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Hans U. Gerber, Lausanne, and Elias S.W. Shiu, Iowa City

Pricing Financial Contracts with Indexed Homogeneous Payoff

I Introduction

Consider a financial contract for a single payment to be made in the future. The
amount of the payment depends on the time of the payment and the prices of
two stocks or assets. For j 1,2, and t > 0, let Sj (t) denote the price of stock

j at time t. If the payment is made at time t, the amount is

P(t,S1(t),S2(t)). (1.1)

We assume a risk-neutral world. The force of interest is constant and it is denoted

by S. The current value of the contract, if the payment is to be made at time t, is

the expectation

E[e~6tP(t,S1(t),S2(t))}. (1.2)

If the timing of the payment is controlled by the payee (who has the role of a

creditor), then the price of the contract is

supE{e~STP(T, (T), S2(T))], (1.3)
T

where T denotes stopping times (exercise strategies). On the other hand, if the

timing of the payment is controlled by the payer (debitor), then the price of the

contract its

inf E\e~STP(T, Si (T),S2(T))}. (1.4)

Motivated by Shepp and Shiryaev (1993b), we shall limit ourselves to payment
functions of the form

P{t,si,s2) e9tIl(si,s2), (1.5)

where g is a constant, and 71 is a positively homogeneous function of degree one.
In particular, we study

P{t, si,s2) egt Max(.si,S2), (1-6)

Mitteilungen der Schwei/ Vereinigung der Versichei ungsmcHhem<iliker. Hell 2/1994
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where g < 0 and the time of the payment is chosen by the payee, and the dual

problem

where g > 0 and the time of the payment is determined by the payer. Note that
the factor egt can be interpreted as an index; its instantaneous rate of change is

negative in (1.6) and positive in (1.7).

The functions 77 in (1.6) and (1.7) are symmetric in their arguments. This

symmetry is exploited in determining the contract-pricing formulas. Another
interesting example of such functions is

n{si,s2) |si - s2|,

which is the payoff function of the symmetric Margrabe option.
The term "Russian option" was coined by Shepp and Shiryaev (1993a) to describe

a perpetual (American) option on a stock whose payoff is the historical maximum
value of the stock prices up till the time of option exercise. Here we study an

indexed version of the Russian option pricing problem. We take this opportunity
to thank Dr. L.A. Shepp for encouraging us to investigate the dual Russian option
problem.

2 The Model

We consider two non-dividend-paying stocks. For j 1,2, and t > 0, let Sj (t)
denote the price of stock j at time t, and

be its cumulative force of return. We assume that {(JTi (7), AT2(7)); t > 0} is a

two-dimensional Wiener process with parameters pi, p2,oi,o2 an(l |t?l <
so that the joint moment generating function of X\ (t) and X2(t) is

£^eklXl(t)+ k2X2{t)^

We further assume that these parameters are the specifications of the risk-neutral

probability measure (which is normally different from the physical probability

P(t,si,s2) e9t Min(si, s2) (1.7)

Xj{t) InlSjitySjiO)] (2.1)
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measure). Then the price of a random payment is calculated as the expectation
of its discounted value. In particular, for j 1,2,

Sj(0) e-stE[SJ(t)}, (2.3)

from which it follows that

Pj=6- ^a2 (2.4)

For notational convenience, we shall write Sj for Sj(0).

3 Two Expected Discounted Values

For contracts with positively homogeneous payment functions 77, reasonable
exercise strategies are stopping times of the form

r»>==w {(1 W>=6 or (31)

with 0 < b < S\/S2 < c < 00. Let 1^ denote the indicator random variable
of an event A and g be a constant. Consider the following two expectations of
discounted contingent payments of amount

e9T". 52(TbiC) (3.2)

(the indexed price of stock 2 at time Tj, c),

ß ß{Si,S2;b,c)

77[e"(5-f)Tb,c52(r6ic)1{Si(T^c)=6S2(Tb c)}] (3.3)

and

7 l{Si,S2',b,c)

E[e-(6-^Tb^S2{TbjC)l{Sl{Tb c)=cS2{Tbtc)-}}. (3.4)

We shall obtain explicit expressions for ß and 7 by a martingale argument.
The idea is to determine constants 9 for which the process

{e-^-9)tSA(tfs2{t)l~e-t > 0} (3.5)

is a martingale. This leads to the condition

e— (<5 — g)tg^eBX-i (t) + (l — e)X2(t)j I (3.6)
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Using (2.2) we obtain a quadratic equation for 9:

1

2- {6 - g)+ Ojj.i + (1 - Q)ß2 + \o2a1 + £>0(1 - 9)o^<j2 + ^(1 - 9)2a2

0.

With the notation

v2 Varpfi(l) - X2{1)} crj - 1qo\o2 + a\

and applying (2.4), we can simplify equation (3.7) to

1 .2/g--„'O(l-0)=O.
Let

then the roots of (3.9) are

9a r - xA

and

h ^ + ^A.
2 2

To classify them we distinguish five cases according to the values of g:

(3.7)

(3.8)

(3.9)

(3.10)

(3.11)

(3.12)

g < 0 A > 1 9Q < 0, 1 < 9\

g 0 A 1 o II o I—» 11

0 < g < >/2/8 0 < A < 1 0 < 9Q < 9\ <1

II to
00 A 0 O II to|

>—1

II

9 > ^2/8 A in, k > 0 #0 - 2 -
Q\ 72

Notation. For notational simplicity we may write the symbol 9, without any
subscript, in the following. In such situations, the reader will find that the formulas

are valid whether 9 is interpreted as 9o or 9\. The reader may also find it
instructive to express such formulas in terms of A or k.
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Let us exclude the case g v2/8 for the moment. Then, for j 0,1, stopping
the martingale

> 0} (3.13)

at time T^ c and applying the optional sampling theorem yields the equation

5i(0)^52(0)1_^ =be>0 + c0"y. (3.14)

With the definition

D bl~ec9 -b9cl~9, (3.15)

the solution of the two linear equations (3.14), j 0,1, is

ß ^{Sl~9(cS2f - SficSz)1-0} (3.16)

and

7 " 511~e(652)<'] (3.17)

In the limiting case g v2/8, we apply the optional sampling theorem to the

martingales

v/51(f)52(t); t > 0} (3.18)

and

{e-^-9)ty/Si(t)S2(t) ln[S1(t)/S2{t)}]t> 0} (3.19)

to get the equations

V/5l52 sfbß + yfc1-)

and

ln(5i/52) v/61n(6)/3 + \/cln(c)7,

whose solution is

ß y/S^Jb Hf^S,2) (3-20)
1n(b/c)

and
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If A is an imaginary number, A in, k > 0, the expectations (3.3) and (3.4) are

finite provided that

c/b < e2n/K (3.22)

It is instructive to write (3.16) and (3.17) in terms of real-valued functions. We

find that

(3.23)
sin[/sln(c/o)/2J

and

7=v/WcAAiA|AH!. (3.24)
sm[/im(c/o)/2J

Formulas (3.23) and (3.24) show that the expectations (3.3) and (3.4) tend to od

as ln(c/b) tends to 27t/k. In the following we shall tacitly assume (3.22) if A is

imaginary. Note that formulas (3.20) and (3.21) are the limits, as k tends to 0, of
(3.23) and (3.24).

Remark. Many of the results in this paper can be extended to the case where
each stock pays a continuous stream of dividends, at a rate proportional to its

price, i.e., for j 1,2, there is a positive constant aj such that the amount of
dividends paid by stock j between time t and t + dt is Sj (t)aj dt. Then condition
(2.4) becomes

Mj <5 - aj - icrj (3.25)

Although we shall not discuss this generalization, we note that, for some of the

more attractive results, the relationship

flo+öi=l (3.26)

is crucial; this is equivalent to the assumption that

ai «2 • (3.27)
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4 Pricing Contracts with Indexed Homogeneous Payoff

In the following, IJ(si,s2) denotes a positively homogeneous function of degree
one. Thus

I7(si,S2) s27r( —
V52

where

tt(s) TI(s, 1). (4.1)

We now consider a financial contract with a single indexed payment. If the

payment is made at time t, its amount is

e^n(S1(t),S2(t)). (4.2)

According to the sign of the constant g, two cases have to be distinguished. For
g < 0, the timing of the payment (4.2) is to be controlled by the payee (creditor),
and the current price of the contract is the supremum, over all stopping times T,
of

E[e~(-s~9lTn(S1(T),S2(T))}. (4.3)

For g > 0, the timing of the payment (4.2) is controlled by the payer (debitor),
and the current price of the contract is the infimum, over all stopping times T, of
(4.3).

Since il is homogeneous of degree 1, we can typically limit ourselves to exercise

strategies of the type 7)))C, with 0 < b < S1/S2 < c < 00. The current value of
such a strategy is

V(S1,S2-,b, c) Eie-^-a^niS, (Tb,c), 52(Tft,c))]

n(b)ß(Si,S2]b, c) + Tc(c)-y{Si, S2; b,c). (4.4)

The optimal contract-exercise ratios b b and c c are obtained from the first
order conditions

Vb(S1.S2:b,c) 0 (4-5)

and

Vc(51,52;6,?)= 0, (4.6)
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where the subscripts denote partial differentiation. Here we assume that b > 0

and c < oo, and we shall see that b and c do not depend on S\ or 52. For
b < S1/S2 < c, the current price of the contract is

V(S\,S2;b,c) ir(b)ß{Si,S2;b,c) + ty(c)j(Si, S2;b,c). (4.7)

5 Smooth Pasting Conditions

The first order conditions (4.5) and (4.6) can be written in an alternative form.
First we gather from (4.4) that

Vb{Si,S2-,b,c) ir'(b)ß(S1,S2-,b, c) + -n{b)ßb{Si, S2\b, c)

+ 7r(c)76(5i,S,2;5,c). (5.1)

At the end of this section we shall show that

ßb(Si,S2;b,c) + ßSl{b,l;b,c)ß(S1,S2;b,c) 0 (5.2)

and

lb(Si,S2;b,c) +75J6, l;b,c)ß(Si, S2;b,c) =0. (5.3)

Substituting (5.2) and (5.3) in (5.1) yields

Vb(Si,S2; b, c) ß(Si,S2-,b, c)[ir'(b) - Tr{b)ßSl (b, 1; b, c)

- ^(cbs^MAc)] (5.4)

Similarly, we obtain

Vc(Si ,S2;b,c)= 7(Si, S2-b, c)[7r'(c) - rr(6)/3Sl (c, 1; b, c)

-7r(c)7Sl(c,l;&,c)]. (5-5)

Since ß(S 1 ,S2;b,c) > 0 and j(Si,S2: b,c) > 0, the first order conditions (4.5)
and (4.6) are equivalent to

'K(b)ßsi {b, 1; fr,c) + 7r(c)7Sl(6, l;6,c) 7r'(6) (5.6)

and

n(b)ßSl(c, l;6,c) + 7r(c)7Sl(c, l;6,c) =7r'(c), (5.7)

which may be written as

Vs1(bS2, 52:6, c) IJs1(bS2,S2) (5.8)
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and

VSl(cS2,S2;b,c) nSl(cS2,S2). (5.9)

Since

V(bS2,S2:b,c) n(bS2,S2) (5.10)

and

V{cS2,S2; b, c) n(cS2,S2), (5.11)

conditions (5.8) and (5.9) are equivalent to

VS2(bS2,S2;b,c) IJs2 (bS2,S2) (5.12)

and

Vs2(cS2, S2\~b, c) IJs2{cS2, S2). (5.13)

Formulas (5.8), (5.9), (5.12) and (5.13) are known as the smooth pasting
conditions. They show that the gradients of the functions V(-,-;b,c) and i7(-,-)
coincide on the optimal contract-exercise boundaries Si bS2 and Sj cS2.
To end this section, we derive (5.2) and (5.3). For x with b + x < S\ /S2 < c, we
have the probabilistic identities

ß(Si ,S2;b,c) ß(Si ,S2;b + x, c)ß(b + x, 1; b, c) (5-14)

and

l{S\, S2\b, c) -y{Si,S2:b + x,c)

+ ß(S\, S2; b + x, c)i(b + x, 1; b, c). (5.15)

Differentiating these equations with respect to x and setting x 0 yields (5.2)
and (5.3).

6 The Optimal Exercise Ratios

Consider

n{si,s2) Max(sj, s2) (6.1)

For such a function, obviously,

nSl(bS2.S2) 0. 0 < 6 < 1, (6.2)
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and

ns2{cS'2,S2) 0, l<c<oo. (6.3)

We now derive a condition for the optimal exercise ratios b and c for functions
77 satisfying (6.2) and (6.3). Here the smooth pasting conditions (5.8) and (5.13)

are simply

VSl(bS2,S2-,b,c) 0 (6.4)

and

Vs2(cS2,S2-,b,c) 0. (6.5)

From (4.4), (3.15), (3.16) and (3.17) it follows that

V{Si,S2',b,c) w\ (b,c)S9S\~9 + w2(b,c)Sl~9 S® (6.6)

where the coefficients w\(b,c) and w2(b,c) do not depend on Si or S2. Thus
conditions (6.4) and (6.5) can be written as

w\ (b, c)0b0-1 —w2(b,c)(l — 6)b~9 (6-7)

and

wi(6,c)(l — 6)c9 —w2(b,c)6ci^9 (6.8)

Dividing (6.7) by (6.8) to cancel both wi(b,c) and w2(b,c), and solving for c/b
yields the desired condition

e N.2/(28-1) /A + l\2'&
=(a3i) • l6-9>

In the case of (6.1), we are interested in negative g. As g decreases from 0 to

—oo, A increases from 1 to oo, and the ratio c/b decreases from oo to 1.

Next, we consider functions 77, such as

II{si, s2) Min(si, s2), (6.10)

which satisfy

nS2 {bS2,S2) 0, 0 < 6 < 1, (6.11)

and

Ilsx {cS2, S2) 0 1 < c < oo. (6.12)
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Here the smooth pasting conditions (5.9) and (5.12) are

VSl(cS2,S2;b,c) 0

and

VS2(bS2,S2;b,c) 0.

(6.13)

(6.14)

As compared to the case above, the role of b and c is interchanged. Thus the
desired condition is

0_1^2/(2O-t) /A - 1\2/A
A + 1) (6.15)

In the case of (6.10) we are interested in positive g. For 0 < g < v2/8, we have
0 < A < 1; hence condition (6.15) cannot be satisfied. For g > u2/8, we have

A in. k > 0; ironically, the situation is more promising. With the definition

ip arccot(fv)

we obtain

0 < <f < 7T/2 (6.16)

A — 1 — 1 + in \/l + R2 exp
7T

- +<P

and

A + 1 1 +ik \/l + k2 exp M 2 -v
Condition (6.15) becomes

exp H-+<p i-i
2 !%k

— e K (6.17)

As g increases from iA/8 to oo, k increases from 0 to oo, and the ratio c/b
decreases from oo to 1.

Let us now make the additional assumption that 77 is a symmetric function,

n{s\,s2) n(.s2,si)

Then we must have

be 1.

(6.18)

(6.19)



154

Thus, in the first case, it follows from (6.9) that

A+l\1/A
(6.20)

and in the second case, from (6.17) that

c ~ e K

b
(6.21)

We note that b and c in (6.21) satisfy condition (3.22).

Remark. The family of homogeneous payoff functions of degree one satisfying
(6.2) and (6.3) can be described explicitly. From these conditions and (4.1), it
follows that

7T'(b) 0 for 0 < b < 1

7r(c) — cn'(c) 0 for 1 < c < oo

Thus 7r(x) K\ for 0 < x < 1 and 7r(x) K2x for 1 < x < 00, where K\ and

K'2 are two constants, or

Therefore, the additional assumption of symmetry is equivalent to assuming
A"i A*2, i.e., that the payoff function is a multiple of (6.1). Similarly, symmetric
homogeneous payoff functions satisfying (6.11) and (6.12) must be multiples of

7 Symmetric Payoff Functions and Reciprocal Exercise Ratios

In this section we assume that the function 77 is symmetric, i.e., (6.18) holds, or
equivalently.

and

for sj < S2

for S] > s2
(6.22)

(6.10).

7r(.r) X7r(l/.7'), ,r > 0

Then, for 0 < b < 1,

(7.1)

Y(Sl.S2:bA/b) I '(S2.S1: b. 1/6). (7.2)
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and (6.6) simplifies to

V(S1,S2;b, 1/6) w(6)(S^"e + (7.3)

From the boundary condition (5.10) we obtain

(7'4)

Thus, for 0 < b < 1,
q8 ql — 9 I ql—8 q0

V(Si,S2;b, 1/6) Tr{b)
1

2bd
+ bllg (7.5)

/5T52 cosh[Aln(5i/52)/2]
^(6)V^ cosh[A ln(6)/2]

' (?'6)

The optimal value of 6 6 is given by the first order condition

w'(b) 0, 0 < 6 < 1. (7.7)

If A is an imaginary number, A in, k > 0, then (7.6) can be written as

t^o c.i.wM /5i52cos[Kln(51/52)/2] oNv(SI.s?,b,i/b) *m]l-i cos|Kln(i))/2]
U-8)

Similarly, it follows from condition (5.11) that, for c > 1,

qQ ql— 0 I q\—dq0
V{Si,S2; 1/c, c) 7r(c)

1

2cg+cl_10 -• (7-9)

Formula (7.1) shows that formulas (7.5) and (7.9) are equivalent.
Consider the special case where n(b) is constant, 0 < 6 < 1, and g < 0; then the

denominator in (7.5) is minimal if
06e_1 + (1 — 6)b~9 0

Hence the optimal value of 6 is

_ ,0_n 1/(26-1)
b= (7T0)

which is the same as (6.20). This is not surprising: if 7t(6) is constant, (6.2) and

(6.3) are satisfied. Similarly, if ir(c) is constant for c > 1 and g > v2/&, we gather
from (7.9) that

i \ 1/(26-1)M (7.11)
0

which confirms (6.21).
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We conclude this section with the symmetric Margrabe option, for which the

payoff function is

n{s\, S2) jsi - «21, (7-12)

so that

tt(6) 1—6, 0 < 6 < 1. (7.13)

We assume that g < 0. Hence we maximize

w{b) (1 -b)/{be + b1-6), 0 < 6 < 1. (7.14)

There is no explicit formula for the optimal option-exercise ratio b, which has

to be determined numerically. The following table allows a quick pricing of the

symmetric Margrabe option:

61 b w( b)

1.1 .058 .686
1.2 .118 .548
1.3 .173 .461
1.4 .223 .400
1.5 .268 .354
1.6 .309 .318
1.7 .345 .289
1.8 .378 .265
1.9 .408 .244
2.0 .435 .227
2.1 .460 .212
2.2 .483 .199
2.3 .504 .188
2.4 .524 .177
2.5 .542 .168
2.6 .559 .160
2.7 .574 .153
2.8 .589 .146
2.9 .602 .140
3.0 .615 .134
4.0 .708 .0951
5.0 .765 .0739
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(continuation)

01 b w( b)

6.0 .804 .0604
7.0 COOO .0511

8.0 .852 .0442
9.0 .868 .0390

10.0 .881 .0349
11.0 .892 .0316
12.0 .901 .0288
13.0 .908 .0265

Remark. In the special case where S2(t) Ke6t, the symmetric Margrabe
option can be interpreted as an indexed perpetual straddle (on stock 1), with an

exercise price that is compounded with interest: if the option is exercised at time
t, a payment of amount

e9t\S\{t) — KeSt\

is made at that time.

8 Pricing the Indexed Maximum and Minimum Options

We are now ready to give an explicit formula for the current price of a contract
for a single payment of amount

P(t, Si(t), S2(t)) e9t Max(Si (t), S2(t)), (8.1)

if it is paid a time t, t > 0. Here, g < 0 and the timing of the payment is controlled
by the payee (creditor). Obviously,

7r(6) 1, 0 < b < 1.

The optimal contract-exercise ratio b is given by (6.20) or (7.10). For b < S1/S2 <
1/fc, it follows from (7.5) that the current price is

cf c 1 — Ö c 1 — 6 06
V(Si.S2-.i,Ub) :'l\ +p (8.2)

b& + 5I-Ö

A + 1 \ 1/2A Sf S\-° + S\"eS°2

A - 1 J / A—1 / A + l
ATI + VTH

(8.3)
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Next, we consider the dual problem. We want to price a financial contract for a

single payment of amount

P(t,S1(t),S2(t))=e9tMln(S1(t),S2(t)), (8.4)

if it is paid at time t,t > 0. Here, g > v2/8 and the timing of the payment is

controlled by the payer (debitor). As compared with the primal problem, the

role of b is switched with that of c. The optimal contract-exercise ratio c is given
by (6.21). For 1/c < S1/S2 < c, the current price of the contract is

c9 cl — 9
1 cl — 9 c9Jl°2 * °1 °2v(s1,s2-,i/c,r)

+ c 1-6

c cos[«:ln(c)/2]

Applying (6.21) yields

1

cos[/tln(c)/2] cos (ip)

S1S2 cos[Kln(5i/52)/2]
(8.0)

x/l + ^2 '

and

V(S\: S2; l/c,c) e \J(1 + k 2)SiS2 cos[«;ln(5i/52)/2]. (8.6)

We note that this value tends to 0 as g decreases to v2/8 (k decreases to 0, ip

increases to 7t/2). This shows that, for g < v2/&, the infimum over all stopping
times T of

E]fi-{6-g)T Min(51 (T), 52(T))]

is zero.

Remark. Appropriate indexing is important. For an illustration, consider the
indexed maximum option. As g increases to 0 (A decreases to 1), the option
price, given by (8.2) and (8.3), tends to Si + S2. But then b, given by (6.20), tends

to 0, which shows that no optimal option-exercise strategy exists in the limiting
case.
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9 Pricing the Indexed Russian Option

In this section we consider a single non-dividend-paying stock. Let S(t) denote
its price at time t,t > 0. We assume that {ln[5(fe)/5(0)]} is a Wiener process
with

Var[ln S(t)} cr2t, (9.1)

and that {e~8tS(t)\ t > 0} is a martingale. We also write S 5(0). Let M be a

number such that M > S 5(0). Define

M{t) =Max{MeSt,Max{S{u)eS^-u) |0<u<t]}, (9.2)

Note that the pair {S(t), M(t); t > 0} is a time-homogeneous Markov process.
For g < 0, we consider a financial contract for a single payment of amount

e9tM{t),

if it is paid at time t,t> 0. Note that this amount is path dependent! The timing
of the payment is controlled by the payee (creditor). Thus the current price of
the contract is the supremum, taken over all stopping times T, of the expectation

E[e~^~9)TM(T)}. (9.3)

We consider contract-exercise strategies of the form

Tb Min{f | S{t) bM(t)}

with 0 < b < 1. The value of such a strategy is

V(5, M; b) E[e-{8-9)TbM(Tb)},

for feil/ < 5 < AI. Note that the function V(5, M; fe) is homogeneous of degree
1 in the variables 5 and M. We shall derive a functional equation for V. For this

purpose we suppose that bM < 5 < M, and we distinguish according to whether
the stock price S(t) first reaches bM(t) or M(t). With the identification

5i(f) 5(f), S2{t)=Me6t, i/ cr, c 1

7r(fe) 1. 7r(c) =V(l,l;fe),
it follows from (4.4) that

V(5, M: fe) /3(5, M- fe, 1) + V(l, 1: feh(5, M; fe. 1) (9.4)
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Now we substitute (3.16) and (3.17) and get

V(S, M-b) blJ_b6{[S1~eMe - SeMl~°}

+ V{1,1; b)[Se - Sl~e(bM)e}} (9.5)

The value of V( 1,1; b) may be determined by an appropriate boundary condition
at S — M. Such a condition can be derived by the following heuristic argument.
If the current stock price S is very close to M, we can be "almost sure" that S(t)
will exceed Mest before it is optimal for the payee to demand payment. In this

sense M(T),) does not "depend" on the precise value of M, and we conclude that

VM{M, M;b) 0. (9.6)

See also Theorem 3 of Goldman, Sosin and Gatto (1979).
It follows from (9.5) and (9.6) that

\e- (i - 0)] + v{i,i;b){{i - e)bl~e - eb°] o,

or
1 O Ö

Substituting (9.7) into (9.5) and simplifying yields

(1 - 6)S1~eM6 - 9SdM1~9— i9S)

To maximize this expression (as a function of 6), we minimize the denominator,
whose derivative is

(1 - Ö)2b~° - e2b6~l

Thus the optimal value of b is

_ 1
X 2/(20-1) / A _ ] \ 2/A

A +1 ' - <9-9'

Note the striking analogy between (9.9) and (6.9).
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10 Pricing the Dual Indexed Russian Option

Here we study the dual problem of the one discussed in the last section. For
0 < m < 5, define

m(t) AIin{me<5t, Min[5(u)e<5^~"^ |0<u<f]}. (10.1)

For g > 0, we consider a financial contract for a single payment of amount

e9tm(t),

if it is paid at time t, t > 0. The timing of the payment is controlled by the payer
(debitor). Thus the current price of the contract is the infimum, taken over all

stopping times T, of the expectation

£[e-(<5-9)Tm(T)] _ (10 2)

We consider contract-exercise strategies of the form

Tc Min{f | 5(f) cm(t)}

with c > 1. For m < S < cm, the value of such a strategy is

V(S,m;c) E[e~^~9">Tcm{Tc)}

V{1,1; c)/3(5, m; 1, c) + 7(5, m; 1, c)

„ 11_,{V(l,l;c)[51-e(cm)e-5e(r7n)1-9]

+ [5em1_e - Sl~eine}}.

From the condition

Vm(m,m\c) 0, (10.3)

we obtain

V"(T 1: c)[8c9 - (1 - 8)cl~e} + [(1 - 8) ~ 8} 0,

or
1

F(l,l;c) r-5 (10.4)1 7

(1 ^8y-° ~8c° V '

Upon substitution and simplification we get the formula

(1 -8)S^em° -8S°ml-e
VtS- "ne)



162

valid for c > 1, with the additional restriction (3.22) (with 6=1) when A is

imaginary, and m < S < cm.
So far, the development is parallel to that of the last section. But now the
discussion of the denominator is more delicate. If 0 < g < o2 j8, then

0 < 00 < ^ < 9x < 1

By considering 0 9q in (10.5), we see that the derivative (with respect to c) of
the denominator is positive. Hence V(S, to; c) is the smaller, the larger c is, and

an optimal value of c does not exist.

If g > <t2/8, then 9q 1/2 — in/2 and 9\ 1/2 + in/2, k > 0. The first order
condition

Vc(S,m\c) 0 (10.6)

leads to

c e4c^/K, (10.7)

where <p arccot(/t), 0 < tp < -k/2, as defined in (6.16).
For further discussion, we write (10.5) as

V{S.m,c) /A7«"1'!/"//"')/2! -f (10.8)v ' V c sm([/r ln(c)/2] — <p)
v '

Apply (10.7) to (10.8); then for S/m < e4v>/K, the current price of the contract
is

^ _
\fSrn sin([Kln(5/m)/2] — ip)

e2ip/k sin (ip)

e-2{p/KyJ(\ + r?)Sm sm([K 1h(5/to)/2] - <f). (10.9)

As g decreases to cr2/8 {k decreases to 0, ip increases to 7t/2), V(S, m;c) tends

to 0; hence we conclude that, if g < ct2/8, the infimum of the expectation (10.2)
is zero.

11 An Alternative Derivation of the Indexed Russian Option Price

The analogy between (6.9) and (9.9) motivates the following alternative derivation

of the price of the indexed Russian option. It follows from (9.4) [and (6.6)]
that

V(S. M; b) Wl{b.l)S°Ml~6 + w2{b, l)Sl-°M° (11.1)
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where the coefficients w\ and w2 do not depend on S or M. The first order
condition

Vb{S,M;b)=0 (11.2)

is equivalent to the smooth pasting condition

Vs{bM,M-,b) 0, (11.3)

or

wi (b, 1)0(1/6)1-0 + w2(b,l)(l -d){l/b)9 0 (11.4)

[which is analogous to (6.7)]. The boundary condition (9.6), with b b, yields

wi (b, 1)(1 — 6) + W2{b, 1)9 0 (11-5)

[which is analogous to (6.8)]. Formula (9.9) can now be obtained from (11.4) and

(11.5).
Since

V{bM,M;b) M,

we have

w\ (6, l)b0 + ^2(6, l)&1_e 1. (11-6)

Using (11.5) and (11.6) (with b 6) we obtain formula (9.8) with b b. On the
other hand, using (11.4) and (11.6) we obtain

V{S.M-b) - l){S/b)eMl~e + eiS/b)1'-0AIe], (11.7)
20 -- 1

which is analogous to (2.4) of Shepp and Shiryaev (1993a).

12 Concluding Remarks

In this paper we study the pricing of financial contracts for a single indexed

payment, which is a homogeneous function (of degree one) of two stock prices.
Our approach is to take advantage of the stationary nature of the problem,
construct two martingales (with respect to the risk-neutral measure), and apply
the optional sampling theorem.
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We have proposed an alternative to the American-type options with a finite
expiration date. By indexing the payoff appropriately, we can make sure that the

option will be exercised, even if it is a perpetual option on non-dividend-paying
stocks. We have shown how such an option can be analyzed in a transparent
fashion.
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Summary

We consider a contract for a payment that is an indexed function of the prices of two stocks or assets

The duration of the contract is unlimited We postulate an exponential decay of the index, if the
creditoi can choose the time of the payment, and an exponential growth of the index, if the debitor
can choose it. The price of such a contract can be obtained m a transparent fashion, if the payoff
function is a homogeneous function (of degree one) of the stock prices: then the optimal exercise
strategies depend only on the ratios of the stock prices. Explicit results are obtained for the options
on the indexed minimum and maximum of the two stock prices and for the symmetric Margrabe
option, where the payment is the indexed absolute value of their difference We also examine the

pricing of the indexed Russian option, where the payment is the observed indexed maximum of a

single stock, and its dual, where the payment is related to the obseived indexed minimum
By applying martingale methods, we avoid differential equations. We also derive the smooth pasting
conditions, which determine the optimal contract-exercise ratios of the stock prices.

Zusammenfassung

Wir betrachten einen zeitlich unbeschrankten Vertrag fur eine Zahlung, deren Betrag eine nut einem
Index multiplizierte Funktion der Kurse zweier Aktien ist. Falls der Schuldnei den Zeitpunkt dei

Zahlung wählen kann, setzt man ein exponentielles Wachstum des Index voraus; falls der Glaubiger
diesen Zeitpunkt bestimmen kann, nimmt man an, dass der Index exponentiell abfallt Der Preis

eines solchen Vertrages kann auf transparente Art bestimmt werden, falls die Auszahlungsfunktion
eine homogene Funktion der beiden Aktienkurse ist: dann hangt die optimale Ausubungsstrategie
der Option lediglich vom Verhältnis der beiden Aktienkurse ab. Explizite Resultate werden in
Spezialfalien erhalten falls der Betrag der Zahlung das indizierte Minimum oder Maximum ist,
und fur die symmetrische Margrabe-Option, bei welcher der Betrag der indizierte Absolutbetrag der
Differenz betragt Ferner analysieren wii den Preis der indizierten Russischen Option (welche auf
dem historischen Hochstkurs einer Aktie beruht) und die entsprechende duale Option
Dank Martingalemethoden können Differentialgleichungen vermieden werden. Ferner leiten wir die

sogenannten "smooth pasting conditions" (die stetigen Verheftungsbedingungen) her, anhand von
welchen die für die Ausübung der Option optimalen Quotienten der Aktienkurse bestimmt weiden
können

Resume

L'article considere un contrat de duree ilhmitee comportant un paiement dont le montant est une

fonction des cours de deux actions, multipliee par un indice. Si c'est le debiteur qui pcut choisir
le moment du paiement, le modele suppose une croissance exponentielle de l'indice; si pai contre
c'est le creancier qui peut choisir le moment du paiement, le modele fait mtervenir une decroissance

exponentielle de l'indice. Le pnx d'un tel contrat peut etre determine sans autie lorsque la fonction
intervenant dans la determination du montant du paiement est une fonction homogene des deux cours
des actions consideiees. dans ce cas la stiategie d'exercice optimale de l'option depend supplement
du rapport des cours des deux actions Des resultats exphcites peuvent etre obtenus dans des cas

particulars: lorsque le montant du paiement est le minimum ou le maximum Indexe, et, pour l'option
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Margrabe symetuque, lorsque le montant du paiement est egal ä la valeur absolue indexee de la

difference des deux cours. Par ailleurs les auteurs analysent le prix de I'option russe indexee (qui se

base sur le cours historique maximum de Taction) et de I'option duale correspondante.
Grace ä des methodes utilisees en theorie des martingales, il est possible d'eviter des equations
differentielles. Enfin les auteurs etablissent les conditions pour les raccordenients Continus (connues
sous le nom de "smooth pasting conditions"), conditions qui permettent de detei miner les quotients
optimaux des cours des actions.
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