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The Theory of Random Processes
and Actuarial Statisties

Dcpen(lcnt and '.[n(_lependcnt Probabilities

By J.van Klinken, Amsterdam

Summary

[n this paper the use of the theory of stochastic processes for some hm(l(mmnhl
actuarial cone epts is stressed. This relates espeomlly to the subject of ““dependent”
and ‘independent”’ probabilities, important in the actuarial theory of the social
Msurance. Apart from this also some questmns of interval estimation for the
Mumber of ¢laims in the near future, regression and comparison of risks are dealt
With. Special attention is drawn to some approximative random processes, f.i.
the Poisson- -process which males it possible to simplify the statistical (dluuhltmnh.
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1. Introduction

In more advanced textbooks on actuarial mathematics usually the
reader still finds that the author starts with some considerations on the
So-called continuous method. Intensities are introduced. With these
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intensities functions l,  , are formed and afterwards ratio’s of func-
tion values in distinet points of time are interpreted as probabilities.

For nstance ¢, , = T 1s interpreted as the probability
() +
to die. This method of treating some fundamental actuarial concepts
(see f.1.the well-known treatise of Ii. Zwinggi, Versicherungsmathe-
matik, Basel, 1945, 1. Teil, 2. Kapitel) has some drawbacks. In the
first place this method ist not quite consistent. Anyone who knows
something about probability theory and more especially about the
theory of random processes feels that here in a strange and inconsistent
way deterministic and probabilistic elements are mingled. If it concerns
only the traditional theory of mortality rates and life annuities this
criticism seems rather too strong and in a certain sense supertluous. By
this last remark is meant that several authors on statistical subjects, at
any rate indicate that the function [, , ist to be interpreted as an
by 111
(2) + ¢

binomial distribution. [f we have several groups with transitions be-
tween the groups and also the possibility of leaving a group withoub
transition into another group, the problems are not so trivial. The
mingling of deterministic and probabilistic approaches leads to unclear
concepts and interpretations. This relates especially to the so-called
theory of “dependent’” and “independent” or “partial” and “abso-
lute” probabilities. With regard to the problems there are mainly two
sibuations involved:

expeetation and consequently the ratio’s - as probabilities of a

a) There is a group with several possibilities of leaving.
b) Transitions between two or more groups.

An example of a) is £.1. the decrease of a group of widows by remarrying
and dying; for b) we have as example the development of the insured
into active insured and those who are ill ete. In my opinion this theory
of dependent and independent probabilities can be treated adequately
if there is made use of the theory of random processes. And this i3
especially true if we want to use intensities and still interpret certain
ratio’s as probabilities. We stressed here the probabilistic approach. Be-
fore using mortality rates, accident probabilities, the actuary is con-
fronted with the problem of estimating and comparing these values.
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In statistical text-books one finds several methods dealing with these
problems. Now in actuarial practice most variables are approximately
Poisson-variables. Unfortunately, the statistical methods on the Pois-
son-model are usually missing or very incompletely dealth with.
However, for the actuary who uses statistical methods, the methods
based on the Poisson-model are of fundamental importance.

[f the intensities or probabilities have been chosen we may cal-
culate the development of the several groups of insured in the future.
Again in certain applications it has sense to consider this development
a8 a stochastic process. If this is true, the actuary may wish to have
mterval estimates for this development. If we take as example the
(‘ls‘svulopm(\,nt of a group of insured in premium payers and invalidity
bensionholders we may wish to have interval estimates for the number
of pensionsholders and i possible also for the corresponding present
Value of these pensions. The last problem is difficult to solve. It the
Poisson-model is justified something can be said.

Next we intend to treat the problems pointed out. In this no claim
I8 made on important new discovertes in mathematical statistics, only
the use of some techniques is stressed which, in my opinion, are less
wellknown and which have some tmportance for the actuary, who
Wants to make some use of mathematical statistics in his work. The
following may be partially seen as a complement of the theory as
breated f.1. in the book of i Zwinggi, already cited.

2. The stochastic process

[n this section we suppose the reader has some acquaintance with
the theory of random processes as treated for instance in [ 1].

First, we remark that inactuarial practice most processes are time-
dependent, that means the intensitios are functions of the time. We
always have groups in which aging plays a role. This is a distinetion
Compared with many physical examples,

a) The general random process

As general process we introduce here the following model. We
Suppose two groups A4 and B with transitions between the groups deter-
Mined by the transition intensities u,,(f) and uy,(f). Further there
5a decrease in each group determined by the intensities g, (£) and e, (1).
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Figure 1 marks the situation

A o p(l) i
/”’.-‘l(f) i”/}:l(t) I”’[s'(t)
| ~ '
¥ \
tea(t) ()

As conerete example we think of the development of & group insured
in active insured and those who are ill, e.g. the insured in virtue of
the dutch invalidity act or a similar insurance. Let be:
n,(f) the number of active insured,

n,(t) the number of insured who are ill,
tap(t) the intensity of talling ill,
tpa () the revalidating intensity,

() the death rate of valid insured,

up(t) the death rate of those who are ill.

We have two stochastic variables, n(f) and n,(f). This process is very
important for the actuary; apart from the example just given, there
are many other applications. That we give it the name “general™ means,
that we suppose all four intensities to be different from zero, not very
small and functions of the time. In the following sections we shall see
that in some practical applications simplifications can be made. This 18
important, as the “general” process is rather difficult to deal with.
As stochastic differential equation we obtain:

Py(ngng) = [t pa) () (palt) + pep()) (D] P, (0,10 p)
+peap(t) (na(8) + D) Pylng + Ly —1) gy (0) (gt 1Py 1 0 1-1)
+ a0 () () F1)Pylny +1,mp) + ug(ngt) +1) Py(ng,ng +1).

In this the usual conditions are made that subsequent time intervals

are independent and the probability of more than one change in
(t,t-+ h) is O(h). It we define the generating function of {[’t('n‘,\,n,,)} as

Gy (u,0) = D) uta"B Py (ny,np)

HA,HB
we obtain the following partial differential equation for (7 (u,v)
a0, (u,v) AR
) — Pl ) e (1]

oGz, (u,v
+ [HBA(t) (u—) + pp(t) (1—20)] a(ll z)_.

()
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The solution of this equation by (uadratures is generally impossible.
By imposing by-conditions on the intensities we may obtain approxi-
mative solutions which have practical meaning. We shall inquire this
in the following two sub-sections. Here we only indicate the solution
for the case the intensities are constants. Then we have to solve the
subsidiary system.
du dv
it = - N
The equation
du v
typ(—0) + oy (uw——1) (a0 —1u) | (v — 1)

15 of the homogencous type if we introduce the transformation
U — 1,0 — v—1. [t can easily be integrated. We can therefore
follow the common procedure to solve a simultaneous system. If we
only want the functions [4,(n,) and I, (n,), a different approach is
possible. By multiplying the equation for P,(n,n,) by n () and n,(t)
respectively, and swmming for these variables, we find the equations

By(ny) = — (ap(t) + pea(®) B, ) () 19, ()
Iy (ng) = uap(h) I5,(ny) — (MBA () 10, (n )

Supposing again the intensities are constants, we can easily solve this
system by following the method of d’Alembert. This gives the solution

[ (n ) = (}'1(;"“" ’l” 02 6?'2!,

E (ng) = ¢ et ¢

Y T
,lﬁ (12 e 2 ,
i which » and r, are the roots of

2 . g | -
P (g b ey b gy ) T [(.“Ab' ) (g + pp) M.-m.“m] ---- 0
and e = (ry—fban—f) C1) n,(0) = ¢y + ¢y,
Cy = (rg—ftap—ft) G2 np(0) = ¢y + ¢y,
If the intensities are not constants, the method leads to a differential
equation of Riceati, which is in general not soluble by quadratures.
However, we may suppose that I,(n,), I4,(n,) and the intensities are
bower series. Solution by series leads to recurrence relations for the
. i s , ) 4 1 T Y .
coefficients. Suppose E,(n,) = >, n,t", B,(ny) = >, t” the inten-

v

=, ’
stbies linear functions: w,z(t) = pap + 5t ete.
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As recurrence relations we obtain:

Wy = 11: [{4“3 M (Pap + 104) v—l'”A} + {;“;; vafp— (thap + ta) u—z’"'A}] )

1 / ’ I
Wt = [{IU’A bt (pa + tep) v—lw’ff} s {;“A v-atb — (Upa + ) a7 LB}] 3
Starting from n,4(0) = ¢, and n,(0) = n, we can compute I4,(n,)
and f9,(n,) some time ahead. The convergence of the series is only
good for rather small values of £ In order to compute Iv,(n,) and
4,(ny) tor larger values of ¢ we have to divide the interval (0,f) into
subintervals.

The solutions with constant intensities are important for the devi-
vation of the intensities for smaller periods, f. 1. a year, from observa-
tional data. F'rom these intensities special probabilities can be caleu-
lated needed by the actuary for the determining of annuities ete. This
derivation will be our object in section 2.

b) The Poisson-approximation

In subsection a) we introduced the example of a group falling apart
mto two groups, the group of active ingured and the group of those who
are 1ll. Now 1t depends entirely on the eriterion of the act or policy if
any one insured has to be considered as ill. If we take the Duteh In-
validity Act the figures show that the level of invalidating is about
0,001—0,01, whereas the rates of revalidating are high, about 0,1--0,5.
Renewed invalidating after foregoing revalidating may be neglected if
we timely restrict the extrapolation to not too large values. wu, the
death intensity of the valid insured is also very low, while u, the
death intensity of the invalid 18 somewhat higher. The foregoing im-
plies that n,(f) u,,(t) = () the total mvalidating intensity may be
considered as not stochastic. The numbers which invalidate in (0,7
%

are given by a Poisson-distribution with parameter [ u(t) dt. If we put
0

tepalt) + 1,y = A(f) we oblain as approximative differential equation

for Py(ng)

Pyng) = — o) + A0) np(D)] Py(np) +
T 0ft) Pu(ng—1) + A0 (nplt) + 1) Py +1).
The partial differential equation of the generating function of {Pt (ng)}is

G (s oG (s
Eit( ) = (1-—3) |—u(t) G,(s) + A(t) — ()

0s
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The subsidiary system is

B & a6l

(s—1) Ar) (s—1) ult) G (s)

S()lving this simultaneous system we find as solution
t

i —j Ao) do
T

—(lds)./'e
(;t('s) il 0

t
3 np(0)
pepdt ~ [z )dv

1—(1—s)e?

1 4 . . o . . . . .
The second factor is the oenerating function of the binomial distribu-

blon with parameters
!
f Ax)dr

m=g" and N = ng(0).

It arises from the fact that at time 0 there are already 2,(0) invalids,
The first factor is the cenerating function of the Poisson-distribution
With parameter !

b~ [Ho)do

f e’ w()dr.

0

I we consider A(t) and g(f) as constants we obtain the solution

- 18 1 '*ll-_,”
(r’t(,‘;) - (,’ (l L) A(l ) [1 7}7‘ (S___ = 1) G“Al]?l“(()) .

"g(t) is the sum of two independently distributed variables i. e. the

O . ; t
Poisson-variable with parameter ')

b

= : q ; :
(1—e*) and the binomial variate

with probability ¢ . lixpectation and variance of ny(f) are the sums
Of these values for the variables apart. Hence

Iy (ny) = JL; (1—e) + np(0) e,
Vmﬂmﬁ::ﬁﬂﬁw4ﬁknAMé“ﬂw*W

1l i [ - i
]'Aﬁpecmlly ‘; (I—e™ can be interpreted as the probability of falling

Ul and remaining ill until the end of the year.
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c¢) Other approximative random processes

In applications it frequently oceurs that g, and g, are very small,
whereas ., and uy, arve both large. As example we may take the
transitions between the group of premiwm payers and the remaining
group, insured in virtue of the Dutch Invalidity Act. Once accepted
for the insurance one remains insured one’s whole life. Surrender did
occur formerly, but can be neglected nowadays. Transitions 4 DB
are only for a small fraction caused by sickness; they are mostly due to
the fact that the insured becomes independent or earns an income
higher than the level above which premiums are to be paid. u, and g
are the death-rates of the premium payers and the remaining insured.
I'rom statistical investigations it turns out that w, is somewhat larger
than w, , however, both are very small compared with w,, and w, . If
we have only the intention to compute the development over a rather
short time interval, we may put as first approximation u, = w, = 0
and further assume that g, , and up, are constants. Hence the number
of the total group i3 a constant N, and we only have one random
variable f. 1. n4(f) to take into account. As stochastic differential equa-
tion for P,(ny) we obtain

Pylng) = — [(N—np) pap + npgpepa] Prlng) +
H(N—mg + 1) papg Prng—1) + (ng + 1) gy Py(ng + 1)
Hence as partial differential equation for the generating function of
{Pt (ng} we get
0(r,(s)
ot

oG (s
= papN(s—1)G,(s) + {#AB s(L—s) + pipa(1— ‘5)} 3!9( ;

; : (. (s) = Sn[‘(m.
The solution is ol$)

Gifs) = (1+ (5= 1)p) 80+ (L (5 Dy

in which

o Hap (1 S (‘f’“f'”:lB |- pe B[t)f) -

iy = — e y 9Py =

N —(raAB T rpA)t
Haptfipa® ( ‘ B_ F)
Yanp + iu’ BA /u.'l B iy Hpa

The generating function of the binominal distribution with parameters
p and n is [1+ (s—1)p]". Hence ny(t) is the sum of two independent
binomial variates with probabilities p, and ,p,.
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We have in conclusion.

Byng) = (N—ng(0)) p, 4+ npu(0) opy s
Var,(ny) = (N—ng(0)) 1p,(1—1p;) + np(0) gp, (1 —4p)

np(t) o N (L (ngp) l/'/\‘r”’rf(”u) ,

(n,(f) has approximately a normal distribution).
ki

and

If 1, , and w,, are not constants but functions of the time we
obtain a similar result. We get the same partial differential equation
for @2,(s), excopt that g, and gy, are now to be replaced by w, ,(f)
and g, (f) .

The subsidiary system is

. ds dG,(s)
dt — , — = -
3 » ! »
(s 1) (prap(t) s + 1epa(l) feap(t) N(s—1) Gy(s)
The first equation of this system yields a differential equation of
Riceati which in this case can be integrated by quadratures. We have

(s ‘
== My p(t) 8%+ (:“m\(t) 'hW“AB(‘t)) S — Mml,(t) .

dt
A particular solution is s == 1. Hence the transformation s — s-—1
reduces this equation to one of the Bernouwilli type. [f this equation is
integrated and the solution s s —1 = f(¢,,#) in which ¢, is a constant of
integration, he have to integrate

sl N fer, ) @t —
We shall find two solutions

Cl - fI(SJ[’)(-;)S
ty = fo(s,t, ).

The solution of the partial differential equation is now given by
F(ey,ey) = 0 and the boundary condition (/y(s) — s"8”. The expressions
for ¢, and ¢, are rather complicated. Therefore we shall follow another
way to determine the function (7,(s). If we multiply the differential
equation for P,(ny) by n, and sum over n,, we get the equation

[U;(“B) == ,“AB[N—EJ(”B)] —ptpa 0, (np) .
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The solution 1s y
L — [ (raple) trpale))de
[y(ny) = (\’ M )) J:“..-m(r)e ’ dr +
0
f L
] l'lA[g(T) b n BA ( )) dt ‘t ,4./ (,u‘,\ H(r_n) - np, l( )) (1(; »
(0) + f!-hu:(f) ¢’ dr

0

-+ H’B

We put ;
. ~ [ (reaplo) 1 1 pAe)) de
/ g » T ]
e = f!-‘AB(T)" dr
0
and ‘! )
—j (nAB(7) Fupalr))de ! -'f(!!,.\ Bl2) +rpalel)de
/ — ( )
ghy = & ¥ + ],MM.(T) e dr.
0
Now intuition tells us that again the solution 1s given by

[1 - (s—- 1) Yy ]\ ngl0) [1 + (,,-,,ﬁ -[) 2,{)11»1,,(1))‘

That this supposition is not wrong can easily be verified by substituting
this expression in the partial differential equation for ¢, (s). (Take e. g.
first n,(0) = 0 and apply the differentiation rule

dllf“’ du-—]u ) dy + ), fw.y)

an arbitrary function). Hence again ng(f) has approximately a normal
distribution with

Iy(ng) = (N =ng(0)) 1p; +ny(0) opy s
Var,(ng) = (N —ng(0)) pi(1-1p,) +n450) op, (1-—2py).

So far we only considered the situation that the size of the total group
of msured is a constant. In reality there is a slight decrease by dying
ete. TF we want to consider this decrease stochastie, the problem is
rather difficult to solve. Now the rate of decrease is small compared
with that of the transitions. Consequently the stochastic effect of this
decrease 1s small. We may take this decrease into account by consider-
ing it to be not stochastic and by supposing N = N () is a fixed slowly
decreasing function of time. For instance N(t) 1s a lincar function
N(l—at) in which « is a known constant.
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A crude correction for I7,(n,,) will be
My

t
'*_/ (naple) +rpale))de

1 ] . 1 1 )
_zaNj‘“AH(T)"r dv = — ya N p,.
0

Likewise we may obtain a correction for Var,(n,) by considering the

differential equation for If,(n%), and applying the formula

Var,(ny) = B,(n%) — (I8,(ng))?

. i . v 2 i : i 1Ung
3‘[111t1[)1y1ng the equation for P,(n;) by ny and summing over n, gives

E:(ni) = —2(uyp(t) + tpa(t)) 10, (%) + (Lpea () N(O) — o4 5 () + e 4 (8))
B () N pap®),  By(nd) = ng(0).

This is a linear equation which can easily be solved.

3. Dependent and independent probabilities

a) Transitions between groups

Over a small period, for instance a year, we may consider u, , and
tpa as constants. [Purther we shall neglect the decrease of the total
group of insured. Afterwards we'll make a correction. Suppose we have

(ra0), my(0), my(1)), fe= 1, sne s

We saw that np(l) 1s the sum of two independent binomial variates

k observations

with probabilities
e~ (raB tEBA 4 s~ (ap ta
p fap(l—e pal )) P fap+ g ¢ ABTBA)
P = , _ el e : IR .
Map t tpa fap T Hpa
It p and ,p are rather small, we obtain approximately maximum
likelihood estimates for p and ,p by determining p and ,p from
! , D - DENE
(1) —4m,(0) 14 my(0) yp
; a1 s\Y) 2 s
¥ Ll ima AN }] - = Minimum ,
— b} o [
i=1 )'n[g(l) [be(_‘. 'Sb)l

However, a moment’s reflection tells us that this method only gives

N
. - n ' B i " o
valid results if the ratio’s -~ do not differ too less. If this last con-

M (0)



e JH e

dition is fulfilled and the observations are not very small, the method
may give reliable results. The estimates g, , ans g, are now to be

computed from s y 5 g
J tapt+itps = —1og Gp—p),
N — P 1og (5p—1p)
g T T e
L—3p+p
: 158 in(0) .
In practice, the condition, that the ((»))- show large differences not
n
] A

owing to random effects, is often not fulfilled. In this situation the
method cannot be applied. But it might happen that it is possible to
split up the numbers jn (1) into two parts; yng,(1) and; yn,(1), ; m,(1)
being the number of insured at time 1 in B and at time 0 in 4,
and ; zn,(1) being the number of nsured in the B group, who, one
year earlier, were also in the B-group. Then we have

P~ y‘.,.ft'”n(l) . ;‘.B'"'n(l)
1P == Ty 9 f—h-‘., —= .
2, (0) 1p(0)
[t we have k observations, we again obtain the estimates p and ,p

from the minimum y*-method:

gw [;'3;1753(1)_ — M (v) lP]_z_
<

= — minimum,
{2 i.:tnh‘(l)
k. gig(l)— np(0) 5p]? o
E Li.sms(D) = im5(0) o] — minumuin.
fesl i,b‘nls(l)

Or if we apply the modified minimum y,-method, we obtain the equa-

tions [2] _
7 {1 [j.an5(1) — m,(0) 1?] jTLA(())

2 = (),
0a0)
{1 _[«,‘,_1_;’{51;_(1_) — ;_"{LB(O) 2] rg'j”{BV(())r 0
f::{ 17b13(()) 21)

This is equivalent with maximum likelihood estimation:

k k
le‘{lfnﬁ(l) Zl y.’Ban(l)
Ip = *k T gp = ?#, .

Z 1,4(0) i“ 15(0)

j= j=1



1P and 4p are commonly indicated with ““dependent”™ probabilities. In
tonnection with this notation 1—e¢ #4858 and | —¢™B4 are called ““in-
dependent” probabilities. They represent the “real” transition pro-
babilities.

It the decrease of the total group cannot be neglected so f. 1.
N(t) = N(1—at), we find that the correction for [/ (ny(1)) is

e AR T EBA) - () —

1 B
—aN ~ 1
aN u,p ( ) 2 N g

2
(tap + 1)
T F

l\’eglectmg random effects

;1”3(1) Hap (1 ey (vaB TR, l))

~ L
AR
74(0) Mapt tpa
’ —(rap tr
[{)bﬂ(]-) ‘L\ﬁAB "}* IU'BA e ( AD B.A) ; a/t
R - T Rl
m;(o) Map T Upa

From theso observed frequencies g, , and fi,, can be computed. We

haV(}ll ‘1‘()(],111 )
(b * o 100.( Bn’B(l) o (1) )

Uip T Hpy =
Han BA n(0) n,(0)

Next iy, and g, seperately can be derived from the expression for
anp(1)

nA (())

babilities as 1 —¢ #45 and 1—e “rpa

. In conclusion we may again determine the independent pro-
. : I

b) Groups with several possibilities of leaving

As most simple example we consider a group which decreases in
bwo ways. For instance group B, the group of the insured who are ill.
(Gtoup B diminishes by revalidating and dying, determined by the
Intensities ppa() and gg(f). Both gy, (1) and w,(f) are rather large.
We suppose that at time ¢ — 0, there are N insured who are ill.
Further ny (1) 13 the number of those who revalidated in (0,8) and ny(f)
the number of deaths. As stochastic differential equations we have

_8 Py(ny,my)

o a1 OHN — () —naft)} P, me)

+ pga(f) {N“”’bl([) —ny(t) + 1} Py(ny—1,my)
+ ty(t) {N — 1y (8) —my(t) + 1} P,(n,ny—1).
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The solution is of course the trinomial distribution

T

N! [ b —[{rpate) +uple))de )
Pinpng) = ——oooo j ipat) e’ dt
({1, me) Ny () mg(t) ! (N — 1y (8) — mg(E)) ! ]t ") ‘
T t
f *",."f{'“BA(U) f‘-“}'_f(@)}d@ 1“2“) "'_/-{‘”BA(TJ '}'ltﬂ(r)}(lr‘l N-ny(t)-na(t)
T j‘uB(r)e . er 1—e?® J
0
For the expectations wo find
! —f{#m(e) ’H‘B(Q)}dﬂ
Byn) = N [ppa(@)e’ dr,
0
¢ ~ [ 1upale) +uplo) do
E,(ng) == Nj/,zg(r)e b dr.
0
Both of them are functions of puy,(f) and wy(f).
fi,(my) I (ny) . | -
N and — & e therefore called dependent probabilities.

ny(t) and ny(f) are not independently distributed. We could also have
arrived at the expressions for If,(n,) and I,(ny) by multiplying the

P, (14, my)

equation for -~ with n,(f) and ny(t) respectively and summing

tor these variables. We then find
By(ny) = ppa{N — B, (ng) — I, (ny)},
liy(ng) = up(t) {N iy (ny) 15 ()}
Solving this system leads to the expressions above. If ¢ iy restricted to

small values, wo may again consider wu,,(f) and p,(t) as constants.
In thig case we simply get

E,(n, _
gy = t-,( l) . MBa (1 — e (At rp)Yy
N Mpa g
& = Zﬂt(‘n’z_)_- . ) Hp (1 e ("BA + IH.B) i) .
N Kpattp

The independent probabilities ¢, and ¢, are obtained from the arti-
ficial assumption that the stochastic differential equation for P,(n,n,)



IS given by

0Py (ny, ny)

ot

= [ppa(t) (N —ny(&)) +p(0) (N —n9(0) ] P, (1, )
+ e (B) (N —ny(6) + 1) Py(ny—1,my)
+ gy () (N —ng(t) - 1) Py(ny, my—1).
That means we suppose that the probability of a change
ny(8) > my(f) +1 in (¢t h)
sgiven by 1, (N —ny(t)) b+ O(h) and not by gy (N —n,(£) —=n,y(6)) b+ 0(h)

and equally the probability of a change ny(0) >ny(t) + 1 is (N —ny(f))-
*h+0(h) and not g, (N —mn, () —ng(t)) b1 O(h) .

The solution is , !

: m(t) ! N—ny(!)
NI ( —‘/"lt”}l('!') dr) ( ”f-”‘BA(r)’lr
LY 0 0
Pt(nl: Ng) = — - -\l—e e
' ny(t) (N—m,y (1)) !

; t \ nE(E) t N—ny(l)
! ( ﬁ-/,u“ (r)dr) ( Hj 1 p(7) ctr)
=X ® _ 1 ., 0 ¢ 0 .
na(t) (N — ng(t)) ! '

(1) and my(t) are independent binomial variates with means

t
7 ( "*‘/‘,MB‘,L(T) {ll’\
E,(n) = N\l—¢?® /

/
S

t g
, ( ‘—\/‘ﬂ!;(t)th>
B, (ny) = N\1—¢? e

Hence we have as independent probabilities

¢

—/./Lfm(t)dt
=t
:
*/[LB(I)([T
.

In some applications it may occur that u,, and u, are both small
f.i. < 0,01. In this case we obtain as approximative equation for
B (n
Sl o

P, (ny, my)

ot = — (ttyalt) + py () NP,(ng,ny) +

+ () NPyl —1,m) + pop(t) N Py(ny, my—1) .
11
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The solution of the system s

[

¢
—N/‘{,uBA(T) ]—,uB(‘r)} dr f nq(t) f ny(f)
¢ [_N J LpalT) dr] [N ] 1ep(T) d?:]

P,(n,n,) = R I (S A
11 ) ny(t)! mylt)!

¢

t
—Nf,uB(r) dr t
; [

—N fupalerde t n(t) [ na(f)
e ? (N j Upa(7) dr] e N j Up(T) (lt}
. - N— 0 e A M N - & SE— . " i (‘)
nyit) ! ny(t) !

From the right side we see that n(f) and n,(t) are independently distri-
buted as Poisson-variables with expectations

¢

t
waumdz and N [ py(r) dr.
: .

0

TFrom the foregoing it is clear that the problem of dependent and in-
dependant probabilities arises from the fact that sometimes n,(f) and
ny(f) cannot be considered as Poisson-variables. In this case n,(f) and
ny(t) have a covariance different from zero and we have to learn the
values py o (F) and w4 (t) separately. In actuarial statistics it is not custom-
ary to publish the intensities and therefore ¢, and ¢, are computed.
Another remark concerns the computation of q,, ¢, q, and ¢,. The
custom is to compute the independent probabilities q,, ¢, from the
observations and afterwards the dependent probabilities as

. ! 1 ’
G~ Gl =30,
) ! { !
G2~ go(l = q)-
q, and q, are computed atter the well-known formula’s:

Ty Ny

Y (BAE+4n,)’

!

q, ~ - - and gy~
g (B 104 n)

(B and F are the numbers of insured in B at the beginning and the end
of the years of observation; active insured who invalidate in the course
of the year are treated separately). This method is rather inaccurate
and cumbersome. Therefore we prefer the following calculation.



|
ot
™=
]

We have d
4/ {“[f!l -+ /LB )}(h’ nl ,,f,ﬁ nz

s (B I8y ny)

l

g = ql ,l_ (12 = l N

and Qo Qe = 10y(ny) 0y (ng) ~ my:my
Hence the formula’s for ¢, and ¢y are:

Ny Ny

~ - - 5 (s =~ - R
< LB+ 154 ny +my) te 3 (B+ I+ ny + ny)

If ppa(t) and py(f) are constants, we compute gy, -+, from
i+ qy = 1—e-(Batrn) with the aid of a table of the e-function.
After that u,, and g, are computed from

Ny
Hpa =~ (g + :“B)
Ny -+ Ny

and
Ty

i e g i)
rbl *l‘ nlg
] X . . . ! !
In the end we determine the independent probabilities ¢ and ¢, as
! ) _ )
@y = 1—¢g* 84 and Gy = 1 —e B,

4. Bstimates and tests
a) The comparison of risks, tests based on the Poisson-model

In many actuarial applications the Poisson-process can be used as
an approximative solution. In connection with this it is important to
havo tests for Poisson-variables. I'or instance we may want to compare
accident risks of cortain enterprises, the risks of subsequent years ete.
The numbers of accidents may be d,, ..., d,. We now suppose that the
d; arc approximately independent Poisson-variables with means ;. If
tho number of man-years of the ¢'* enterprise is 10; and this value mdl-

cates the size of the enterprise, we may say that there are no differences
with regard to accident visk if A;: 2,14, = w 1wy, To investigate
this hypothesis of equal us]\, we shall give here two tests. We are not
going to give complete proofs and information, these can be obtained
flom [3]. It is easy to prove that the conditional simultaneous distri-
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k
bution of the d,, under the condition that d — E(l‘i is fixed, 18 the
i1

multinomial cdistribution
1o ! . ) B
Pldy, - -, dgld] = ——— [ [}
T a1 t=1
][ d,;!
1

=

in which Wy = —, ; v =1, ..., k.
Al

D,

=1

According to this result, we see immediately that if the hypothesis of
equal rigks 1 true A e
i ’ ko (d,—dw,)®

=3 t

— has approximately a
= dw,

Ziey-distribution. If we only want to test against a specific trend, f. i.

A A A
. .. . . . 1 9 " 7
the d, showing a definite increasing risk: ~ ' < = < ... < "% there
w 10, w
. . . s L 2 5
is still another suitable statistic. :
k k
S 1 . . . . . - 1 - . e .
We may use > id; as criterion. Again if d — Dl d; is fixed, this
=00 i=1 K
quantity has a normal distribution with expectation d > 4w, and
ue] Yy b b "1 s DUL1C ) Xpectatblor b 2, ;G
variance . % ) i=t
A -2”" . "‘ ..’PV
d| >} 2w, (l Lmi>
=1 =1
Hence L "
Si(d;—w,)
) R
;- ! e o N(0,2).
71N g2 } Vi
I/(.l l@ w LILIIJ
b= =1

With this statistic T, it 13 possible to test one-sidedly against an in-
ereasing or decreasing trend. .
Both tests are essentially conditional tests, d = > d, i3 fixed.
i=1
This condition is easily removed. We may consider d as stochastic, the
. . . . - . . . oo
distributions of 7' and 7', remain the same. I£ 77 18 T in which d is
stochastic and _y* 13 the value with P[x* > ,#*] = « we have
TF w2 - NP 2] Pla
P[T} > % = >, P[T, > .x*|d] P(d)
o

~ Pl S P = P> 0.
d



15T —

It the values d; are very small, we may make use of exact tests. I'urther
there are some methods of combining independent tests ete. We shall
not enter into these matters; many details and numerical solutions can
be found in [3]. We have given these tests here only beeause tests based
on the Poisson-model are not usually dealt with in text-books or if so,
very inadequately ; however, for the actuary who wishes to make use
of mathematical statistics, they are very important.

b) Regression and least squares in the case for Poisson-variables

This too is certainly a question of interest for the actuary. We
shall only indicate the problem. Suppose the d; are independent Poisson-
variables with means ;. T'urther the 4; follow the functional relation-

S}llp j'l, e ‘H)i f(‘ll,’ OC[, P ka) = @U!‘ fb’ ’L —_ ]ry sy ]]"'

Ay system of equations to determine the maximum likelihood estimates
% vy gy, We obtain 3
= wi f; x £ Nds
- (0, f;)"

P, ..., d) = ¢~ ]_[ d' .

=1
l afb
.10, -
2 log P B r Gy
dlog 1 o _\_1] 2 (ft N E da,
k alO‘T' ' -
= >\ (d;—w; f;) bfb' slly  F s 1 gennils
i=1 ot

These equations are identical with thoge of the modified minimum a
method [2]. |
The system cannot be solved by elementary methods. An approxi-
Mative solution will be obtained by solving the system
Q‘! (d,t — W, f-i) ) afi 0 f =1 :
S (Z H’L — 3 ?— g e ey M

| ; oot ;

LI £, %y, - ..y %) 18 a polynomial, we have a simultaneous system of
linear equations. We obtain a similar result by determining a,, ..., a,

fr ‘
o ki —wfy)? .
}_] - = minimun.
i=1 d,

Mmi.:. , i . ]
I'his i3 also often called the minimum y2-method.



From the foregoing follows that, in this particular example of
Poisson-variables, the minimum y*method approximatively leads to
maximum likelthood estimates for oy, ..., . The actuary mostly
considers variables which nearly follow Poisson-distributions, therefore
the minimum y%method is to be preferred to the classical least squares

method k
y TP
> (d;—w; f;)? = minimum.
i=1

We stress this method here because a treatment starting with the
Poisson-model cannot be found in the commonly used text-books.

5. Extrapolation

a) Interval estimates of future numbers

In the foregoing stochastic processes are considered mainly in con-
nection with the computation of certain intensities and probabilities.
The problem of prediction was largely neglected. In this section at last
we are going to make some remarks on this subject. In pratice, extra-
polation with the intention to obtain interval estimates has only sense
for some years ahead, as the intensities determining the process cannot
be predicted with accuracy. The influence of errors in the intensities
is much larger than the effect of random effects. This is especially true
in case the numbers of insured are large. Therefore we shall restrict the
extrapolation to only a few years. In this situation we may often use,
in the example of insured who are seriously ill, the Poisson-approxima-
tion of 2b) with advantage. If we consider in addition the intensities as
constants, we have

Et(”k) = ';( (1 ----(f““) + ’M“(()) gM
Var,(ng,) = ‘i{ (1~ oMY Loy (0) M (1M,

[t the supposition that g 1s a constant 13 too crude, we may put
pu(t)y = pu(L+ B, It i3 easy to prove that the corvection for I4,(ny)

amounts to /9/

Al (np) = /1;' (e + at—1).

Because we have here a Poisson-distribution the correction for Var,(ng)
1s also AW, (ng).



It we do not only consider serious illness, bub also not serious
tllness and small accidents, the Poisson approximation is too crude.
In this case p,, and u,, are large while gy and w, are both small.

Now we may estimate 77,(n,) and I, (ng) some years ahead with

the formula’s
i 17, a )rlt
]f‘t(n'.-l) = (0

B (ny) = ¢, e + 0y, [see Ba)],

. ol
+cye'?,

or, if we do not consider the intensities as constants, by the power
series solution. The variance of n,(f) can be crudely estimated with the

formula
i Var,(ng) ~ n,(0) p, (1 o)+ p(0) gp, (1 9P,
In which

—(aptupa)t ] paptepa)t
f (1o (raBteBa)h _ Map T lgae ~(rap s
= s 2Py — o
tap T tga Han ‘i‘ ."‘ BA
Ag already remarked, this has only sense for values of ¢ restricted to a
small period. If the intensities are strongly age-dependent this last
remark has to be stressed.

b) Interval estimates for the present value in the case
of the Poisson-model

In subsection a) we considered the problem of interval estimates
for ny(1). There is also the problem of interval estimates for the present
value of the pensions ete. to be paid by the insurer to these n,(f) in-
sured, This problem is in general a difficult one. If n, () may be seen
approximately as a Poisson-variable a solution can be given. We shall
indicate the distribution of the present value of payments falling due
n the period (0,1, For simpliciby we suppose n,(0) == 0, and ;Lil'pny-
ments equal to the money-unity. The number of pension-holders who
tell ill at time =, gy 1ot has a Poisson-distribution with parameter

t—t

w/' (z)-4 L’d”

/ )] | - tanat v ! ) ¢ ¢ -
%U.m = u,e , 1, the total intensity to fall ill at 7 and Ay 1o the
tensity of leaving the group of insured who are ill at time 7 + o
by revalidating ete. The present value of the pensions corresponding
with n_ is =

. [T te)s
W, p = J e w(r (l(),

. (0 intengity of interest).
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w, 15 a random variable. We find
T—7
B, ;) = j e M do
0
Var (w, ) is somewhat difficult to determine. Let w, , mean the
7,1 N 7,1
present value of one pension and f(w, ;) the corresponding distribution.
We shall now follow a heuristic way. We suppose that w, , and 1w, 1
can only assume positive integral values. The generating function of
w, p i then given by (, 4(s) = ¢™r" #9128 in which ¢, ,(s) is the
generating function of the distribution f(w, ;). For Var (w, ;) we now
have " / / g
T, ; e f . ! 9 14202
Var (w, 5) = G, (1) +G, ¢ (G, (P = p, E(Ws ).
There remains to compute I¢ (’ﬁ)f,i.)

We have

t—r T
T—v o 2 _fl”(r) FQ(IL) ,—TTT Wf‘“( |,Qfm
Ew; g) = f ({e_(ﬂ Md”) e’ - "{"(j g tr e (lo) /
;N 0

(The second term on the rigt side corresponds with those insured who
are still ill at time T'.)
The n, are approximatively independent Poisson-variables. Hence,

f[l
if w, 13 the total present value, so w, = ]wm‘ dr we have

0

i

j E(w, 4) dr = f e 10 (0, ) dr
0

and -

@ . o
Var (w, \a,t w, p) dv = | u, 15 (w2 ;) dr
1 vt T,1
0
in which F(w, ,) and ,F]('LYJ‘;',T) have the values indicated above. In
pratice the w, , are uniformly bounded; the central limit theorem
may be applied.
Hence Wp— ]"(

VV&I (w

Numerical integration yields I (w,) and Var(w,), the N(0,1) table at
last the interval estimation.

“,’f‘)- ~ N(O,1).
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We have to remark here that the formula’s tor f7(w,) and Var (w,)
can be considered as a generalisation of the theorem of Campbell. As
know this theorem describes random fluctuation in an electron stream.
Suppose that the number of electrons arriving at the anode in (0,t)
follows the Poisson-distribution with parameter i, whereas the effect
of an electron arriving at ¢, at the anode is f(t,), and I" = D f(t,)

the total random effect. The theorem now tells us that 4
BE) = A [f@ya, — Va@) =2 [ Peya, (4
& 0

r . . . .
The analogy between this physical example and our actuarial one is
evident,
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Zusammenfassung

Der Autor betont die Wichtigkeit des (rebrauchs der Theorie stochastischer
Prozesse fiir die Umschreibung gewisser grindlegender Begritfe in der Versiche-
rungsmathematik. Dies gilt ingbesondere hinsichtlich der in der mathematischen
Theorie der Sozialversicherung wichtigen Begriffe der sogenannten abhiingigen und
unabhiingigen Wahrscheinlichkeit. Gesondert werden einige Fragen der Intervall-
schitbzung fiir die Zahl kiinftiger Schadenereignisse behandelt, sowie der Regression
und der Ristkovergleichung. Besondere Aufmerksamkeit wird sodann einigen ge-
niherten Zufallsprozessen gewidmet, so vor allem dem Poisson-Prozess, welcher
cie statistischen Berechnungen zu vereinfachen gestattet.

Résumé

[auteur souligne Uirmportance de l'usage de la théorie des processus stochas-
tiqques pour quelques conceptions de la mathématique actuarielle, Il le démontre
spicialement o U'égard du sujet des probabilités dépendantes et indépendantes, trés
importantes dansg la thorie mathématique de Passurance sociale. Iin outre, sont
traités quelques aspects de Uestimation d’intervalle des événement fuburs, ainst
que de la régression et de la comparaison de risques. Une attention toute spéeiale
est attribuée & quelques processus stochastiques approximatifs, avant tout au
modele de Poisson, puisqu'il rend possible une simplification des caleuls statistiques.

Riassunto

Viene sottolineata 'importanza dell’uso della teoria dei processi stocastici per
aleuni concetti fondamentali nella matematica attuariale. Questo vale specialmente
per 1 soggebti delle probabilita dipendenti o indipendenti, aventi parte importante
nella teoria matematica dell’assicurazione sociale. A parte sono trattate alcune
questioni sulla stima degli intervalli per il numero dei danni futuri, come pure sulla
regressione e sul confronto dei rischi, Particolare attenzione ¢ stata data ad aleuni
processi stocasticl e, in modo approfondito, al modello di Poisson, il quale rende
possibile la semplificazione dei caleoli statistiei.
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