Sterbegesetze, welche eine exakte Darstellung der Leibrenten durch Zeitrentenwerte erlauben

Autor(en): **Leepin, Peter**

Objekttyp: Article

Zeitschrift: Mitteilungen / Vereinigung Schweizerischer

Versicherungsmathematiker = Bulletin / Association des Actuaires

Suisses = Bulletin / Association of Swiss Actuaries

Band (Jahr): 54 (1954)

PDF erstellt am: **28.05.2024**

Persistenter Link: https://doi.org/10.5169/seals-555098

Nutzungsbedingungen

Die ETH-Bibliothek ist Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an den Inhalten der Zeitschriften. Die Rechte liegen in der Regel bei den Herausgebern. Die auf der Plattform e-periodica veröffentlichten Dokumente stehen für nicht-kommerzielle Zwecke in Lehre und Forschung sowie für die private Nutzung frei zur Verfügung. Einzelne Dateien oder Ausdrucke aus diesem Angebot können zusammen mit diesen Nutzungsbedingungen und den korrekten Herkunftsbezeichnungen weitergegeben werden.

Das Veröffentlichen von Bildern in Print- und Online-Publikationen ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Die systematische Speicherung von Teilen des elektronischen Angebots auf anderen Servern bedarf ebenfalls des schriftlichen Einverständnisses der Rechteinhaber.

Haftungsausschluss

Alle Angaben erfolgen ohne Gewähr für Vollständigkeit oder Richtigkeit. Es wird keine Haftung übernommen für Schäden durch die Verwendung von Informationen aus diesem Online-Angebot oder durch das Fehlen von Informationen. Dies gilt auch für Inhalte Dritter, die über dieses Angebot zugänglich sind.

Ein Dienst der *ETH-Bibliothek* ETH Zürich, Rämistrasse 101, 8092 Zürich, Schweiz, www.library.ethz.ch

Sterbegesetze, welche eine exakte Darstellung der Leibrenten durch Zeitrentenwerte erlauben

Von Peter Leepin, Basel

Im 53. Band, 1953, der «Mitteilungen der Vereinigung schweizerischer Versicherungsmathematiker» ist unter dem Titel «Über ein Sterbegesetz, welches eine exakte Darstellung der Leibrenten durch Zeitrentenwerte erlaubt» eine Arbeit von Jecklin und Leimbacher erschienen. Im folgenden wird das gleiche Problem mit etwas anderen Mitteln untersucht und die allgemeine Lösung näher geprüft, während in der erwähnten Arbeit vor allem ein allerdings sehr interessanter Spezialfall behandelt worden ist.

Wir suchen ein Sterbegesetz mit der Eigenschaft, dass

$$\mathbf{a}_{x:\overline{n}|} = A_n + B_n C_x$$

wo A_n und B_n nur von n, C_x nur von x abhängt. Aus der Gleichung

$$a_{x:\overline{2}|} = 1 + v p_x = A_2 + B_2 C_x$$

ersetzen wir C_x durch p_x und erhalten eine Beziehung von der Form

$$\mathbf{a}_{x:\overline{n}|} = A_n' + B_n' p_x.$$
 Da
$$\mathbf{a}_{x:\overline{n}|} = 1 + v \, p_x \mathbf{a}_{x+1:\overline{n-1}|}$$
 erhalten wir
$$A_n' + B_n' p_x = 1 + v \, p_x (A_{n-1}' + B_{n-1}' p_{x+1})$$
 und daraus
$$v \, p_x p_{x+1} = \frac{1 - A_n'}{B_{n-1}'} + p_x \frac{v \, A_{n-1}' - B_n'}{B_{n-1}'}.$$
 Wir setzen
$$\frac{1 - A_n'}{v \, B_{n-1}'} = -a \, b$$

und

$$\frac{vA'_{n-1}-B'_{n}}{B'_{n-1}}=a+b,$$

wobei a und b nicht von x abhängen, und erhalten nach Multiplikation mit $v^{x+1} l_x$

 $D_{x+2} = (a+b) D_{x+1} - a b D_x$

oder

$$(D_{x+2} - a D_{x+1}) = b (D_{x+1} - a D_x)$$

und daraus

$$D_{x+1} - a D_x = b^x (D_1 - a D_0)$$

und symmetrisch

$$D_{x+1} - b \, D_x = \, a^x (D_1 - b \, D_0) \, .$$

Durch Elimination von D_{x+1} ergibt sich schliesslich

$$D_x = a^x \, \frac{D_{\bf 1} - b \, D_{\bf 0}}{a - b} - b^x \frac{D_{\bf 1} - a \, D_{\bf 0}}{a - b} \, .$$

Setzen wir

$$\frac{D_1 - bD_0}{a - b} = AD_0$$

so folgt

$$D_x = D_0 [A a^x + (1 - A) b^x]. (1)$$

Es zeigt sich, dass a und b auch von n unabhängig sind.

Formel (1) deckt sich mit Formel (18)

$$l_x = l_0 \frac{\sin z(\omega - x)}{\sin z \omega} k^x$$

in der Arbeit von Jecklin und Leimbacher, wenn wir dort für die Sinusfunktionen die Eulersche Exponentendarstellung verwenden und setzen:

$$A = \frac{e^{iz\omega}}{e^{iz\omega} - e^{-iz\omega}},$$

$$a = \frac{vk}{e^{iz}},$$

$$b = v k e^{iz}.$$

Jecklin und Leimbacher haben für den Fall z=0 eine Darstellung der Leibrente durch Zeitrentenwerte gefunden. Für den allgemeinen

Fall ergibt sich in unserer Form nun ebenfalls eine Darstellung für den Rentenbarwert mit der Verwendung von Zeitrentenbarwerten, nämlich

$$\begin{aligned} \mathbf{a}_{x:\overline{n}|} &= \frac{A\,a^{x}\frac{a^{n}-1}{a-1} + (1-A)\,b^{x}\,\frac{b^{n}-1}{b-1}}{A\,a^{x} + (1-A)\,b^{x}} = \frac{a\,\frac{b^{n}-1}{b-1} - b\,\frac{a^{n}-1}{a-1}}{a-b} + \\ &+ \frac{\frac{a^{n}-1}{a-1} - \frac{b^{n}-1}{b-1}}{a-b} \cdot \frac{A\,a^{x+1} + (1-A)\,b^{x+1}}{A\,a^{x} + (1-A)\,b^{x}} = A_{n}' + B_{n}'\,p_{x}. \end{aligned} \tag{2}$$

Die Richtigkeit dieser Beziehung lässt sich durch eine Zusammenfassung der Brüche auf der rechten Seite leicht nachprüfen. Damit ist auch gezeigt, dass die von uns bei der Herleitung verwendeten notwendigen Bedingungen hinreichen, um die gesuchte Funktion zu bestimmen.

Unsere Formeln gestatten nun ohne weiteres auch die praktische Anwendung des allgemeinen Falles. Wir gleichen ebenfalls die Tafel SM 1939/44 in den Altern zwischen 30 und 60 aus.

Es bestehen die Beziehungen

$$\begin{split} l_{40} &= \, l_{30} \left[A \, a^{10} + (1-A) \, b^{10} \right] \\ l_{50} &= \, l_{30} \left[A \, a^{20} + (1-A) \, b^{20} \right] \\ l_{60} &= \, l_{30} \left[A \, a^{30} + (1-A) \, b^{30} \right]. \end{split}$$

Daraus folgt

$$A = \frac{\frac{l_{40}}{l_{30}} - b^{10}}{a^{10} - b^{10}} = \frac{\frac{l_{50}}{l_{30}} - b^{20}}{a^{20} - b^{20}} = \frac{\frac{l_{60}}{l_{30}} - b^{30}}{a^{30} - b^{30}}.$$

Der Fall a=b entspricht einem konstanten p_x , so dass wir ihn ausschliessen können. Wir multiplizieren mit $(a^{10}-b^{10})$ und erhalten aus der Gleichung links

$$a^{10} = \frac{\frac{l_{50}}{l_{30}} - b^{10} \frac{l_{40}}{l_{30}}}{\frac{l_{40}}{l_{30}} - b^{10}}.$$

In der Gleichung rechts eingesetzt, folgt

$$\frac{\frac{l_{50}}{l_{30}} - b^{20}}{\frac{l_{50}}{l_{30}} - b^{10}} = \frac{\frac{l_{60}}{l_{30}} - b^{30}}{\left(\frac{l_{50}}{l_{30}} - b^{10} \frac{l_{40}}{l_{30}}}{\frac{l_{40}}{l_{30}} - b^{10}}\right)^2 + b^{10} \frac{l_{50}}{\frac{l_{50}}{l_{30}} - b^{10}} + b^{20}}{\frac{l_{40}}{l_{30}} - b^{10}}$$

und nach einiger Rechnung

$$b^{20} \left[\frac{l_{50}}{l_{30}} - \left(\frac{l^{40}}{l^{30}} \right)^2 \right] + b^{10} \left[\frac{l_{40}}{l_{30}} \cdot \frac{l_{50}}{l_{30}} - \frac{l_{60}}{l_{30}} \right] + \frac{l_{40}}{l_{30}} \cdot \frac{l_{60}}{l_{30}} - \left(\frac{l_{50}}{l_{30}} \right)^2 = 0.$$

Setzen wir hier nach SM 1939/44 ein

$$l_{30} = 89\ 014$$
 $l_{40} = 86\ 063$
 $l_{50} = 80\ 654$
 $l_{60} = 69\ 435$

so erhalten wir

$$0,028713b^{20} - 0,095998b^{10} + 0,066799 = 0$$

und daraus

$$a^{10} = 2,35585$$

 $b^{10} = 0,987514$
 $A = 1,015103$

Damit ergeben sich folgende Werte für l_x .

	Tafel SM $1939/44$	Jecklin/Leimbacher		Formel (1) mit Zinsfuss 0%	
	l_x	l_x	Δ	l_x	Δ
30	89 014	$89\ 014$	0	$89\ 014$	0
35	87 651	88 108	+457	87 729	+- 78
40	86 063	$86\ 435$	+372	$86\ 063$	0
45	83 868	$83\ 882$	+ 14	83 810	 58
50	80 654	$80\ 320$	-334	80 654	0
55	$76\ 059$	$75\ 589$	-470	$76\ 110$	+ 51
60	$69\ 435$	$69\ 503$	+ 68	$69\ 434$	— 1

Die Abweichungen mit der allgemeinen Formel fallen bedeutend kleiner aus. Das war zu erwarten, da mit einem zusätzlichen Parameter meist eine bessere Ausgleichung erreicht werden kann. Auch bei den Rentenbarwerten zeigt sich das gleiche Bild, wobei die Konstanten a und b mit v zu multiplizieren sind:

		Tafel SM					
		1939/44, 3%	Jecklin/Leimbacher		Forn	Formel (2)	
\boldsymbol{x}	n	$\partial_x:\overline{n}$	$a_{x:\overline{n}}$	Δ	$a_{x:\overline{n}}$	Δ	
30	15	12,032	12,054	+0,022	12,036	+0,004	
40	15	11,807	11,733	0,074	11,804	0,003	
20	20	14,931	15,248	+0,317	15,031	+0,100	
30	20	14,845	14,851	+0,006	14,848	+0,003	
35	20	14,685	14,597	0,088	14,673	0,012	
40	20	14,398	14,295	0,103	14,397	-0,001	
50	20	13,307	13,421	+0,114	13,241	-0,066	
35	25	16,880	16,760	0,120	16,868	0,012	
30	30	19,028	18,986	0.042	19,032	+0,004	
40	30	17,864	17,822	0,042	17,814	0,050	

Wir verzichten darauf, nun im allgemeinen Fall auch die Formeln für die Reserverechnung herzuleiten und zwar aus folgenden Gründen.

Für die Reserverechnung entsprechend dem Verfahren von Lidstone ist der Ansatz

$$a_{x:\overline{n}} = A_n + B_n p_x$$

für die Anwendung weniger geeignet, da bei der Reserverechnung der Barwert $\mathbf{a}_{x+t:\overline{n-t}|}$ verwendet wird. Als Hilfszahl müsste deshalb p_{x+t} (oder q_{x+t}) eingesetzt werden. Eine von t abhängige Hilfszahl ist aber praktisch unbrauchbar. Jecklin und Leimbacher haben deshalb in ihrer Arbeit an Stelle von q_{x+t} den Wert q_x verwendet, was jedoch eine Ungenauigkeit mit sich bringt. Ein den praktischen Erfordernissen entsprechender Ansatz lautet

$$a_{x:\overline{n}|} = A_n + B_n p_{x+n-1} \tag{3}$$

und ist – in etwas anderer Schreibweise – in der Arbeit des Verfassers «Über die Anwendung von Mittelwerten zur Reserverechnung» in Band 49, 1949, der «Mitteilungen der Vereinigung schweizerischer Versicherungsmathematiker» untersucht worden. Es ergab sich dabei keine

praktisch brauchbare genaue Lösung. Immerhin zeigte es sich, dass folgende Beziehung näherungsweise erfüllt sein muss, damit die Formel (3) näherungsweise gilt

$$p_x = \alpha + \beta \, \gamma^x$$

eine Beziehung, deren Verwandtschaft mit der Makehamschen Sterbeformel offensichtlich ist.

Da es keine genaue Lösung im gewünschten Sinne gibt, dürfte es am aussichtsreichsten sein, als Hilfszahl eine genaue Reserve zu einem bestimmten Zeitpunkt zu verwenden. Sowohl in der bereits erwähnten Arbeit des Verfassers als in der Arbeit von W. Maurer und M. Boss «Eine verfeinerte t-Methode» (Band 54, 1954, der «Mitteilungen der Vereinigung schweizerischer Versicherungsmathematiker») zeigte es sich deutlich, dass mit diesem Vorgehen die Genauigkeit der Reservermittlung wesentlich verbessert werden kann. Angesichts des regelmässigen Verlaufs der versicherungstechnischen Funktionen dürfen so die genauesten Ergebnisse erwartet werden. Im gewählten Zeitpunkt sind die Reserven genau und in der Umgebung treten nur kleine Abweichungen auf.