
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Lemma 5.4 For allr > 1, V) = (=1)r+! |V(” .

tree tree

Proof An induction on the order r. O

It follows that all tree approximants with even maximal order r, are unstable. Therefore, we
will restrict our attention to the friendly approximants with odd maximal order.

The sign pattern remains valid at sufficiently small couplings. To realize this, assemble the
perturbative approximant with loop contributions.

Lemma 5.5 Let V=Y = v® — 0. Then we have that

tree tree
Tmax [gl Tmax+1 .
VEIE) & e = 3 ¢ g (VD o))
r=1 a=0 n=0

(5.14)

with Aan(g) = O(g,¢? In(g)).

The tree coefficients are the leading terms of the perturbative vertex functions at small couplings.
The loop corrections are continuous functions of g (since they are polynomials in g and g®In(g)).
Therefore, properties like the sign pattern at g = 0 extend to a finite region g € [0, gmax| of small
couplings.

5.2.2 Effective ¢*-coupling

All g In(g)-terms are subleading. For this reason, the tree graph bound of [44] applies also to the
three dimensional model.

Let p2n(g) = Vt(rf;:l) + A2n(g) (a polynomial in g and g% In(g)) so that the perturbative approx-
imant becomes

Tmax+1

vimed(g,g) = > ¢2" g™ poa(9)- (5.15)

n=0

Lemma 5.6 For all rpax > 1, there ezists a mazimal coupling gmax > 0 (depending on ryax) such
that for allg € G andn € {2,3,... ,Tmax + 1},

pan(g) = (=1)" lp2n(g)l- (5.16)

In the following, we will assume that gmax is sufficiently small such that (5.16) holds.

The following statements are presumably true for any finite order rna € 2N + 1. As a part of
their proofs, we will have to compute certain coefficients recursively. I have only done this up to
the (already ridiculously high) order rmax = 99.
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Lemma 5.7 Let tmax € {1,3,5,...,99}. Then there ezists a mazimal coupling gmax > 0 such
that, for all g € G, (5.15) is bounded from below by

V(rma) (¢ g) Z&" "1 ion(g) + ¢* g palg), (5.17)
n=0

where p4(g) is the solution to the recursion relation

pan+2(9)?
= = e 5.18
Pdn (g) Hin (g) 4 hrid (g) ( )
with the initial condition
P2{rmx+1)(9) = Nz(rmu+1)(9)~ (5.19)

Proof The proof is an induction on powers of ¢*. (Notice that 2(rmax + 1) € 4N.) The induction
step follows from

g gt {mn(g) + ¢ g pan+2(9) + ¢* 9% panta (9)}

2
_ Han+2(9)? 2, Miny2
— ¢4n 2n-1 _ & ( 5 JLADIS,
g Lan(9) Lpansale) Pan+4(g9) | 979 2 pinas

(5.20)

since p4n+4(g) is positive for small couplings. O

A proof of the positivity of the effective ¢*™-couplings is given below. The solution of the recursion
relation (5.18) is a rational function

_ P(g,4%In(g))
Pl9) = B P n(g))’ (5.21)

where P and @ are polynomials in g and ¢° In(g).

Lemma 5.8 Let rmax € {1,3,5,... ,99}. There ezists a positive number ¢ > 0 and a mazimal
coupling gmax > 0 such that for all g € G, we have that
pa(g) = c (5.22)

Proof The value p4(0) is determined as the solution of the recursion relation

(2n-1) _ tree 5.23
P4n (0) Vtree 4P4n+4 (0) ) ( )

with the initial condition pyr . +1)(0) = Vts.';'g'”‘). Therefore, it depends only on the tree graph
coefficients. An explicit computation shows that p4(0) is a positive number. Since (5.21) is a

continuous function of g, the assertion follows. D

The effective ¢*"-couplings at order seven will be listed below. In particular, the value of p4(0) at
order seven is
4306

As a side remark, we mention that the effective ¢*-coupling in the tree approximation is not a small
number at large orders. (It presumably converges as the order is taken to infinity.)
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Lemma 5.9 Let rax € {1,3,5,... ,99}. There ezist positive numbers gmax, ¢, and a (all strictly
larger than zero) such that for all (¢,g) € R x G, we have that
(rmax) > E 4 _
4 (3,9) 2 g (2¢ a)- (5.25)

Proof ;From (5.17) and (5.19), it follows that there exist two polynomials A and B and a positive
number c¢ such that

vimed(g,9) > g {A(g,g2 In(g)) + B(g, 9% In(g)) ¢ + C¢4}- (5.26)

for all ¢ € R and g € [0, gmax), Where gmax is a certain positive number. For this maximal coupling,
define || Alloo = sup,eg |A(g, 9% In(g)| and analogously || B||c. Then we have that

Vimed(g,9) > g {—uAum— 180 ¢2+c¢4}
2
2 o {-lle - Il 1 £ 41}, (5.27

2
Put @ = [|A]leo + LBl= to obtain the assertion. O

The remaining stability analysis is completely analogous to the linear case.

Lemma 5.10 Let rmax € {1,3,5,...,99}. Let gmax be as in Lemma 5.9. Let F; : G —» R* be
given by

1
Fi(g) = exp (ag + 592”‘1) : (5.28)
Then Z(Tmax) = exp{—V('"‘“)} is bounded in the norm associated with Fy. We have that
I1Z2¢=]|p, < 1. (5.29)
This shows that the perturbative approximants are indeed in the domain of the extended renor-

malization group. The stability bound is complete aside of a proof of the positivity of psn4+4(g). By
continuity, it suffices to prove the positivity of psn+4(0), which depends only on the tree coefficients.

5.2.3 Computation of tree coefficients

There is another way to compute the tree coefficients than by the recursion relation (5.13), which
uses a Hamilton-Jacobi differential equation. This other way is both simpler than to iterate (5.13)
and it also relies on an interpolation formula, which we will need independently in the error bound.

The perturbative renormalization group is the formal power series solution of the non-linear
transformation

T(V),9) = —a 1n[ [ dinle) exp{-v(8v +¢.59)} | (5.30)
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It can be computed in two steps. Step one is the fluctuation integral

W(gg,t) = —ln[ JEG, exp{-V(¢+c,ag)}], (5.31)

evaluated at ¢ = 1. The interpolated quantity satisfies the renormalization group differential
equation

2 2
2 w00 = [%z-ww,g,t) ~{ZW a0} ] (5.32

) B

in the sense of a formal powerseries, with the inital condition
W(4,9,0) = V(¢,9). (5.33)

Step two is the scale transformation of the result of step one,
T(V)(¥,9) = aW(By,dg,1). (5.34)

Consider the tree approximation hereof. The tree approximation affects only step one. Eq. (5.32)
has to be replaced by the Hamilton-Jacobi equation

O Weeltr0r) = -2 { 2 Woreeltrgt) (5.35)
at tree\?, 9, = 9 6(;5 tree\?, 9, .
with the initial condition
Wtree(¢19a0) = Vzree(¢,9)- (536)

The condition of renormalization invariance becomes

Vtree((i’:g) =« Wtree(ﬁ'w}ég, 1) (537)

Lemma 5.11 The Hamilton-Jacobi equation (5.35) has a unique formal power series solution

o0
W(¢,9,t) = Y Bon(t) ¢ g™ (5.38)
n=2
with the boundary condition
W(g,9,1) = a”' W(87',67'g) (5.39)
and B4(0) = 1. It reads
1 n—2
Ban(t) = bon {_'Y (_L2 1 + t)} ) (5.40)
where the coefficients by, are recursively determined by
(n=2)byn =2 Y mlbymby (5.41)
m+l=n+1

with the initial condition by = 1.
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We remark that this solution makes sense beyond a formal power series. To see this, one writes

Wi g,t) = 7' W(Vgé 1,t) (5.42)

and shows inductively a bound on the positive coefficients bs,,. However, since we only need the
formal power series solution, we leave this issue aside.

Corollary 5.1 The tree graph coefficients are given by
V(T) i ~ r—1
tree — Y2(r+1) 1 =12 . (543)

This confirms the sign pattern of the tree coefficients.

Once the tree coefficients are written on the blackboard, we proceed to compute the effective ¢4"-
couplings in the tree approximation. With the ¢-dependence switched on, their recursion relation

reads

Bun4a(t)?
pan(t) = Bun(t) - Pt (5.44)
Pdn+4 (t)
starting at
P2(rmax+1) (1) = Ba(rpae+1) (t)- (5.45)
Lemma 5.12 The effective ¢*™-couplings are given by
1 2(1’1—1)
Pan(t) = Tan {7 (m +t)} (5.46)
with (t-independent) numbers r4, determined recursively by
— b§n+2
Tan = byn — (5.47)
Tin+4
where
T2rmax+1) = V2(rmax+1)- (5.48)

Remarkably, the effective ¢*-coupling comes out to be independent of the interpolation parameter
t. To seventh order we find the following numbers.

| Tree coefficients |

; g_l)n ban | Seventh order |
| T4n

2 985 4 | 7938048

5 | -1408 3 | 33817/19

6 -23296 2 | 90032/1321

7 | -417792 1 | 4306/5627

8 | 7938048
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The error bound is complete for the order seven approximant. As a sidedish, we find the following
useful bound which is uniform in the interpolation parameter.

Lemma 5.13 The tree approzimant of order seven

tree ¢'1 git) Z B2ﬂ ¢2ﬂ SR (5.49)
satisfies for all (¢,g,t) € R x R* x [0,1] the lower bound
4306

The recursion relations (5.41) and (5.47) can be solved by computer algebra. Their solution proves
the positivity of the tree approximation (at least) up to the order 99.

5.3 Error bound

To prove an error bound for the higher order approximants, we proceed analogous to the linear
case. The main tool is a generalization of the interpolation formula (4.17). ;From perturbation
theory, we have a polynomial

rmax (3]

vimad(g,g) = 3> VIna(g) g™ In(g)® (5.51)
r=1 a=0
which satisfies the scaling relation
rmax &
(Tmnx} . (Tmnx) (Tmax) » . o
Voms)(y,g) = a Z P ([vema0n]") - (5.52)
Here P("max) denotes a projector
r a 1 <
P(Tmax)(gr ln(g)a) - {g !n(g) if r = Tmax and (5‘53)
0 else.

The truncated cumulant expansion in (5.52) contains terms of higher order than g"™=<. These are
projected out by means of P{7max),

Definition 5.1 Let W(rmsx) : R x G x [0, 1] be defined by

Tmax _1\n+1
W(Tmax)(wig,t) —_ Z( 1)

n=1

P(rmax) ([V(Tmax)(., 69); ] n>T . (5.54)

n! ty, ¥

This interpolation is identical with the formal power series solution of (5.31), projected to P(rmax),
Its boundary values are

Wrmas) (4, g,0) = Vmsx)(y, g) = a Wrms(By, 6g, 1). (5.55)

We use it to define the following generalization of (4.11) (the case rmax = 1).



476 Wieczerkowski

Definition 5.2 Let X("max) . R x G x [0,1] be defined by

X(tmes) (g, g,8) = { [ dpey (€) exp(—w(’mﬂ(ﬂwc,ég,l—t))} (5.56)

To be well defined, eq. (5.56) calls for a stability bound for the interpolation (5.55). Postpone this
issue for a short while. Eq. (5.56) yields the following representation for the error term.

Lemma 5.14 Let max € {1,3,5,...,99}. Then (5.56) is well defined for the perturbative approz-
imant (5.51). We have that

T1(20=)(,9) = XU==)(y,9,1) - XU™=)(3),g,0). (5.57)
The usefulness of this representation relies on the following differential formula.

Lemma 5.15 Let rmax € {1,3,5,... ,99}. Then (5.56) is continuously differentiable in t € (0,1).
We have that

a
(rmnx) -
X ¥,9,0)

a-1
« {/d“t‘T(C) exp(_w(fmu)(ﬁw + C#agal - t))}

[ dsn(c) exp (-~ =y + ¢, 80,1 0)

g (rmax)] {2y (rmax) ?
. (ﬁw - (ﬂ¢+<,ag,1-t)) .

(5.58)
Proof
2 [ a0) exo [P {1n [ duagp(0) esp(-v (5 + ¢ + ) |
o (et )
= fd#w(C) exp {—P{ H
FGamr{ B ) 559
and

274 })2 . (5.60)
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The upstairs factor is understood as a synonym for the truncated cumulant expansion. It is a
polynomial expression. The downstairs factor in (5.59) is in particular a polynomial expression and
(5.60) is a manipulation of a polynomial expression.

The important feature of (5.58) is that in the downstairs factor all orders lower than rp,y are
cancelled by the t-dependent upstairs factor. To be well defined for all values of the interpolation
parameter, (5.56) requires an additional stability bound.

Lemma 5.16 Let rpax € {1,3,5,...,99}. There ezist positive numbers gmax, ¢, and a (all depen-
dent on Tmax) such that the following stability bound holds for all (¢,g,t) € R x G x [0,1]:

Wem(g,0,8) 2 g (5¢* - a). (5.61)

Proof

Since W (Tmax) (¢, g,0) = V(rmax)(4, ), we know that the bound (5.61) is valid at ¢ = 0. Furthermore,
we have shown that the effective ¢*-coupling is independent of ¢ in the tree approximation. The
assertion now follows from the uniform continuity of the effective ¢*-coupling of the complete
perturbative approximants.

As the result of a truncated cumulant expansion, we have that

Tmax+1

Wime)(g,9,8) = > ¢™ g™ pan(9, 9%, 2). (5.62)
n=0

For n > 2, each coupling u2,(g, g%, ) is the sum of a tree term and loop contributions

tan(9,9%,t) = Ban(t) + Aan(g, 9% In(g), t). (5.63)

The tree term is given by (5.40). The loop contributions are higher order corrections

A2n(9,9%In(g),t) = O(g,4%In(g)) (5.64)

as they are polynomials in g and g* In(g) whose coefficients are polynomials in t.

Consider the effective ¢*-coupling p4(g,t) defined as above.!' As it is a continued fraction of
couplings (5.63), it is a rational function (of g, g?In(g), and t) on some rectangle [0, g,.,] X [0,1].
Since the tree approximation has this particular t-dependence, we have that p4(0,t) = ry4 for all
t € [0,1] at g = 0. Let ¢ = rq4/2. By continuity, there exists a positive number gpax (With
0 < gmax < Ghax) such that for all (g,t) € [0, gmax] X [0, 1], we have that

pa(g,t) > c. (5.65)

Taking care of the constant and quadratic term in ¢ analogously to (5.26) and (5.27), the assertion
follows. O

As in the linear case, the stability bound on the interpolated interaction is independent of the
interpolation parameter. The remaining analysis is completely analogous to the linear case.

1To be precise, we should consider the collections of all ¢*"-couplings pan(g,t) and repeat the following reasoning
for all of them.
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5.3.1 Large field domination

The harvest of the higher order perturbation theory is a higher power of g in the bound after
dominating the large fields by part of the stability estimate.

Lemma 5.17 Let rpax € {1,3,5,...,99}. For all (¢,9,t) € Rx G x [0,1], we have that

a 2
exp{—W('m“-'”)(qS,g, t)} % [1 _ P(Tmax)] (% W(rm“)(q&,g,t))
< C(g) g™™/% exp (—ggd‘ + ag) (5.66)

for some polynomial C € R [g, g% In(g)] (with positive coefficients).

Proof

The downstairs factor is a polynomial of the form

2
2 [r-ptr=] (i wrmes) (g, g, t))

¢
Tm.x+1
= Y ¢ g™ Byn(g,9% In(g),1)
n=0
2rmax+1
+ Y ¢™¢""! Bul(g,9% In(g), 1) (5.67)
N=rmax+2

with certain polynomials B,. Notice that the projector affected only the first sum in (5.67). Notice
also that the highest power of ¢ is 2(2(rmax + 1)) — 2, where —2 comes from the two ¢-derivatives.
With the help of the stability bound, we find the upper bound

2
exp{*w(rmu)(d),g:t)} % [1 - 'P(f'mu)] (% W(rmu)(¢ag~t))

Tmax+1

[ 5 _n
< exp (—ZW“ +ga) { > g% Ay | Ban(g, 9% In(g), 1)

n=0
2rmax+1
+ Y 977! Az |Bun(g, 9 ln(g),t)l} (5.68)
n=rmax+2

where

c
Ayp = su lex ——¢t) ¢*"
" daeg p( 4¢) ¢

. (5.69)

Expand the polynomials B and take the supremum of ¢ € [0, 1] in each term to arrive at the bound
(5.66). O
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5.3.2 Fluctuation integral and scale transformation

The fluctuation integral and the scale transformation are now identical to the linear case aside of
a minimal cosmetic modification to include the constant ¢. We therefore do not repeat them here
and jump to the following conclusion.

Lemma 5.18 Let rmax € {1,3,5,...,99}. Let Fy be the function (5.28) from the stability bound.
For all € € (0, 5"5“) and all L € {2,3,4,...}, there ezists a mazimal coupling gmax Such that for
(4,9,t) € R x G x [0,1], we have that

d rmax _,
EX('"’“)(w,g,t) < ¢ 8 Fi(g) Zou(¥,9). (5.70)

The error bound is an immediate consequence hereof.

Corollary 5.2 Let ¢, L, and gmax be as in Lemma 5.18. Put
Fy(g) = ¢"#*7 Fi(g)- (5.71)
Then we have that Z("mex) = exp(—V(rmsx)) satisfies the bound

1Ty (27| < 1. (5.72)

We have computed V{'max)(g) as a polynomial approximant of a formal double expansion in g
and ¢2In(g). Then we have shown that, for sufficiently small (but finite) couplings, Z("max) =
exp(—V rmax)) satisfies both

1. the stability bound |]Z(’"“"‘)||1:.—1 < 1, where F) is a function of the form (3.32), and
2. the error bound ||T1(Z,)||r, < 1, where F; is given by (3.23), with exponent ¢ = T3ax — ¢,

For rmax > 7 and € not too large, all assumptions of the contraction mapping are satisfied. The
construction is complete.

6 Conclusions and outlook

The iteration of the contraction mapping provides a convergent representation for the ¢3-trajectory.
It can be used to study the properties of the fixed point Z,(#,g). One important problem, which
can be shown, but which will not be shown here, is that Z,(¢, g) is positive. A brief discussion of its
positivity is contained in [44]. Other questions about Z, (¢, g) could also be studied in principal, for
instance the summability of perturbation theory, and analyticity properties of its Borel transform.

A very interesting question is the behavior of Z,(¢, g) at large couplings. Conceivably, Z,(¢, g)
connects the trivial fixed point at ¢ = 0 with the non-trivial infrared fixed point at ¢ = co. The
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contraction mapping is potentially capable of a construction, which is uniform in the running
coupling. But such an enterprise requires a better approximate fixed point Z;(¢,g) than the
one from perturbation theory. It is conceivable that one could extend the approximants from
(31, 32, 33, 34] to achieve this aim.

The underlying scheme of this paper is to compute a renormalized trajectory as a renormaliza-
tion invariant curve in the unstable manifold of a renormalization group fixed point. This scheme
is certainly translatable to virtually every theory treated so far with the renormalization group.
In particular, all hierarchical models mentioned in the introduction can be handled that way. We
hope to present an extension of this method to the framework of polymer expansions and full
models in future work. Another aspect of this theory is the question how traditionally computed
renormalized actions converge to the renormalized trajectory. In other words, what is the domain
of attraction of this extended fixed point of an extended renormalization group. This question is
related to the problem of renormalization group improved actions and also to the question how
to truncate a renormalization group such as to maintain control of the errors. We hope to make
progress on these and other questions in this context in future work.
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