Beiträge zur Kenntnis und zur Darstellung der Lebensverlängerung in der Schweiz

Autor(en): Kobi, Franz

Objekttyp: Article

Zeitschrift: Mitteilungen / Vereinigung Schweizerischer

Versicherungsmathematiker = Bulletin / Association des Actuaires

Suisses = Bulletin / Association of Swiss Actuaries

Band (Jahr): 26 (1931)

PDF erstellt am: 23.05.2024

Persistenter Link: https://doi.org/10.5169/seals-967419

Nutzungsbedingungen

Die ETH-Bibliothek ist Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an den Inhalten der Zeitschriften. Die Rechte liegen in der Regel bei den Herausgebern. Die auf der Plattform e-periodica veröffentlichten Dokumente stehen für nicht-kommerzielle Zwecke in Lehre und Forschung sowie für die private Nutzung frei zur Verfügung. Einzelne Dateien oder Ausdrucke aus diesem Angebot können zusammen mit diesen Nutzungsbedingungen und den korrekten Herkunftsbezeichnungen weitergegeben werden.

Das Veröffentlichen von Bildern in Print- und Online-Publikationen ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Die systematische Speicherung von Teilen des elektronischen Angebots auf anderen Servern bedarf ebenfalls des schriftlichen Einverständnisses der Rechteinhaber.

Haftungsausschluss

Alle Angaben erfolgen ohne Gewähr für Vollständigkeit oder Richtigkeit. Es wird keine Haftung übernommen für Schäden durch die Verwendung von Informationen aus diesem Online-Angebot oder durch das Fehlen von Informationen. Dies gilt auch für Inhalte Dritter, die über dieses Angebot zugänglich sind.

Ein Dienst der *ETH-Bibliothek* ETH Zürich, Rämistrasse 101, 8092 Zürich, Schweiz, www.library.ethz.ch

Beiträge zur Kenntnis und zur Darstellung der Lebensverlängerung in der Schweiz.

Von Dr. Franz Kobi, Winterthur.

Einleitung.

Die vorliegende Arbeit soll einen Einblick in die Sterblichkeitsverbesserung der schweizerischen Bevölkerung ermöglichen.

Die Zeit zwischen der Aufstellung der ersten und der letzten schweizerischen Volkssterbetafel umfasst rund 40 Jahre, von 1876/80 bis 1920/21. Für einzelne Kantone und für Teilgebiete der Schweiz wurden schon vor 1880 Sterbetafeln aufgestellt 1), diese müssen aber, so wertvolle Einblicke sie in die Sterblichkeit in bedeutend früherer Zeit gestatten, unberücksichtigt bleiben, da sie nicht das gesamte Schweizervolk umfassen und öfters nach unzulänglichen Methoden bestimmt wurden.

Abgesehen von den Sterbetafeln 1880/81 und 1910/11 bestehen fünf schweizerische Volkssterbetafeln, die jeweilen vom Eidgenössischen Statistischen Bureau aufgestellt wurden. Die erste stammt, wie erwähnt, aus der Beobachtungszeit 1876/80; sie wurde von Dr. Schaertlin nach der Methode von Woolhouse ausgeglichen ²). Die Tafeln 1881/88 ³), 1889/1900³), 1901/10 ⁴) und 1920/21 ⁵) wurden vom Eidgenössischen Statistischen Bureau ausgeglichen, die drei ersten ebenfalls nach der Methode von Woolhouse, die letzte nach Makeham ⁶).

Bei der Veröffentlichung jeder neuen Ordnung wurde darauf hingewiesen, dass sie günstiger als die frühere ausfiel. Hieraus folgt schon, dass in den letzten 40 Jahren in der Schweiz ein grosser Rückgang der Sterblichkeit zu verzeichnen sein muss.

Um diesen Rückgang festzustellen, bedienen wir uns des genauesten Masses der Sterblichkeit, nämlich ihrer Intensität⁷). Die Intensitätsfunktion ist heute für den Versicherungstechniker und Statistiker ein unentbehrliches Hilfsmittel. Prof. Friedli stellt in «Intensitätsfunktion und Zivilstand» fest ⁸): «Die Intensitätsfunktion ist ein grundlegender Begriff in der mathematischen Theorie der Versicherung. Er ist notwendig, um das mehr oder weniger starke Ab- und Zunehmen der betrachteten Personengesamtheit mit der Zeit zu charakterisieren, also als Masszahl zu dienen.»

Nehmen wir ein gewisses Alter x an, so sehen wir in der Tat, dass und wieviel die Intensität der Sterblichkeit μ_x von einer Beobachtungsperiode bis zu einer folgenden abnimmt. Diese Abnahme stellt also die erloschene Intensität der Sterblichkeit dar, die uns ihrerseits ein Bild gibt vom Zurückgehen der Gesamtwirkung der beim Alter x wirkenden Todesursachen. Es ist mithin so, als ob beim Alter x eine gewisse Todesursache u ebenfalls erloschen wäre.

Bezeichnen wir die ursprüngliche Intensität der Sterblichkeit mit μ_x , so können wir die neue Intensität der Sterblichkeit durch $\mu_x^{(-u)}$ darstellen. Hierbei deuten wir an, dass die Ursache u weggefallen ist. Entsprechend bezeichnen wir mit $\mu_x^{(u)}$ die Intensität der Sterblichkeit, die lediglich der Todesursache u entsprechen würde. Es ist daher stets $\mu_x^{(u)} = \mu_x - \mu_x^{(-u)}$.

In diesem Zusammenhang sei auf zwei Arbeiten hingewiesen, in denen sich ähnliche Probleme stellten.

Es betrifft dies die Aufstellung einer Absterbeordnung durch Steiner-Stooss bei Ausschluss der Lungentuber-kulose ⁹) und von Wyss bei Ausschluss der Wirkung des Krebses ¹⁰).

Unsere Untersuchungen dagegen beziehen sich in der Hauptsache auf die Grössen, die sich für die verschiedenen Alter x bei den am weitesten auseinanderliegenden Tafeln 1876/80 und 1920/21 ergeben.

Wie man bemerkt, unterscheiden wir drei Sterblich-keitsintensitäten, nämlich die ursprüngliche Sterblich-keitsintensität μ_x (Tafel 1876/80), die neue, geringere Sterblichkeitsintensität $\mu_x^{(-u)}$ bei Wegfall der Ursache u (Tafel 1920/21) und die erloschene Sterblichkeitsintensität $\mu_x^{(u)}$, die sich lediglich auf die inzwischen erloschene Ursache u gründet.

Wir leiten alsdann in einem zweiten Kapitel für Theorie und Praxis die Beziehungen ab, die sich für die entsprechenden drei Überlebensordnungen l_x , $l_x^{(-u)}$ und $l_x^{(u)}$ ergeben, um hierauf in einem fernern Kapitel die sogenannte Lebensverbesserung zu ermitteln und schliesslich einige Schlussbetrachtungen anzufügen.

Die Abnahme der Sterblichkeit während der letzten Dezennien ist eine so frappante und für die Versicherung wichtige Tatsache, dass sie verdient, von verschiedenen Seiten aus beleuchtet zu werden.

1. Kapitel.

Die Abnahme der Sterblichkeitsintensität.

Für die Ordnung 1920/21 ist vom Eidgenössischen Statistischen Bureau die Intensität der Sterblichkeit ermittelt worden. Die Sterblichkeitsintensität der Tafel 1876/80 für die Männer wurde von Prof. Bohren ¹¹) nach der Formel

$$\mu_x = \frac{8 \; (l_{x-1} - l_{x+1}) - (l_{x-2} - l_{x+2})}{12 \; l_x}$$

berechnet, während sie für das weibliche Geschlecht erst noch bestimmt werden musste.

In Tabelle 1 finden sich die Werte der drei Intensitäten μ_x , $\mu_x^{(-u)}$ und $\mu_x^{(u)}$ für das männliche Geschlecht, und in der ersten Darstellung sind sie verbildlicht.

Auffallend ist der grosse Rückgang der Sterblichkeitsintensität in den ersten Altersjahren, so dass die verbleibende Sterblichkeitsintensität bedeutend kleiner ist als die erloschene. Die Intensität der Ursache u liegt bis zum Alter 10 für das männliche und bis zum Alter 13 für das weibliche Geschlecht über der entsprechenden für 1920/21. Es ist das ein kaum vorausgeahnter Erfolg der Sterblichkeitsbekämpfung im jüngsten und jugendlichen Alter. Von den genannten Altern weg bleibt die Intensität der erloschenen Ursache immer unterhalb der verbliebenen, erreicht aber bei den Männern im Alter 23 und 24 fast den gleichen Wert. Eine deutliche Abweichung tritt erst vom Alter 40 weg ein, von wo an die Sterblichkeitsintensität der Männer für die Ursache u vorerst nur sehr langsam, später immer etwas rascher zunimmt. Man ist versucht, in groben Zügen auch hier von einer Zunahme nach einer exponentiellen Funktion zu sprechen.

Ähnlich liegen die Verhältnisse für die Frauen, wie Darstellung 2 zeigt. Eine grössere Abweichung tritt im höhern Alter ein: Vom Alter 65 weg beginnt die Intensität sehr rasch zu steigen. Der Anstieg erfolgt fast parallel zur Intensität der Tafel 1920/21. Im Alter 73 ist das Maximum erreicht, dann folgt eine rapide Abnahme der erloschenen Sterblichkeitsintensität.

Für die Ordnung 1920/21 zeigt die Intensität vom Alter 20 weg infolge der Ausgleichung nach Makeham einen rein exponentiellen Anstieg, in der Darstellung also eine glatte Kurve (Darstellung 1). Die erste Ordnung wurde nach Woolhouse ausgeglichen, und die Intensität der Sterblichkeit ergibt deshalb eine leicht wellige Kurve. Daher rührt der wellenförmige Verlauf der Intensität der Ursache u.

2. Kapitel.

Die Wirkung der erloschenen Todesursache u.

Vorerst sind einige Hilfsbeziehungen herzuleiten: Das zentrale Sterblichkeitsverhältnis ¹²) gibt an, wie viele Personen auf ein durchlebtes Jahr gestorben sind ⁷)

$$m_x = \frac{l_x - l_{x+1}}{\int_x^{x+1} l_t \, d\tau}.$$

Setzen wir gleichmässiges Sterben durch das ganze Jahr voraus, eine Annahme, die für die Praxis genügt, so erhalten wir für den Nenner

$$\int_{\tau}^{x+1} \!\! l_{\tau} \, d\tau = \frac{1}{2} \left(l_x + l_{x+1} \right)$$

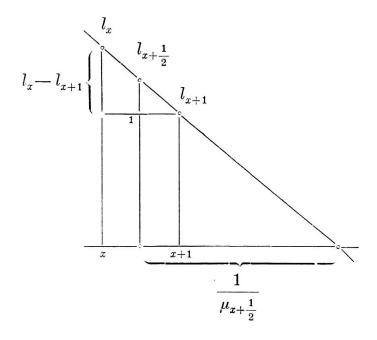
und somit für das zentrale Sterblichkeitsverhältnis

$$m_{x} = \frac{l_{x} - l_{x+1}}{\frac{1}{2} \left(l_{x} + l_{x+1} \right)}.$$

Zwischen der Sterblichkeitsintensität μ_x , die wie folgt definiert ist

Tabelle 1. Sterblichkeitsintensität SM								
Alter	μ_x	$\mu_x^{(-u)}$	$\mu_x^{(u)}$	Alter	μ_x	$\mu_x^{(-u)}$	$\mu_x^{(u)}$	
0	13,81448	6,43495	7,37953	45	0,01529	0,01018	0,00511	
1	0,11314	0,04446	0.06868	46	1606	1084	522	
$\frac{1}{2}$	2622	996	1626	47	1679	1157	522	
3	1604	602	1020	48	1777	1236	541	
4	1407	465	942	49	1920	1322	598	
4			45.000					
5	1083	381	702	50	2057	1417	640	
6	813	346	467	51	2159	1520	639	
7	699	291	408	52	2288	1633	655	
8	581	265	316	53	2413	1757	656	
9	514	246	268	54	2497	1892	605	
10	437	226	211	55	2634	2040	594	
11	361	214	147	56	2810	2201	609	
12	347	210	137	57	2972	2377	595	
13	342	210	132	58	3198	2571	627	
14	340	$\frac{210}{225}$	115	59	3457	2787	670	
		252	119	60	3717	3012	705	
15	371		90000000			3265	762	
16	424	284	140	61	4027		811	
17	494	328	166	62	4352	3541	833	
18	562	368	194	63	4675	3842		
19	633	382	251	64	5022	4172	850	
	İ						1	

21 737 393 344 66 5815 4927 22 784 401 383 67 6275 5358	859 888 917 949 025
22 784 401 383 67 6275 5358	917 949 025
	949 025
23 802 409 393 68 6778 5829	025
24 825 419 406 69 7370 6345 1	i l
25 838 429 409 70 8008 6908 1	100
26 852 440 412 71 8704 7524 1	180
27 877 452 425 72 9481 8198 1	283
28 889 465 424 73 10313 8934 1	379
29 922 480 442 74 11160 9739 1	421
30 966 496 470 75 12048 10619 1	429
31 1000 513 487 76 13031 11557 1	474
32 1025 532 493 77 14089 12664 1	425
33 1052 553 499 78 15308 13786 1	522
34 1082 575 507 79 16713 15044 1	669
35 1101 600 501 80 18247 16420 1	827
36 1120 627 493 81 19852 17085 1	887
37 1152 657 495 82 21411 19572 1	839
38 1178 689 489 83 22942 21415 1	527
39 1241 725 516 84 24902 23333 1	569
40 1305 763 542 85 26565 25483 1	082
41 1345 806 539 86 28111 27833	278
42 1404 852 552 87 30655 30409	246
43 1454 903 551 88 33848 33212	636
44 1478 958 520 89 36404 36285	119


$$\mu_x = \frac{d}{dx} \operatorname{Log} \frac{1}{l_x} = -\frac{l_x'}{l_x}$$

und dem zentralen Sterblichkeitsverhältnis besteht unter der getroffenen Annahme folgende Beziehung (vergleiche die Figur)

$$(l_x-l_{x+1}):1=l_{x+\frac{1}{2}}:\frac{1}{\mu_{x+\frac{1}{2}}},$$

oder

$$\mu_{x+\frac{1}{2}} = \frac{l_x - l_{x+1}}{l_{x+\frac{1}{2}}} = \frac{l_x - l_{x+1}}{\frac{1}{2} \left(l_x + l_{x+1}\right)} = m_x.$$

Wir erhalten den Satz: Das zentrale Sterblichkeitsverhältnis des auf das Alter x folgenden Jahres ist gleich der Intensität der Sterblichkeit in der Mitte des Jahres. Die Beziehungen zwischen dem zentralen Sterblichkeitsverhältnis m_x , der Sterbenswahrscheinlichkeit und der Überlebenswahrscheinlichkeit heissen:

$$\begin{split} m_x &= 2\,\frac{1-p_x}{1+p_x} & m_x &= 2\,\frac{q_x}{2-q_x} \\ p_x &= \frac{2-m_x}{2+m_x} & q_x &= \frac{2\,m_x}{2+m_x}. \end{split}$$

Entscheidend für unsere Untersuchungen ist die Trennung zwischen allgemeinem und speziellem zentralem Sterblichkeitsverhältnis. An allen vorkommenden Todesursachen sterben in einem Jahr S_x Personen, die im Alter x bis x+1 stehen. An einer einzigen, beliebig herausgegriffenen Ursache u sterben nur $S_x^{(u)}$ von der Gesamtzahl S_x der Sterbenden. Das allgemeine zentrale Sterblichkeitsverhältnis ist somit auch definiert durch die Formel

$$m_x = \frac{S_x}{\frac{1}{2} (l_x + l_{x+1})},$$

das spezielle dagegen durch

$$m_x^{(u)} = \frac{S_x^{(u)}}{\frac{1}{2} (l_x + l_{x+1})}.$$

Daraus bestimmt sich

$$m_x^{(u)} = m_x \frac{S_x^{(u)}}{S_x}.$$

Den Quotienten $\frac{S_x^{(u)}}{S_x}$ nennen wir Anteilsquotient der Ursache u.

Wir erkennen aus der letzten Gleichung: Um das spezielle, auf einer Ursache u beruhende zentrale Sterblichkeitsverhältnis zu erhalten, ist das allgemeine mit dem Anteilsquotienten zu multiplizieren.

Das Material, aus dem der Anteilsquotient bestimmt wird, kann grösser oder kleiner sein als das, dem das m_x entstammt, wenn beide gleichartig zusammengesetzt sind. Der Anteilsquotient lässt sich z. B. oft nur aus einer kurzen Beobachtungszeit leicht ermitteln. Man verteilt dann die Fälle aus einer grössern Zeitspanne in gleichem Verhältnis auf die einzelnen Jahre 9) 10).

Damit sind die Hilfsbeziehungen alle erwähnt.

Wir untersuchen eine Überlebensordnung, gehen dabei vom Alter a aus und haben somit zu Beginn l_a Überlebende. Wirken alle Todesursachen, so haben wir eine Sterbetafel vor uns, wie sie die Beobachtung einer Personengesamtheit liefert. Nehmen wir die Wirkung der Ursache u weg, betrachten also eine Gesamtheit, bei der alle Ursachen ohne u, bezeichnet mit — u, wirken, so verläuft diese Ordnung für die gleiche Gesamtheit weniger steil. Lassen wir die weggenommene Ursache allein wirken, dann erhalten wir im allgemeinen die günstigste Ordnung. (Dieses Problem, die Abtrennung einzelner Ursachen und die Untersuchung ihrer Einzelwirkung, konnte vor der Einführung der Intensitätsfunktion in die Sterblichkeitsuntersuchungen nicht befriedigend gelöst werden.)

Zur mathematischen Behandlung dieser drei Ordnungen gehen wir von der Sterblichkeitsintensität μ_x aus und bestimmen zuerst die gewöhnliche Absterbeordnung. Die Kraft der Verminderung der Lebenden ist in jedem Momente $\mu_{\tau} d\tau$. Wir müssen diese Kraft von der untern Grenze a bis zum betrachteten Alter x summieren und erhalten aus

$$\mu_{\tau} d\tau = d \, \log \frac{1}{l_{\tau}}$$

die Beziehung

$$-\int_{a}^{x} \mu_{\tau} d\tau = \left| \operatorname{Log} l_{\tau} \right|_{a}^{x} = \operatorname{Log} \frac{l_{x}}{l_{a}}.$$

Daraus wird

$$l_x = l_a \cdot e^{-\int_a^x \mu_r \, dr}.$$

Der Ausdruck bei Ausschluss der Ursache u ist aus der letzten Gleichung bestimmt zu

$$l_x^{(-u)} = l_a \cdot e^{-\int_a^x \mu_{\tau}^{(-u)} d\tau}.$$

Da aber $\mu_{\tau}^{(-u)} = \mu_{\tau} - \mu_{\tau}^{(u)}$ erhält man weiter

$$l_x^{(-u)} = l_a \cdot e^{-\int_a^x \left(u - u_\tau^{(u)}\right) d\tau} = l_a \cdot e^{-\int_a^x u_\tau d\tau} \cdot e^{+\int_a^x u_\tau^{(u)} d\tau},$$

$$l_{x}^{(-u)} = l_{x} \cdot e^{+\int_{a}^{x} \mu_{\tau}^{(u)} d\tau}.$$

Es bleibt noch die Bestimmung der Ordnung, die durch das alleinige Wirken der Ursache u erzielt wird:

$$l_x^{(u)} = l_a \cdot e^{-\int_a^x u_\tau^{(u)} d\tau}.$$

Hieraus folgt: Die beiden Teilüberlebensordnungen können bestimmt werden, wenn die Intensität für die betrachtete Todesursache u bekannt ist. Bildet man das Produkt aus (1) und (2), so lässt sich folgende Relation aufstellen ⁷)

$$l_x^{(-u)} \cdot l_x^{(u)} = C \cdot l_x \quad \text{oder} \quad l_x^{(u)} = C \frac{l_x}{l_x^{(-u)}}$$

und weiter

$$\frac{l_x}{l_x^{(u)}} = \frac{l_x^{(-u)}}{C} \qquad \qquad \frac{l_x}{l_x^{(-u)}} = \frac{l_x^{(u)}}{C}.$$

In diesen Gleichungen sind folgende Sätze enthalten: Das Produkt der beiden Teilüberlebensordnungen ist proportional der allgemeinen Überlebensordnung.

Die allgemeine Überlebensordnung verhält sich zu einer Teilüberlebensordnung wie die andere Teilüberlebensordnung zu einer Konstanten.

Wenn zwei Überlebensordnungen bekannt sind, so kann die dritte berechnet werden.

Aus den Gleichungen (1) und (2) erkennen wir, dass das Integral im Exponenten ausgewertet werden muss, um die Ordnungen bestimmen zu können. Dazu gibt es zwei Wege:

- 1. Durch Summation der jährlichen Sterblichkeitsintensitäten und
- 2. Mit Hilfe des jährlichen zentralen Sterblichkeitsverhältnisses.

Aus den Überlebensordnungen kennen wir μ_x und m_x für ganzzahlige Werte von x, nicht aber für Zwischenwerte.

1. Weg: Wir teilen das zwischen den Grenzen a und x zu bestimmende Integral in Integrale über ein Jahr,

$$\int_a^x \mu_{\tau}^{(u)} d\tau = \int_a^{a+1} \mu_{\tau}^{(u)} d\tau + \int_{a+1}^{a+2} d\tau + \ldots + \int_{x-1}^x \mu_{\tau}^{(u)} d\tau.$$

Nehmen wir an, dass der Wert des Integrals gleich dem arithmetischen Mittel aus dem Wert am Anfang und am Ende des Jahres sei, so ist

$$\int_{a}^{x} \mu_{\tau}^{(u)} d\tau = \frac{1}{2} \left(\mu_{a}^{(u)} + \mu_{a+1}^{(u)} \right) + \ldots + \frac{1}{2} \left(\mu_{x-1}^{(u)} + \mu_{x}^{(u)} \right) =$$

$$= \frac{1}{2} \left(\mu_{x}^{(u)} - \mu_{a}^{(u)} \right) + \sum_{t=a}^{x-1} \mu_{t}^{(u)};$$

daraus folgt weiter

$$\begin{split} l_x^{(-u)} &= l_x \cdot e^{\frac{1}{2} \left(\mu_x^{(u)} - \mu_a^{(u)} \right) + \sum\limits_{l=a}^{x-1} \mu_t^{(u)}}, \\ l_x^{(u)} &= l_a \cdot e^{-\frac{1}{2} \left(\mu_x^{(u)} - \mu_a^{(u)} \right) - \sum\limits_{l=a}^{x-1} \mu_l^{(u)}}. \end{split}$$

2. Weg: Wir zerlegen das Integral wieder in gleicher Weise und erhalten:

$$\int_{a}^{x} \mu_{\tau}^{(u)} d\tau = \int_{a}^{a+1} \mu_{\tau}^{(u)} d\tau + \int_{a+1}^{a+2} d\tau + \ldots + \int_{x-1}^{x} \mu_{\tau}^{(u)} d\tau,$$

wo x ganzzahlig vorausgesetzt wird. Dann ist

$$\int_{a}^{x} \mu_{\tau}^{(u)} d\tau = \sum_{t=a}^{x-1} \int_{t}^{t+1} \mu_{\tau}^{(u)} d\tau.$$

In erster Näherung dürfen wir setzen

$$\int_{t}^{t+1} \mu_{\tau}^{(u)} d\tau = \mu_{t+\frac{1}{2}}^{(u)}.$$

Aus einer früher hergeleiteten Beziehung ergibt sich weiter

$$\begin{split} \int_{t}^{t+1} \mu_{\tau}^{(u)} \, d\tau &= m_{t}^{(u)} = m_{t} \, \frac{S_{t}^{(u)}}{S_{t}} = \frac{l_{t} - l_{t+1}}{\frac{1}{2} \left(l_{t} + l_{t+1} \right)} \cdot \frac{S_{t}^{(u)}}{S_{t}}, \\ &\sum_{t=a}^{x-1} \int_{t}^{t+1} \mu_{\tau}^{(u)} \, d\tau = \sum_{t=a}^{x-1} m_{t} \, \frac{S_{t}^{(u)}}{S_{t}}. \end{split}$$

Endlich erhalten wir

$$l_{x}^{(-u)} = l_{x} \cdot e^{\sum_{t=a}^{x-1} m_{t} \cdot \frac{S_{t}^{(u)}}{S_{t}}},$$

$$l_{x}^{(u)} = l_{a} \cdot e^{-\sum_{t=a}^{x-1} m_{t} \cdot \frac{S_{t}^{(u)}}{S_{t}}}.$$

Bemerkenswert sind folgende Ergebnisse aus den obigen Ableitungen: Die drei Überlebensordnungen l_x , $l_x^{(-u)}$ und $l_x^{(u)}$ können abgeleitet werden; man kann sie in erster Näherung bestimmen, wenn nur von Jahr zu Jahr die Werte der Grundlagen gegeben sind. Zur Bestimmung der Werte des speziellen Sterblichkeitsverhältnisses braucht man nicht über die Spanne eines Jahres hinauszugehen. Ferner kann man von einem beliebigen Alter a ausgehen, man braucht nicht auf das Ausgangsalter der Absterbeordnung zurückzugreifen.

Die Bestimmung der Ordnungen l_x und $l_x^{(-u)}$ fällt in unserm Fall weg, da das die Sterbetafeln 1876/80 resp. 1920/21 sind. Es bleibt nur die Aufstellung der Ordnung $l_x^{(u)}$, bedingt durch die Wirkung der ausgeschlossenen Ursache allein. Zur Berechnung liegen nach den bisherigen Ausführungen drei Möglichkeiten vor. Die erste Berechnungsart der $l_x^{(u)}$ stützt sich auf die Zahlen der Überlebenden der beiden bekannten Ordnungen. Sie lautet

(I)
$$l_x^{(u)} = C \frac{l_x}{l_x^{(-u)}}.$$

Ihre Anwendung empfiehlt sich, wenn für beide Ordnungen die Zahlen der Überlebenden gegeben sind.

Die zweite Möglichkeit zur Berechnung der $l_x^{(u)}$ verwendet die Intensität der Sterblichkeit μ_x . Die Intensität der erloschenen Ursache ist $\mu_x^{(u)} = \mu_x - \mu_x^{(-u)}$ (1. Kapitel). Die Formel für die Ordnung lautet in diesem Fall

(II)
$$l_x^{(u)} = l_a \cdot e^{-\frac{1}{2} \left(\mu_x^{(u)} - \mu_a^{(u)} \right) - \sum_{t=a}^{x-1} \mu_t^{(u)}}.$$

Diese zweite Art der Berechnung empfiehlt sich dort, wo die Sterblichkeitsintensitäten, nicht aber die Zahlen der Überlebenden gegeben sind.

Die dritte Möglichkeit stützt sich auf die Formel

(III)
$$l_x^{(u)} = l_a \cdot e^{-\sum_{l=a}^{x-1} m_l^{(u)}}.$$

Zu ihrer Auswertung muss zuerst das spezielle zentrale Sterblichkeitsverhältnis $m_t^{(u)}$ bestimmt werden. Es ist

$$m_t^{(u)} = m_t$$
 mal Anteilsquotient.

Der Anteilsquotient $\frac{S_t^{(u)}}{S_t}$ muss im betrachteten Fall aus

den Zahlen der Sterbenden, wie sie die beiden Tafeln geben, berechnet werden; er darf also nur S_t und $S_t^{(-u)}$ enthalten. $S_t^{(-u)}$ ist noch auf die gleiche Zahl von Überlebenden zu reduzieren, aus der S_t hervorgeht. Folglich ist

$$S_t^{(u)} = S_t - \frac{l_t}{l_t^{(-u)}} S_t^{(-u)}.$$

Die Formel für das spezielle zentrale Sterblichkeitsverhältnis lautet mit diesen Erweiterungen

$$m_t^{(u)} = \frac{l_t - l_{t+1}}{\frac{1}{2} \left(l_t + l_{t+1} \right)} \cdot \frac{S_t - l_t \cdot \frac{S_t^{(-u)}}{l_t^{(-u)}}}{S_t} = \frac{S_t - l_t \ q_t^{(-u)}}{\frac{1}{2} \left(l_t + l_{t+1} \right)} = \frac{q_t - q_t^{(-u)}}{\frac{1}{2} (1 + p_t)}.$$

Die Anwendung dieser Berechnungsart empfiehlt sich, wenn nur die Überlebens- oder Sterbenswahrscheinlichkeiten einer Ordnung bekannt sind.

Das Ausgangsalter a für die beiden letzten Berechnungsarten darf nicht zu niedrig gewählt werden, da man weiss, dass die getroffene Annahme für die ersten Lebensjahre nicht erfüllt ist.

Die Berechnungen nach den Formeln (I), (II) und (III) wurden vollständig durchgeführt für das Ausgangsalter 20, mit $l_{20} = 10~000$. Die Resultate für das männliche Geschlecht sind in Tabelle 2 zusammengestellt. Die Abweichungen der Resultate nach den Formeln (II) und (III) gegenüber (I) sind sehr klein. Für das männliche Geschlecht erreichen sie nach der Formel (II) nie den Wert von $1~^0/_{00}$, für das weibliche knapp $2~^0/_{00}$ im Alter 80; nach der Formel (III) sind sie grösser, das Maximum liegt bei $1~^0/_{00}$.

Wählt man das Ausgangsalter 5, so werden die Differenzen grösser; trotzdem ist die Übereinstimmung mit den Resultaten nach (I) noch gut.

Die durch die vorstehend erwähnten Berechnungsarten erzielten Resultate sollen hier noch besprochen werden.

Als Ausgangsalter wählen wir vorerst das Alter 0 und bestimmen $l_0=10\,000$. Die zwischen den Ordnungen 1876/80 und 1920/21 erloschene Todes-

ursache *u* würde allein eine Generation von 10 000 neugebornen Knaben in 80 Jahren auf fast die Hälfte, auf 5172, herabmindern, eine Generation gleichaltriger Mädchen in derselben Zeit auf mehr als die Hälfte, auf 4588 (Tabelle 3; berechnet nach Formel (I)).

Vergleichen wir zuerst die drei Ordnungen für Männer, die Ordnungen 1876/80, 1920/21 und die Ordnung bedingt durch die Ursache u allein (Darstellung 3). Die Ordnung 1876/80 weist den ungünstigsten Verlauf auf, besonders in den ersten Lebensjahren. Die Ordnung 1920/21 weist gegenüber der ersten einen bedeutenden Gewinn an Lebenden auf. Die gewonnene Lebensfläche erreicht einen Drittel der Lebensfläche der Tafel 1876/80.

Für diese Erscheinung ist die grosse Abnahme der Sterblichkeit des ersten und der paar folgenden Jahre massgebend, die die letztere Ordnung nur wenig herunterdrückt.

Die starke Abnahme hat eine grosse Sterblichkeit der Ursache u zur Folge, die so gross ist, dass die Ordnung der $l_x^{(u)}$ vorerst unter der Ordnung 1920/21 verläuft. Bis zum 10. Lebensjahr ist die Wirkung der erloschenen Ursache grösser als die Wirkung aller 1920/21 noch vorhandenen Ursachen. Das ist ein grossartiger Erfolg der Volksaufklärung, der verbesserten Hygiene und Medizin.

Nach dem Alter 10 rücken die beiden obern Kurven immer näher, und im Alter 48 erfolgt ihr Schnitt. Vom Alter 65 bis 80 wird der Abfall der Überlebenden bei Wirkung der Ursache u etwas steiler und endigt mit 5172 Lebenden, ungefähr gleich viel wie die Sterbetafel 1920/21 im Alter 62 aufweist.

Die Darstellung mit der männlichen und weiblichen Ordnung der Ursache u zeigt deutlich den fast parallelen Verlauf der beiden Kurven bis zum Alter 60 (Darstel-

Tabelle 2.

Überlebensordnung SM,

bedingt durch die Wirkung der zwischen 1876/80 und 1920/21 erloschenen Ursache u.

Spalte (1)
$$l_x^{(u)} = C \frac{l_x}{l_x^{(-u)}};$$
 $C = 12 482,9.$

Spalte (2)
$$l_x^{(u)} = l_a \cdot e^{-\frac{1}{2} \left(\mu_x^{(u)} - \mu_a^{(u)} \right) - \sum_{t=a}^{x-1} \mu_t^{(u)}}$$
.

$$\begin{aligned} & \text{Spalte (2)} \quad l_x^{(u)} = l_a \cdot e^{-\frac{1}{2} \left(\mu_x^{(u)} - \mu_a^{(u)} \right) - \sum\limits_{l=a}^{x-1} \mu_l^{(u)}} \,. \\ & \text{Spalte (3)} \quad l_x^{(u)} = l_a \cdot e^{-\sum\limits_{l=a}^{x-1} m_l^{(u)}} \,; \qquad m_l^{(u)} = \frac{S_l - l_l \ q_l^{(-u)}}{\frac{1}{2} \left(l_l + l_{l+1} \right)}. \end{aligned}$$

Alter	(1)	(2)	(3)	Alter	(1)	(2)	(3)
20	10000	10000	10000	50	8654	8654	8655
$\frac{20}{21}$	9968	9967	9967	51	8599	8598	8600
22	9931	9931	9930	52	8544	8543	8546
23	9891	9892	9891	53	8488	8487	8489
24	9852	9853	9853	54	8437	8434	8439
25	9813	9813	9812	55	8388	8384	8389
26	9773	9774	9773	56	8337	8333	8338
27	9732	9732	9732	57	8287	8283	8288
28	9690	9690	9690	58	8237	8232	8240
29	9649	9649	9649	59	8184	8179	8186

30	9606	9605	9604	60	8128	8124	8131
31	9559	9560	9558	61	8069	8064	8069
32	9513	9512	9511	62	8005	8001	8005
33	9466	9469	9465	63	7940	7935	7938
34	9418	9418	9417	64	7874	7869	7872
	v						
35	9371	9370	9370	65	7807	7802	7804
36	9325	9324	9324	66	7739	7734	7737
37	9280	9278	9277	67	7669	7665	7669
38	9234	9232	9232	68	7598	7594	7597
39	9189	9186	9186	69	7525	7519	7523
40	9139	9138	9138	70	7445	7439	7441
41	9090	9089	9088	71	7361	7355	7352
42	9040	9039	9038	72	7270	7265	7260
43	8990	8990	8988	73	7174	7169	7163
44	8943	8941	8939	74	7073	7069	7068
45	8898	8895	8895	75	6975	6969	6973
46	8850	8850	8848	76	6874	6869	6880
47	8805	8804	8803	77	6776	6770	6782
48	8758	8757	8757	78	6676	6671	6687
49	8709	8707	8709	79	6572	6571	6576
				80	6456	6452	6457
							Acceptable of the
- 1	1	1			Į.	ı	II.

— 59 —

Tabelle 3.

	Überlebende								
Alter		Männer		Frauen					
	1876/80 1920/21		$l_x^{(u)}$	1876/80	1920/21	$l_x^{(u)}$			
0	10000	10000	10000	10000	10000	10000			
10	7069	8680	8144	7354	8886	8275			
20	6763	8442	8011	7011	8644	8111			
30	6221	8084	7695	6469	8252	7839			
40	5568	7605	7321	5831	7804	7472			
50	4751	6852	6933	5145	7198	7148			
60	3616	5554	6511	4131	6172	6694			
70	2075	3480	5964	2450	4265	5744			
80	601	1162	5172	727	1563	4588			

lung 4). Die Kurve der Männer liegt tiefer, d. h. die erloschene Ursache ist grösser, besonders im jüngsten Alter. Im höhern Alter kehrt sich die Erscheinung um, es erfolgt ein Schnitt beider Kurven im Alter 65. Beim Schlussalter 80 weist die Ordnung der Frauen rund 600 Überlebende weniger auf als die der Männer.

Beide Kurven zeigen deutlich den charakteristischen Verlauf einer Absterbeordnung: rascher Abfall im Anfang, gefolgt von geringerer und mit dem Alter langsam wieder zunehmender Abnahme.

Legen wir den Berechnungen das Ausgangsalter 20 zugrunde mit $l_a=l_{20}=10\,000$, so erhalten wir folgende Resultate (Tabelle 2, Seiten 22/23): Die Zahlen der Ordnung 1920/21 und die der erloschenen Ursache sinken bis zum Alter 30 fast in gleicher Weise ab, dann aber divergieren sie mehr und mehr. Für die Ursache u sinkt zuerst die Ordnung der Frauen weniger rasch; im Alter 65 erfolgt aber der Schnitt mit der Kurve für die Männer.

Beim Alter 80 stehen die Frauen wiederum günstiger da, sie weisen rund 700 Überlebende weniger auf als die Männer, da sie im hohen Alter eine grössere Sterblichkeitsabnahme zu verzeichnen haben (Darstellung 5). Auf die grosse Sterblichkeitsabnahme der alten Frauen wurde schon im ersten Kapitel hingewiesen.

Auch hier zeigen wieder beide Ordnungen die charakteristischen Merkmale einer Absterbeordnung. Sie gleichen sehr einer von Prof. Friedli hergeleiteten Ordnung bei alleiniger Wirkung von Krebs und Tuberkulose 8). Prof. Friedli sagt auch, dass Kindersterblichkeit, Krebs und Tuberkulose in ihrer Gesamtwirkung den charakteristischen Verlauf einer Absterbeordnung ergeben. Bei unserm ersten Beispiel ist eine Kindersterblichkeit berücksichtigt, es ist die erloschene, und wir haben im ganzen einen ähnlichen Verlauf, wie er durch die Kombination der drei erwähnten Ursachen auch erzeugt wird, wie die Rechnung bestätigt.

Der Gewinn an Lebenden.

Die Differenz der Überlebenden zwischen den Ordnungen 1920/21 und 1876/80 stellt den Gewinn an Lebenden dar. Dieser Gewinn steigt, ausgehend von $l_0=10\,000$, schon im ersten Jahr auf über 1000 an, womit wiederum der grosse Rückgang der Säuglingssterblichkeit beleuchtet ist. Der starke Aufstieg flaut mit zunehmendem Alter ab. Für die Männer wird im Alter 50 und im Alter 54 für die Frauen das Maximum mit rund 2100 erreicht. Bis zum Maximum der Frauen ist der Gewinn der Männer grösser, von dort weg ist das Verhältnis umgekehrt.

Der Gewinn beträgt für die Männer vom Alter 6 bis 68, für die Frauen vom Alter 9 bis 74 über 15 % der Ausgangsgeneration; das Maximum erreicht 21 %.

Volkswirtschaftlich betrachtet ist der Gewinn der Männer günstiger als der der Frauen, da er hauptsächlich die jungen Jahrgänge, das erwerbsfähige Alter, umfasst. Der Gewinn der Frauen fällt zu einem viel grössern Teil auch ins Greisenalter, was volkswirtschaftlich eine Belastung bedeutet.

3. Kapitel.

Die Lebensverbesserung.

Bevor wir auf die Gründe und eine neue Untersuchung der Grösse des Sterblichkeitsrückganges eintreten wollen, soll noch eine Bemerkung über die Grundlagen angebracht werden.

Die Tafel 1920/21 gibt die Sterblichkeitsverhältnisse nicht so wieder, wie sie sich für diesen Zeitpunkt bei einer ungestörten Entwicklung darstellen müssten. Die Störursache ist die Grippeepidemie des Jahres 1918. Wie gross diese Störung ist, zeigt ein Blick auf die vom Eidgenössischen Statistischen Bureau berechneten Sterblichkeitssätze des Jahres 1918, wozu unter anderm noch ausgeführt wird¹³): «Die Grippeepidemie hat zur Besserung der Sterblichkeit in den nachfolgenden Jahren, da sie die schwächern Elemente der Bevölkerung frühzeitig hinweggerafft hat, beigetragen. Man kann also nicht behaupten, dass die Sterblichkeit nach der Tafel 1920/21 Zustände wiedergibt, welche auch ohne die Grippeepidemie bestanden hätten. Die Unterschiede zwischen den unausgeglichenen Sterblichkeitssätzen der Tafeln 1901/10, 1910/11 und 1920/21 einerseits und den entsprechenden Zahlen für 1918 andererseits sind indessen für die Alter über 50 Jahre so gering, namentlich wenn man den Vergleich mit Hilfe der Tafeln für alle Altersjahre anstellt, dass man behaupten kann, der Einfluss der Grippe sei für diese Altersjahre äusserst klein gewesen.» Die Tafel 1920/21 gibt uns also für die Alter unter 50 etwas zu gute Werte, d. h. die Sterblichkeitsverbesserung ist etwas zu gross.

Ferner ist darauf zu verweisen, dass in einer Tafel, deren Beobachtungszeit nur zwei Jahre umfasst, leicht Extremwerte der Sterblichkeit für Alter unter 20, wo die Ausgleichung nach Makeham nicht möglich ist, Eingang finden können. So ist z. B. für das männliche Geschlecht die gegenüber der Tafel 1901/10 vergrösserte Sterblichkeit in den Altern 12 bis 15 auffallend und auf eine solche Störung zurückzuführen. Aus all diesen Gründen wäre es wünschenswert, wenn bald eine Sterbetafel mit einer längern Beobachtungszeit erstellt würde.

Zur Untersuchung der Änderung der Sterblichkeit für jedes Alter eignet sich besonders gut die Lebensverbesserung ¹⁴) oder Variation der Sterblichkeit ¹⁰). Sie bezieht die Differenz der Sterblichkeitsintensitäten aus zwei Ordnungen auf die Werte der ersten Ordnung:

$$\varepsilon_x = \frac{\mu_x - \mu_x^{(-u)}}{\mu_x}.$$

Diese Verhältniszahlen geben uns ein sehr deutliches und empfindliches Mass für die Sterblichkeitsänderung. Tabelle 4 und Darstellung 6 geben die Lebensverbesserung der Männer von 1876/80 bis 1920/21 wieder. Es zeigt sich bis zum Alter 50 eine Verbesserung von über 30 %, im Alter 80 noch eine solche von 10 %.

Wenn man die Gründe zu dieser sehr grossen Eindämmung der Sterblichkeit sucht, so hat man vorerst zwei Kategorien zu unterscheiden. Es gibt Gründe, die allen Altersgruppen in ungefähr gleichem Masse zugute kommen, dagegen wieder solche, die nur für einzelne Altersklassen gelten.

Tabelle 4.

Leb	Lebensverbesserung: Schweiz, Männer 1876/80 bis 1920/21								
x	ϵ_x	x	ϵ_x	x	ϵ_x	x	ϵ_x		
0	53.42	20	44.46	40	41.40	60	19.03		
1	60.70	21	46.68	41	40.16	61	18.78		
2	62.01	22	48.58	42	39.23	62	18.60		
3	62.47	23	49.00	43	37.72	63	17.73		
4	66.95	24	49.09	44	35.31	64	16.89		
5	64.82	25	48.81	45	33.59	65	15.90		
6	57.44	26	51.58	46	32.50	66	15.20		
7	58.37	27	48.36	47	31.21	67	14.55		
8	54.39	28	47.87	48	30.64	68	14.03		
9	52.14	29	48.05	49	31.11	69	13.79		
10	48.28	30	48.55	50	30.95	70	13.65		
11	42.01	31	48.60	51	29.63	71	14.10		
12	39.83	32	48.10	52	28.69	72	13.47		
13	38.77	33	47.43	53	27.10	73	13.18		
14	34.59	34	46.76	54	24.32	74	12.58		
15	32.62	35	45.50	55	22.73	75	11.73		
16	33.33	36	44.07	56	21.67	76	11.24		
17	33.60	37	42.97	57	20.23	77	10.06		
18	34.52	38	41.93	58	19.66	78	9.90		
19	39.56	39	41.58	59	19.45	79	9.86		

Zu der ersten Kategorie gehören: die allgemein verbesserten hygienischen Verhältnisse, besonders die grössere Sauberkeit (verminderte Gefahr der Ausbreitung ansteckender Krankheiten), Verbesserung und Vermehrung von sanitären Anlagen, allgemein verständliche Verbreitung einfacher medizinischer Kenntnisse, Volksaufklärung, Alkoholbekämpfung, verbesserte Ernährungs- und Wohnverhältnisse, Lebensmittelkontrolle,
Trinkwasseruntersuchungen und anderes mehr, dann
auf medizinischem Gebiet hauptsächlich die vermehrte
Anwendung von Vorbeugungsmassnahmen wie die
Impfung, die bessere Diagnosenstellung, wie auch die
neuen Behandlungsmethoden mit grösserer Aussicht
auf Heilung.

Ein sehr wichtiger Punkt ist unserer Ansicht nach die bedeutende Verbesserung der wirtschaftlichen Lage der untern Volksschichten, d. h. die um mehr, als der Teuerung entspricht, gestiegenen Löhne der Arbeiter und Angestellten, die eine bessere Ernährung, eine häufigere und frühere Inanspruchnahme der ärztlichen Hilfe und die leichtere Beschaffung von Medikamenten gestatten. Dazu kommt, was ebenso einen bedeutenden Einfluss auf die wirtschaftliche Lage ausübt, die allgemeine Einschränkung der Kinderzahl, die nach und nach auch in den untern Volksschichten Fortschritte macht ¹⁵).

Die zweite Kategorie der sterblichkeitsvermindernden Ursachen wird im Zusammenhang mit der Lebensverbesserung zwischen der ersten und der letzten Sterbetafel besprochen (Tabelle 4, Darstellung 6).

Besonders sei nochmals auf den grossen Rückgang der Sterblichkeit in den ersten Lebensjahren hingewiesen. Die Lebensverbesserung steigt von 53% für das Alter 0 auf über 60% bis zum Alter 5. Einen Grund für die grosse Sterblichkeitsabnahme bildet die Verhütung des Magen- und Darmkatarrhs der kleinen Kinder. An dieser Ursache, die fast ausschliesslich im ersten Lebensjahr auftritt, starben im Jahrfünft 1881—1885 auf 1000 Lebende 12,7, im Jahrfünft 1916—1920 nur noch 2,7 Säuglinge 13). Nicht für alle Ursachen war eine

so grosse Eindämmung möglich, aber der Fortschritt ist überall gross. Daran haben auch die Vorbeugungsmassnahmen einen grossen Anteil, wie z. B. die Pflege in Säuglingsheimen und Krippen, die sehr viel zur Verringerung der Sterblichkeit im jüngsten Alter beitragen. Ferner spielt der bereits erwähnte Geburtenrückgang eine grosse Rolle, da die Säuglingssterblichkeit in hohem Masse von der Zahl der vorausgegangenen Geburten abhängig ist ¹⁶). Für das erste wie für die folgenden Jahre ist die Einschränkung der Rachitiserkrankungen sehr wichtig. Die Rachitis bewirkt eine grosse Schwächung der Gesundheit, so dass später irgendeine Krankheit den geschwächten Körper leichter befallen kann und zur Todesursache wird, als dies bei nicht rachitischen Kindern der Fall ist ¹⁶).

Nach dem Alter 5 zeigt sich ein anhaltender Rückgang der Sterblichkeitsverbesserung. Dazu ist vorerst zu bemerken, dass die Sterblichkeitsintensität für diese Alter sehr klein ist (das Minimum liegt im Alter 13) und deshalb eine Verringerung nur sehr schwer erreicht werden kann. Dann kommt der erwähnte starke Rückgang der Sterblichkeit in den ersten Lebensjahren dazu, der es mit sich bringt, dass gegenüber früher schwächliche Kinder am Leben erhalten bleiben. Ein Teil davon ist so schwach, dass er einer später auftretenden Krankheit leicht zum Opfer fällt.

Der erwähnte Rückgang hält bis zum Alter 15, also bis zum Schulaustritt, an. Es ist zu hoffen, dass für die Schulzeit durch die Einführung der schulärztlichen Untersuchungen noch eine Verringerung der Sterblichkeit erzielt werden kann. Diese Untersuchungen bezwecken vor allem die rechtzeitige Ergreifung von Vorbeugungsmassnahmen gegen alle schädlichen Einflüsse und die Beseitigung gesundheits-

schädigender Faktoren. Leider ist diese Einrichtung nur in den Städten ausgebaut und harrt auf dem Lande, wo sie ebenso nötig wäre, noch fast durchweg der Einführung.

Der Tiefpunkt der Lebensverbesserung ε_x zwischen je zwei aufeinanderfolgenden Tafeln rückt langsam in jüngere Alter, gegen das Minimum der Sterblichkeitsintensität hin; es scheinen sich hier die ersten Erfolge der schulärztlichen Tätigkeit wiederzuspiegeln.

Vom Alter 18 weg steigt die Lebensverbesserung stark an und erreicht ein zweites Maximum von fast 50%, das bis zum Alter 30 anhält. Vom Alter 20 bis etwa 50 wirkt sich die allgemeine Volkshygiene, die durch den Sport und die Sporthygiene unterstützt wird, aus. Alle Sportarten, die den ganzen Körper gleichmässig beanspruchen und nur sehr selten zu Höchstleistungen zwingen, sind als sterblichkeitsvermindernd anzusehen. Die Bewegung in der reinen Luft, ausserhalb von Städten und unhygienischen Wohnungen, besonders aber die Sonnenbäder sind als Schutz gegen die leider bei uns sehr grosse Gefahr der Ansteckung durch Tuberkulose, hauptsächlich Lungentuberkulose, äusserst wichtig und sollten noch mehr gefördert werden ⁹). Auch hier ist Vorbeugen viel leichter als Heilen.

Die körperliche Ertüchtigung ist ein bis ins hohe Alter sich auswirkender Schutz der Gesundheit. Daneben sind als wesentliche Faktoren der Sterblichkeitsverringerung im erwerbsfähigen Alter die Vorschriften des Fabrikgesetzes, die Tätigkeit der vielen Krankenkassen und der Schweizerischen Unfall-Versicherungs-Anstalt in Luzern mit ihren Vorschriften und Anregungen zur Unfallverhütung zu nennen, die nicht nur zur Eindämmung der Invalidität, sondern auch der Sterblichkeit, Hervorragendes leisten.

Mit fortschreitendem Alter tritt eine Abnahme der Lebensverbesserung ein. Die kleine Sterblichkeit in den jungen Altersgruppen hat ein starkes Ansteigen der ältern Generationen zur Folge. Da aber das Schlussalter nicht wesentlich herausgeschoben wurde, müssen die höhern Altersklassen zwangsläufig eine relativ grosse Sterblichkeit aufweisen, können somit nur eine geringe Lebensverbesserung verzeichnen.

Die über dem Alter 70 noch festgestellte Lebensverbesserung stützt sich zu einem grossen Teil auf die bereits bestehenden Fürsorgeeinrichtungen gegen die Folgen von Alter und Invalidität, wobei die Tätigkeit der vielen privaten Versicherungskassen schon eine gewisse Rolle spielt ¹⁷). Die laufenden Versicherungen umfassen leider nur einen kleinen Teil der Bevölkerung. Hier soll nun die obligatorische Altersversicherung eingreifen und die Kreise der Vorzüge einer Versicherung teilhaftig werden lassen, die bisher aus irgendeinem Grunde davon ausgeschlossen waren.

Schlussbetrachtungen.

Der festgestellte grosse Sterblichkeitsrückgang ist spezifisch schweizerische Erscheinung, sondern sie kann in fast allen Ländern nachgewiesen werden. Wir haben die deutschen Volkssterbetafeln $1871/80^{-18}$ und $1924/26^{-19}$ zu einem Vergleich mit den schweizerischen Verhältnissen herangezogen. Die Zwischenzeit für die beiden deutschen Tafeln ist rund 10 Jahre länger als die der entsprechenden schweizerischen. Treffen wir auch für die deutschen Sterblichkeitserfahrungen die gleichen Annahmen wie für die schweizerischen in Kapitel 2, bezeichnen also die zwischen 1871/80 und 1924/26 «erloschene Todesursache» mit u, so finden wir, dass eine Generation von 10 000 0jährigen Knaben in 80 Jahren durch die Ursache u allein auf 3134 herabgemindert wird (SM: 5172). Die erloschene Ursache u ist somit für das deutsche Material, unter Berücksichtigung der längern Zwischenzeit, etwas grösser als für das schweizerische. Für die deutschen Tafeln kann die erwähnte Berechnungsart sogar bis zum Alter 99 durchgeführt werden, wo noch 1143 Überlebende festzustellen sind. Es ergibt sich dabei für die Ordnung der Ursache u noch viel deutlicher die Ähnlichkeit mit einer gewöhnlichen Sterbetafel.

* *

An Versuchen, die Sterblichkeitsänderung vorauszuberechnen, gestützt auf die frühern Erfahrungen, hat es nicht gefehlt. In der Schweiz ist, soviel uns bekannt, kein Versuch unternommen worden. Dagegen ist es dem Engländer G. W. Richmond für das englische Material gelungen, aus frühern Sterbetafeln zum voraus für eine bestimmte Beobachtungszeit eine Absterbeordnung aufzustellen ²⁰). Die Beobachtungsergebnisse haben die Formel als richtig erwiesen. Eine genaue Übereinstimmung kann in einem solchen Fall nicht verlangt werden; die festgestellten Abweichungen sind aber nur gering. Prof. Riebesell hat die Richmondsche Formel auf die Sterblichkeitserfahrungen in Deutschland angewendet und zeigte, dass sie sich am deutschen Material nicht bewährt 21). Ebenso versagt die Formel nach unsern Feststellungen für das schweizerische Material. Deutschland wie für die Schweiz ist die Übereinstimmung mit den Erfahrungen in den Altersgruppen 18—22 und 68—72 am besten.

* *

Deutlich kommt der Fortschritt der Sterblichkeitsverringerung auch in der Zunahme der mittleren Lebenserwartung $\mathring{\mathcal{C}}_x$ zum Ausdruck. Tragen wir die Zunahme der mittleren Lebenserwartung von jeder Tafel, bezogen auf die erste, ab, so erhalten wir für die meisten Alter einen fast geradlinigen Verlauf. Es ist nicht anzunehmen, dass diese «Gerade» plötzlich geknickt wird. Schliesst man daraus, dass die weitere Entwicklung ungefähr in der gleichen Art fortgehe, wenigstens in der nächsten Zukunft, so steht schon jetzt fest, dass die nächste Sterbetafel wiederum eine grosse Verringerung der Sterblichkeit ausweisen wird 22).

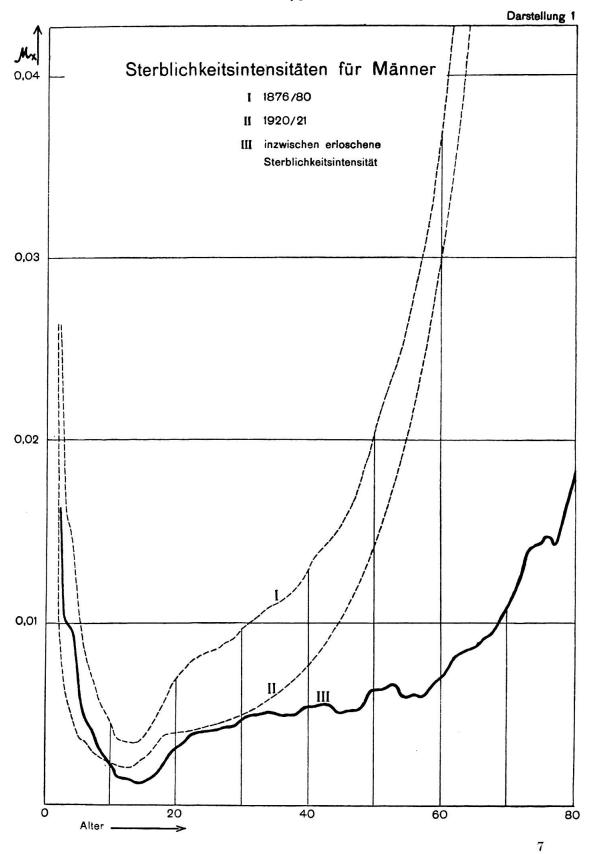
* *

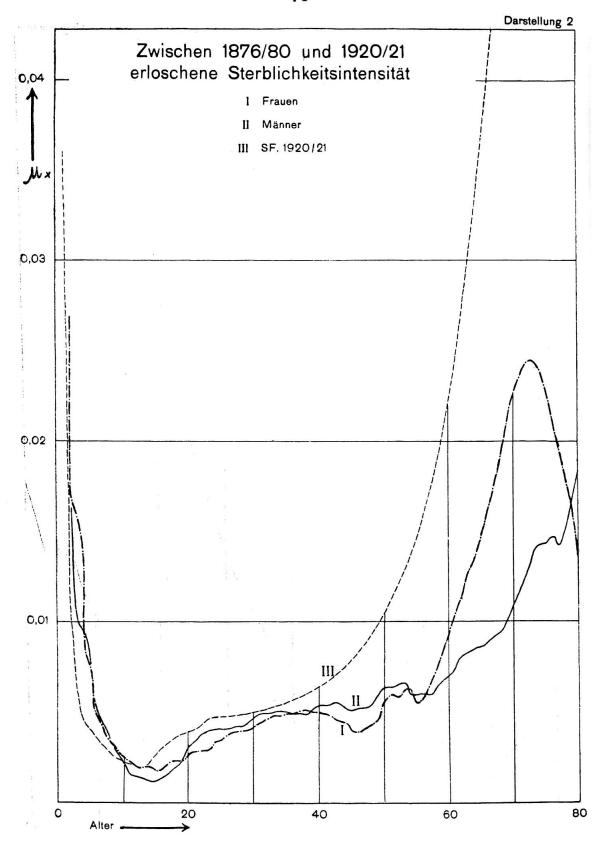
Abschliessend seien noch die frappantesten Ergebnisse der Sterblichkeitsverringerung des Schweizervolkes von 1876/80 bis 1920/21 zusammengestellt:

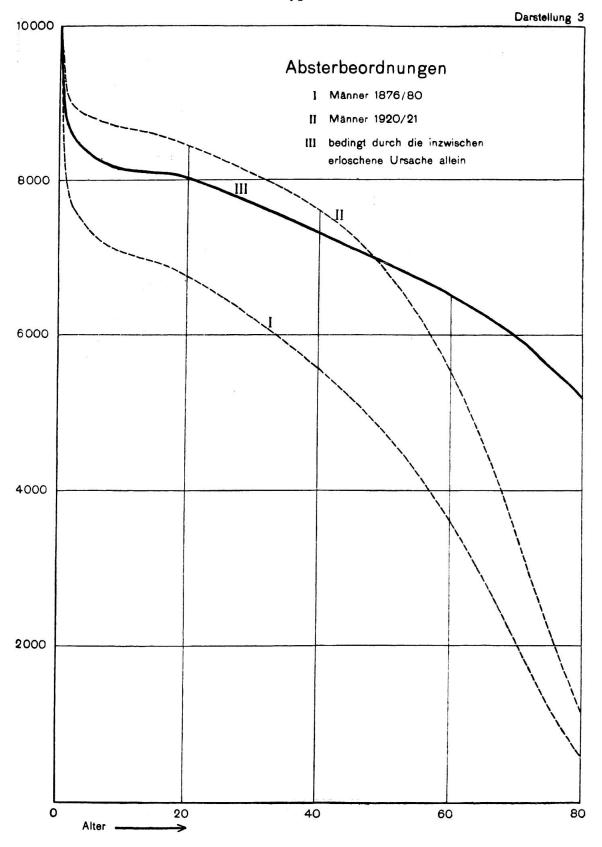
Die Lebensverbesserung beträgt vom Alter 1 bis 5 mehr als 60%, vom Alter 22 bis 32 über 48%.

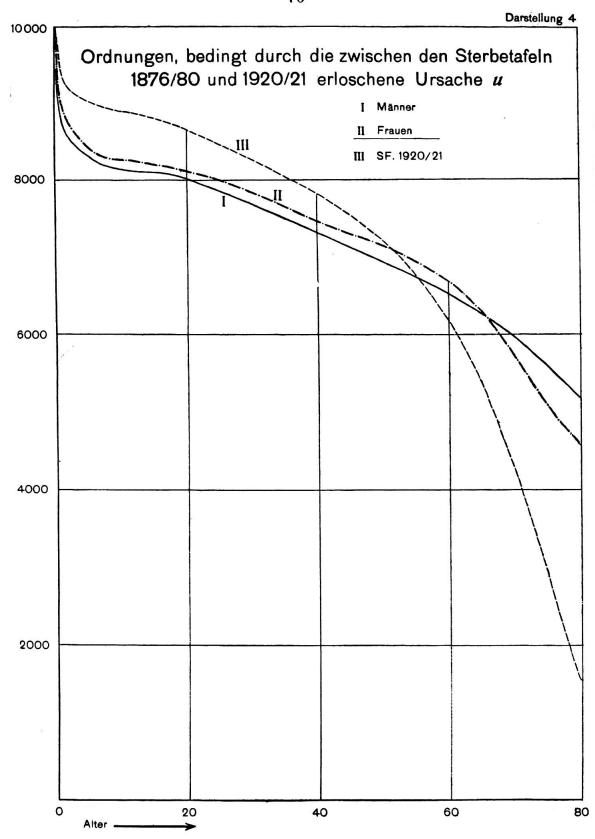
Die mittlere Lebenserwartung nahm für den Neugebornen um 14 Jahre zu.

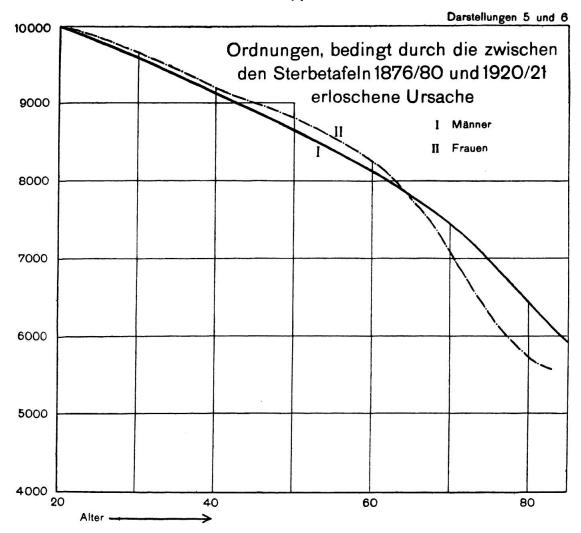
Die Sterbenswahrscheinlichkeit für das erste Lebensjahr sank um 56% für die männlichen und um 59% für die weiblichen Kinder.


Die Vitalität $\frac{1}{\mu_x}$ für die Neugebornen stieg von 22 auf 57 Tage.


Eine Generation von 35 000 jährlich ins 20. Altersjahr eintretenden Männern hat einen Lebensgewinn von 180 000 Jahren zu verzeichnen.


Literaturverzeichnis.


- ¹) Dr. M. Ney, De la mortalité dans la population suisse. Heft 22 der Mitteilungen der Vereinigung Schweizerischer Versicherungsmathematiker.
- ²) Dr. G. Schaertlin, Die Absterbeordnung der schweizerischen Bevölkerung für die Jahre 1876/77 und 1880/81. Zeitschrift für Schweizerische Statistik, Jahrgang 1887.
- ³) Ehe, Geburt und Tod in der schweizerischen Bevölkerung während der 10 Jahre 1891—1900. 3. Teil.
- ⁴) Grundzahlen und Nettowerte für die Lebensversicherung, berechnet nach der schweizerischen Absterbeordnung 1901/10, herausgegeben vom Eidgenössischen Versicherungsamt.
- ⁵) Bericht über die privaten Versicherungsunternehmungen in der Schweiz im Jahre 1925.
- ⁶) Zeitschrift für Schweizerische Statistik und Volkswirtschaft, Jahrgang 1926: Die Ausgleichung der schweizerischen Volkssterbetafel für die Jahre 1920 und 1921.
- ⁷) Prof. Dr. Chr. Moser, Intensitätsfunktion und Sterblichkeitsmessung (Vorlesung). Die Intensität der Sterblichkeit und die Intensitätsfunktion. Heft 1 der Mitteilungen der Vereinigung Schweizerischer Versicherungsmathematiker.
- ⁸) Prof. Dr. W. Friedli, Intensitätsfunktion und Zivilstand. Heft 21 der Mitteilungen der Vereinigung Schweizerischer Versicherungsmathematiker.
- ⁹) H. Steiner-Stooss, Der Einfluss der Lungentuberkulose auf die Absterbeordnung der schweizerischen Bevölkerung 1881/88. Heft 1 und dito für 1901/10. Heft 20 der Mitteilungen der Vereinigung Schweizerischer Versicherungsmathematiker.
- ¹⁰) Dr. H. Wyss, Die Krebssterblichkeit in der Schweiz. Heft 22 der Mitteilungen der Vereinigung Schweizerischer Versicherungsmathematiker.
- ¹¹) Prof. Dr. A. Bohren, Die Intensität der Sterblichkeit bestimmt auf Grund der zwei ersten schweizerischen Sterbetafeln. Zeitschrift für Schweizerische Statistik, Jahrgang 1903.
- ¹²) King-Bégault, Text-Book de l'Institut des Actuaires de Londres. Bruxelles 1894.
- ¹³) Ehe, Geburt und Tod in der schweizerischen Bevölkerung während der Jahre 1901—1910.
- ¹⁴) Bodenehr, Die Kochersche Sterbetafel und damit zusammenhängende Untersuchungen (Dissertation, Bern 1922).
- ¹⁵) Statištik der Stadt Zürich, Heft 30: Die Zürcher Normalfamilie.


- ¹⁶) Dr. P. Lauener, Geburtenrückgang und Säuglingssterblichkeit in der Stadt Bern. Beiträge zur Statistik der Stadt Bern. Heft 7, 1926.
- ¹⁷) Die in der Schweiz bestehenden Einrichtungen für die Alters-, Invaliden- und Hinterlassenenversicherung im Jahre 1925.
- ¹⁸) Statistisches Jahrbuch für das Deutsche Reich, Jahrgang 1887.
- ¹⁹) Statistisches Jahrbuch für das Deutsche Reich, Jahrgang 1928.
- ²⁰) C. W. Richmond, Neue Sterblichkeitserfahrungen in Grossbritannien. Veröffentlichungen des Deutschen Vereins für Versicherungswissenschaft, Heft 39, II. Teil.
- ²¹) Prof. *Riebesell*, Neue Sterblichkeitserfahrungen in Deutschland. Zeitschrift für die gesamte Versicherungswissenschaft, Band 27.
- ²²) Prof. Dr. Dändliker, Die Sterblichkeitsabnahme in der Schweiz in den letzten 50 Jahren.

