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Ragnar Norbkrg. Copenhagen

Actuarial Analysis of [Dependent Lives

1 Introduction

Actuarial tables of multilife statuses are invariably based on the assumption
of mutual independence of the component life lengths. Presumably, the

popularity of the independence hypothesis is due to its computational
feasibility rather than its realism; there are reasons to believe that the

component life lengths may be interdependent. For instance, husband and

wife are more or less exposed to the same risks, which may change for either
of them when the spouse dies. Moreover, there may be certain selectional
mechanisms in the matching of couples (birds of a feather flock together).
The present paper undertakes to investigate some alternatives to the

independence hypothesis and to derive some consequences for actuarial

computations. We shall focus on the bivariatc case and find sufficient
conditions for positive or negative dependence between life lengths and present
values of insurances. In Section 2 we refer some definitions of different notions
of positive and negative dependence between stochastic variables and some
useful results on relationships between these definitions. Section 3 discusses

how various forms of dependence affect present values of payments related

to single- and multilife statuses. Section 4 and 5 present model assumptions
that imply positive or negative dependence of life lengths; Section 4 treats
a Markov model with forces of mortality depending on marital status, and

Section 5 launches a heterogeneity model specifying that the component forces

of mortality are stochastic processes that may be dependent.
Actuarial aspects of dependence between life lengths have been discussed

previously by Camere ««rf C/m« (1986). Their approach centers on quantifying
the possible impact of dependence on actuarial values by establishing bounds
for bivariate distributions, and is thus methodologically remote from the one
taken here.
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2 Notions of dependence between random variables

Let S and P be real random variables defined on some probability space.
We say that S and 7" are /zo.s/fzre/v t/uadrant dependent and write P0D(S, 7')

if

P[S > s, 7" > t] > P[S > s] P[P > f] for all s.f. (2.1)

Note that (2.1 is equivalent to P [S > s | 7" > t ] > P [S > s] for P [P > t ] > 0,

which is easy to interpret.
We say that S and "P are associa fer/ and write /1S(S, 7 if

Gov [g(S, 7'). /z(S,P)] >0 (2.2)

for all pairs of functions g and /z that are increasing in both arguments and

for which the covariance exists. We could state this definition equivalently
by saying that g and /z are decreasing in both arguments or by reversing the

inequality in (2.2) and saying that g is increasing and /z is decreasing.
Wc say that S is ng/zf fa// increasing/decreasing in P and write RP/(S | P) /
RPD(S I P) if

P[S > 5 I 7' > z] is increasing/decreasing in t for all s. (2.3)

Stochastic independence is included as a special case of each of the three
notions of dependence: replace ">" by "=" in (2.1) and (2.2), and replace

"increasing/decreasing" by "constant" in (2.3). We could distinguish between

independence and genuine dependence by adding the qualification "strictly"
to POD, AS and RP7/RPD in the latter case.

A thorough analysis of these and other notions of dependence between
random variables can be found in Sections 2.2 og 5.4 in Par/on/Pro.sr/zazz
(1975). From this reference we pick the following useful result:

Pezzzzzza 2J : RP/(S | P) => dS(S,P) => P0D(S, P)

3 Present values of endowments, annuities and insurances on dependent
lives

We shall restrict our discussion to the bivariate case and. more specifically,
consider a married couple which buys an insurance policy when the husband
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is at age x and the wife is at age y, say. Let S and 7' denote the remaining
life lengths of husband and wife, respectively. We consider them as random
variables.
In actuarial applications we are interested in the following single- and multilife
statuses defined by S and 7".

Status Life length Survival function

(r) P[t/>r]
Husband (a) S P[S > r] (3.1)

Wife (y) P P [7' > t] (3.2)

Joint life (x,y) SA7 P[S > t. P > t] (3.3)

Longest life (xTv) S V 7" P[S > r] + P [P > r] - P[5 > r. P > r] (3.4)

Random variables of particular interest are the present values of certain

payments determined by the life lengths of these statuses. We list some that
are commonly used, restricting to «-year payment schemes specifying that a

unit amount is payable cither immediately upon the survival of a status (z)

to time /I or death of the status, or annually, continuously at constant rate 1,

during the existence of the status. As usual, r O denotes the discounting
factor corresponding to a fixed force of interest <5, and denotes the indicator
function of the event d.

Payment scheme Present value Expected present value

Pure endowment C,','(t7)

/I

on I»• /.,

Annuity b

1 - i^'
_ ____

(Term) insurance C,',((7) r'

r"P[(7 > n] (3.5)

/I

fl.jn ^ r'P[C > t] c/r (3.6)

o

(3-7)
r nl

Both C','(L') and C"(17) are increasing functions of Lb whereas Q(L') is a

decreasing function of L". Furthermore, each of the life lengths L' defined
in (3.1) (3.4) are increasing functions of S and P. Combining these results

with the definition (2.2). we obtain a number of results on interdependence of
present values of payments related to associated lives.
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Assume that S and 7 are associated, and let U and K be any two of the life
lengths listed in (3.1 (3.4). Then C^(l/) and C'/,'(K) are positively correlated
for a, ß G {a,e} and for a /I /, and they are negatively correlated for
a 6 {a,ej and /) i. For instance, Q,(S) and C,',(7') are positively correlated,
and C,'„(S) and C,"(7) are negatively correlated. Similar statements are valid
also for expressions of the type

c;,(F)-7tc;;(t/), (3.8)

which is the present value of benefits less premiums for a life insurance

payable at time K if (' < n, with level premium payable at constant rate 7t

until 1/ A w. Clearly, the expression in (3.8) is a decreasing function of 5 and

7. and so we have, for instance, that C,'„(S) — 7t^.Q',(S) and C,',(7) — 7q.C,"(7)
are positively correlated. General results of this kind cannot be obtained for
present values that are not monotone in S and 7, e.g. deferred payments of
the type C* ((7) — C*(L7), a G {«, i}, or for present values related to compound
statuses, like (contingent insurance on (x) payable if (y) outlives
(x)) or C"(7) — C"(S A 7) (reversionary annuity on (y) after the death of (x)).
In any case, the covariance of any two given present values can be evaluated
by integration.
Dependence between S and 7 affects not only variances and covariances
of present values, but also expected present values of payments related to

multilife and compound statuses. Let the topscript "ind" signify that a quantity
is calculated under the independence hypothesis, that is, P[S > s, 7 > f] is

replaced by P[S > s] P[7 > t]. Suppose that S and 7 are PQD as defined
in (2.1). Inspection of (3.3) - (3.7) and use of (2.1) gives that

— — ind
.4 i < 4 i

AT HI V "1

— —ind
/4 i > y4_l

x_v n| xy "I

Moreover, let the level premium in (3.8) be determined by the equivalence
principle, that is. by requiring that the expected value of the expression in (3.8)
be zero. Then, from the inequalities above, we obtain that 71 > rc' e.g. for
K SV7 and L G [S. 7, S V 7}, that is. the independence hypothesis yields
an insufficient premium. On the other hand. ?r < 7r' e.g. for L G [S, 7, S A 7]
and L S A 7.

£ > F
n .xv — n xy >

7 ind — - —ind
xy » xy TT] «1 '

F— < F-* 7Ï < 77'"^
n xy — n xy > ,xy 7T| — ^xy ïï~| >
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4 A Markov model with forces of mortality depending on marital status

The interdependence of the life lengths of husband and wife could be explained
by the change that incurs in the living conditions upon the loss of the spouse
(grief, stress, etc.). Such effects can be accounted for simply by allowing the

forces of mortality to depend on marital status (apart from age and sex).

More specifically, assume that the husband's force of mortality at age x + s is

/;(.s) if he is then still married and /«'(s) if he is a widower. Likewise, the wife's
force of mortality at age y + f is v(f) if she is then still married and v'(f) if
she is a widow. (To simplify the notation, the dependence on x and y is not
made visible. The prime should not be confused with differentiation here.)

Under these assumptions the future development of the marital status for an

x years old husband and a y years old wife is a time continuous Markov
chain |A',(S. T); r > 0} with state space and forces of transitions as shown in

Fig. 1. The transition probabilities (s, f) / | A", 0], / G [0,1,2},
0 < s < f, are given by

Figure /.
Markov chain representation of the marital status of husband and wife

2.

Husband alive

Wife dead

Husband dead

Wife alive

u'
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JW*0 *
f

-JY
Pqi(s,0 /<?•< /ffr) e ' dt,

' -J/i+v -J;/
Poff.sY) / e ' v(t)e < c/r

The joint survival function of S and 7" is

P [S > .s, 7 > f ]
Poo(0, r) + Pqo(0, s)Pq, (s, r), s < t,
Pqo(0, s) + Pqo(0, f)Po2(t> s), s > f,

-/ /<+v ,(+v

e ° " /'(r)e - dr. s<f, (4.1)

S
S T X

- J u + v ~ - J ji+v - /
e o + / e o v(r)e < dr, s>t. (4.2)

f

The marginal survival function of 7 is

P[7>t] Poo(0.t) + Po,(0,t)

— J l — J Jl+v — J v'

e + / e o p(r)e * dt, r >0. (4.3)

The expressions in (4.1)-(4.3) can be realized by direct reasoning.
We now prove that S and 7 are positively/negatively dependent if the

mortality is higher/lower for widowed persons than for married persons.
It is assumed throughout that all forces of mortality appearing in the model

are continuous, so that the differentiations performed in the following are

valid.
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77ieore/n 4./.: The following implications arc valid:

(i) /'(r)>//(r) and v'(r) > v(r) for all t >0 4.4)

=> R77(S | 7") and P77(7' | S)

=> -ISt.S". /'i => P0D(5, 7").

(ii) /f(r) < /i(t) and v'(t) < v(r) for all r > 0 (4.5)

=> PPD(S j F) and RTDfT | S)

=> /1S(-S. D => TOD(-5\7

(in) /<'(t) //(t) and v'(t) v(r) for all r>0 (4.6)

<==> S and 7" are stochastically independent.

Proo/': We first prove item (i). The last two implications arc generally valid,
confer Lemma 2.1. We need only to prove the first implication and, by

symmetry, it suffices to establish that (4.4) implies P77(S | P).

First, for s < / we find from (4.1) and (4.3) that

e " + / e « p(t)e c/r

P[S > s i r > fj 7 - t 7

-J //+v -J u+v -J v'

e + /e ° //(T)e dt

I J r+''-v
1 + / e' ,a(r)di

/ /!+>•->•'
1 + J C' /((r)dr
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By the rule for differentiating a fraction, rffi/r) (rru — the sign of
IffP[S > s j 7" > f] is the same as the sign of

r J /i + v-v'
1 + / e- /<(r) </r

'
J H+V-v'

— <! 1 + / £" /i(l) c/t

/ J

/iff) + / t" /i(r) i/t {/iff) + v(f) — v'ff)}

(4.7)
' J 1,+v-v'

/iff) + / £' /<(l) iff {/iff) + v(f) - v'ff)}

Put

J. / /l+>'-v'

/l(ii) / e' /i(r) ffi
0

and rewrite (4.7) as

{1 + /1(f)} [/iff) + {/1(f) - /Iff,)}{/iff) + v(f) - v'ff)}

- {1 + /Iff) - /l(s)} [/iff) + /4(r){/i(r) + v(f) - v'(f)}j

/t(s)|v'ff) - v (f)} (4.8)

Second, for s > f we find from (4.2) and (4.3) that

p[s > s I r > f]

/i + V 5 -J /i+V -J //
e o + /e " v(t)e ffr

f
£ T £

-J f+v ; -J /<+>• -J V'

e » + / e " /i r f - fir
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The sign of TP[X > s | 7" > r] is the same as the sign of

- J^+ v -Jfl+v "1 f
e " + / t' " //(r)c • c/r >< — e " *'(t)e '

0

S TS-//<+>• /• -J/'tv -J/
— <! e " + / e o v(t) e " rft e ° I - /i(f) ~ v(t)| (4.9)

-j/i+v r -.//' + >' -/>•'
+ e " /;(?)+ / e " /i(t)<? - rft{—v'(f)}

/ S

/ /'+>' / /<+>'

Multiplication by e" c" preserves the sign and transforms (4.9) into

/' i v r ,/ m+v-T

+ / /i(r) c/t W - ê" v(f)

/*
/ s

e- v(T)C/TJ- - v(f) - / t- /i(t)</t v'(f)

/ l" /((t)I/T •e'' v(f)

r / ./ i
+ < 1 + / £" V(r c/t >v'(f) (4.10)

v(f)
/ / //'+v-/2

— e< + 1 + / £" v(r) (it
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Observe that

J /1+v-V 0. J /l+V-/
e- v(f) t/r / e- {/((t) f v(r) -/('(t)}</t

/' J '''
+ / É" {//(T) — M(T)} £/T

/ (i+v-// J /l+V-/l'
e' — 1 + / e- {/('(r) —/((r)} </T

and continue from (4.10):

r J
/ e- /i(r)dr

0

J !l + V-ll'

c {v'(r) — v (r)}

/' i
c" {/('(r) — /r(r )} C/T (4.11)

/ J ;j+v-;l'
+ v(f) / m {/('(!)-/((T)j dr

By inspection of (4.8) and (4.11), it is seen that /7 > /( and v' > v implies

^P [S > s | P > t ] > 0 for all s and r, hence P77 (S | P). This proves item (t).

Item (ii) follows immediately.
Item (in) follows by noting that RP/(S j P) and RPD(S | 7 together is

equivalent to stochastic independence. Q.E.D.

Reliability theorists would speak of (4.4) as the WBF-condition (the

system (S, P) is "Weakened By Failures"). d/yas/ZVorros (1984) have proved
association for multicomponcnt WBF systems by use of refined counting
process theory. The present proof presents some interest of its own since it is

elementary and, moreover, shows RP7(S j P), which is stronger than dS(S, 7").

The case (u. v) y7 v') could be taken as a definition of a causal relationship
between the two events underlying the process, here death of husband and

death of wife, see Sc/nveder (1970).
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5 A heterogeneity model with dependence between component forces of
mortality

So-called frailty or heterogeneity models are commonly used in biomedical
statistics to describe variation in mortality between individuals. A hcteroge-

neity model specifies that the survival function or, equivalently, the force of
mortality of a randomly selected individual is a random process.
In the bivariate case - and we stick to the example with the married couple

we assume that the forces of mortality of S and 7' are stochastic processes.

I/fir); t > 0} and [v(t); t > 0}, respectively. By assuming that these processes

arc dependent, we can model such effects as selective matching and exposure
to common risk factors.
The joint survival function of S and 7' is

E [S > .s, /'>/] £
' I-
e o I)

and the marginal survival functions are

P[S > ,s-j E £> » P[E > f] E
f-/

It is readily seen that if the cumulative intensities /'// and / v are associated
0 0

for each s and f, then we have PODjS, 7") as defined in (2.1). This implies that
Cov [g(S), /)(7')] > 0 for each g and /r that are increasing.
As a special case, assume that the intensities are of the form

/i(r) 0m(t), V(T) AH(T),

with 0 and A associated positive random variables and m and n non-random
S S f f

intensity functions. Then / p © J m and /' v A / n are associated for each
0 0 0 0

s and f.

Ragnar Norberg
Laboratory of Actuarial Mathematics
University of Copenhagen
Universitetsparken 5

DK-2100 Kobenhavn 0
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Summary

The present paper discusses how actuarial analyses of multilife statuses are affected if we drop
the traditional hypothesis of independent component life lengths. Some notions of dependence,
well known from reliability theory, are presented, and conditions for positive dependence are

found in a Markov model as well as in a heterogeneity model for the bivariate case.

Zusammenfassung

In der vorliegenden Arbeit wird die traditionelle Voraussetzung über die Unabhängigkeit der

Sterblichkeiten bei Versicherungen auf mehrere Leben ersetzt durch verschiedene Formen der

Abhängigkeit zwischen zukünftigen Lebensdauern. Es werden Konsequenzen diskutiert und im
Fall von zwei Leben ein Markov- sowie ein Heterogenitäts-Modell präsentiert.

Résumé

Le présent article discute de l'effet, dans le cas des risques-vie sur plusieurs tètes, d'un renoncement
à l'hypothèse traditionnelle de l'indépendance des durées de vie. On y présente quelques notions
de dépendance bien connues en théorie de la fiabilité, ainsi que - dans le cas de risques sur
deux têtes - des conditions de dépendance positive d'un modèle markovien et d'un modèle

d'hétérogénéité.
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