
Comparison of methods for evaluation of the n-
fold convolution of an arithmetic distribution

Autor(en): Sundt, Bjørn / Dickson, David C.M.

Objekttyp: Article

Zeitschrift: Mitteilungen / Schweizerische Aktuarvereinigung = Bulletin /
Association Suisse des Actuaires = Bulletin / Swiss Association of
Actuaries

Band (Jahr): - (2000)

Heft 2

Persistenter Link: https://doi.org/10.5169/seals-967302

PDF erstellt am: 26.05.2024

Nutzungsbedingungen
Die ETH-Bibliothek ist Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an
den Inhalten der Zeitschriften. Die Rechte liegen in der Regel bei den Herausgebern.
Die auf der Plattform e-periodica veröffentlichten Dokumente stehen für nicht-kommerzielle Zwecke in
Lehre und Forschung sowie für die private Nutzung frei zur Verfügung. Einzelne Dateien oder
Ausdrucke aus diesem Angebot können zusammen mit diesen Nutzungsbedingungen und den
korrekten Herkunftsbezeichnungen weitergegeben werden.
Das Veröffentlichen von Bildern in Print- und Online-Publikationen ist nur mit vorheriger Genehmigung
der Rechteinhaber erlaubt. Die systematische Speicherung von Teilen des elektronischen Angebots
auf anderen Servern bedarf ebenfalls des schriftlichen Einverständnisses der Rechteinhaber.

Haftungsausschluss
Alle Angaben erfolgen ohne Gewähr für Vollständigkeit oder Richtigkeit. Es wird keine Haftung
übernommen für Schäden durch die Verwendung von Informationen aus diesem Online-Angebot oder
durch das Fehlen von Informationen. Dies gilt auch für Inhalte Dritter, die über dieses Angebot
zugänglich sind.

Ein Dienst der ETH-Bibliothek
ETH Zürich, Rämistrasse 101, 8092 Zürich, Schweiz, www.library.ethz.ch

http://www.e-periodica.ch

https://doi.org/10.5169/seals-967302


129

Bj0rn Sundt and David C.M. Dickson, Bergen and Me'bourne

Comparison of methods for evaluation of the
n-fold convolution of an arithmetic distribution

1 Introduction

IA. The main purpose of the present paper is to compare De Pril's (1985)
algorithm for recursive evaluation of the ri-fold convolution of an arithmetic
distribution with more traditional evaluation, that is, evaluation directly based

on the expression for the convolution. We want to find out how large n should be

for it to be more efficient to apply De Pril's method rather than the other method.

IB. Our measure of efficiency is the number of elementary algebraic operations.
Like Kuon, Reich, & Reimers (1987) we distinguish between bar operations
(summation and subtraction) and dot operations (multiplication and division) as

dot operations would normally be more time-consuming than bar operations.
These comparisons would give a rough idea of which method is most efficient.
However, we stress that for several reasons one should not draw too strong
conclusions:

1. By distinguishing between bar and dot operations we have two dimensions
so what do we do if one method is more efficient than another with respect
to bar operations, but the opposite is the case for dot operations? One
solution would be to give bar and dot operations different weights, but
how should we choose the weights? To a large extent that would depend
on the computer hardware, programming language, and programming style.

2. Some programming languages have strong built-in functions that would
be more efficient than programming the individual elementary algebraic
operations.

3. Is it really so that a summation is always less time-consuming than a

multiplication? Is the summation a+a more efficient than the multiplication
2 • a? Intuitively one would tend to choose multiplication in such cases.

However, in the present paper we shall count multiplications by 2 as bar

operations.
4. In addition to algebraic operations, aspects like storage, etc. also ought to

be taken into account. Should we always store the value of a product a b

if this product is needed more than once? In our considerations we have

done that to reduce the number of multiplications.

Mitteilungen der Schweiz Aktuarvereinigung Hett 2/2000



130

5 An algorithm with less algebraic operations could be more complicated to

program, and the more complicated a program is, the more time-consummg
is the programming and the greater is the danger of errors m the program
To what extent one should care to minimise the number of algebraic

operations, would very much depend on how much the program is to be

applied For a program that is to be used frequently, efficiency becomes

more crucial However, as computers get faster and more powerful, such

considerations become less important
6 All the methods that we present are in principle exact, but rounding errors

can occur Panjer & Wang (1993) discuss numerical stability of recursive
methods In particular they show that De Pril's method is unstable

1C Let / be a probability function on the non-negative integers, x a positive
integer, and n an integer greater than one We assume that we need fn* (y) for
y 0,1, ,x
We do not make any simplifying assumptions like f (y) =0 for certain values

of y However, because of division by / (0) in De Pril's method and the De Pnl
transform method it is assumed that / (0) > 0

ID We shall first consider traditional evaluation This is based on repeated

application of

f(p+q)* {y) {r * r) {y) r (*)r (y - z) (i i)
z—0

Thus, a crucial element will be the convolution of two probability functions /
and g, that is,

y

U *g)(y) ^2f(z)g(y-z) (12)
z=0

The number of algebraic operations needed for evaluation of this formula will be

studied in Section 2 In the special case when g /, by brute force evaluation
of (12) we would perform many of the operations twice Thus, we can reduce
the number of operations considerably This is the topic of Section 3

In Section 4 we discuss evaluation of fn* by repeated application of (1 1) An
alternative approach for evaluation of /"* is De Pril's (1985) recursive procedure,
which will be analysed in Section 5 In Section 6 we consider evaluation by De
Pril transforms as discussed in Sundt (1995)
In Section 7 we compare the three approaches It turns out that De Pril's method
is more efficient than the De Pril transform method, and that for most values of
n De Pril's method is more efficient than traditional evaluation



131

Finally, in Section 8 we briefly consider the situation where we want to evaluate

not only /"*, but fJ* for all j < n. In this case traditional evaluation is preferable
whereas the De Pril transform method could be preferable in some cases where

we want to evaluate f3* for r non-consecutive values of j.

IE. If £ is a real number, then, by [x] we shall mean the largest integer less than

or equal to x.

We make the convention that ^ when b < a.

2 The convolution of two distributions

For evaluation of (/ * g) (y) by (1.2) we need y + 1 dot operations and y bar

operations, that is, for y 0, 1,..., x we need

'< M ,2.1)

bar operations, and

<iM=(x-+'Kx + 2)
(22)

dot operations.

3 Simplification for the two-fold convolution

With g f in (1.2) we obtain

f2* (y) J2f{z)f{y-z) (3.1)

z=0

In particular, we see that to evaluate j2* (0) we need one dot operation. When y
is positive, many of the products in (3.1) are equal, and, thus, we can reduce the

number of operations in this special case of (1.2). On the other hand, programming

may become more messy, in particular as we have to consider even and odd y s

separately.



132

Let u be a positive integer We have

2u-l
f2* (2u — 1) Y f (z) f(2u-l-z)

Z 0

u—1 2u—1

f (2u ~1 ~+ f (z">f (2u ~1 ~ zS>'

and as the two sums in the last expression are equal, we obtain

U— I

f2* (2u - 1) 2Y,f(z)f (2u ~ 1 - z) (3 2)

Analogously

f2* (2u) 2 Y f (z) f (2u ~ z) + / (uf (3 3)

Evaluation of f2* (2u — 1) by (3 2) involves u bar operations and u dot operations,

and evaluation of f2* (2u) by (3 3) involves u + 1 bar operations and u + 1

dot operations (recall that we count multiplication by 2 as a bar operation) Thus,
evaluation of f2* (2u — 1) and f2* (2u) involves 2u+ 1 bar operations and 2u+l
dot operations
We let 62 (#) and d,2 (x) denote the number of bar and dot operations respectively
needed to evaluate f2* (0), f2* (1), f2* (2) with our present methodology
We see that dj (x) 62 (x) + 1

Let v be a positive integer Summation over u gives that with x 2v we obtain

For x 2v — 1 it seems most convenient to evaluate £>2 (x) by subtracting from
62 (2v) the number of bar operations to evaluate f2* (2v) We obtain

(3 4)

(3 5)

b2 (x) V (v + 2) - (v + 1) —
x2 + 4x — 1 x2 +4x + 3

d2 (x) h 1

x2 +4x — 1

(3 6)

(3 7)



133

We have

«Too d2 (2v)

that is, not unexpectedly, the numbers of operations in the odd and even cases

are asymptotically equal We also find

d2 (x) b2 (x) 1

lmi lim —— -
zfoo d\X) a?Too 0 (x) 2

that is, asymptotically, evaluation by (3 2) and (3 3) requires half the number of
operations required for evaluation by (3 1)

4 Extension to the n-fold convolution

As mentioned in subsection ID, we can evaluate fn* by repeated application
of (1 1) The question is what would be the most efficient way to do this7 In
Section 3 we saw that evaluation of (/ *g){y) by (1 2) for y 0,1, i
requires asymptotically twice as many algebraic operations for g ^ f as for
g / Thus, it seems that in addition to keeping the numbei of applications of
(1 1) as low as possible we want as many as possible of them with p q Let

us count each usage of (1 1) as 2 when p yf q and 1 when p — q

The least efficient we could do, would be to use (11) with p i and q 1 for
% — 1,2, n — 1 That would give a count of

w (n) 2 (n — 1) — 1 2n — 3

the deduction of 1 being for the evaluation of f2*
Let us now describe what we believe to be the optimal strategy We introduce
the binary representation

of n, where k{n) is a positive integer and bm e {0,1} for i 0,1, k (n) — 1

We first evaluate fT* by (1 1) with p q 21"1 for i= 1,2, ,k(n), each of
these k (n) applications has count 1 Finally we find fn* by

k(n) 1

n 2&()+ 2'i»m



134

which is evaluated by Yl%=o* '
&m applications of (1.1), each of which has count

2. Thus, we apply (1.1)

k{n) — 1 k{n)~ 1

a(n) k (n) + ^ bni ^ (fcm + 0

times, and that gives a total count of

k(n) — l

c (n) k (n) + 2 ^ bnt

i=0
k(n)— 1

^ (26m + 1) 2a (n) - k (n) (4.1)
i=0

We believe that c (n) is the lowest possible number of counts for evaluation of
fn* by repeated application of (1.1).
We trivially have

c (n) a (n) k (n) (4.2)

when n is a power of two, and

c (ri) > a (n) > k (n) (4.3)

when this is not the case.
When applying the present strategy to evaluate fn* (0), /"* (1),..., fn* (x), we
need

t>n {x) k (n) 62 {%) + (a (n) — k (n)) b (x) (4.4)

bar operations and

dn (x) k (n) {x) + (a (n) — k (n)) d (x) (4.5)

dot operations.

In Table 4.1 we display k (n), a (n), c (n), w (n) for n 1,2,..., 16.



135

n k(n) a(n) c{n) w(n)

2 1 1 1 1

3 1 2 3 3

4 2 2 2 5

5 2 3 4 7

6 2 3 4 9

7 2 4 6 11

8 3 3 3 13

9 3 4 5 15

10 3 4 5 17

11 3 5 7 19

12 3 4 5 21

13 3 5 7 23

14 3 5 7 25

15 3 6 9 27

16 4 4 4 29

Table 4 1 Counts for the n-fold convolution.

5 De Pril's recursion

De Pnl (1985) presented the recursion

(5 1)

r.bJräS(^~,)-'wr*(^) <s=''2'

J(0)n (y 0)

Most programming languages have a power function or routines for exponentials
and logarithms that could be applied for evaluation of the initial value

r (0) } (0)" (5 2)

However, such procedures would introduce a new dimension as it is uncertain
how they compare to dot and bar operations. When restricting to dot and bar

operations, we can find fn* (0) by a (n) multiplications by optimising like we
did m Section 4

For evaluation of / (y) for y > 0, we rewrite the expression in (5 1) as

r(y) ^-)ph(z,y)fn*(y-z) (5 3)



136

with

S (V) yf (0); h (z, y) ((n + 1) z - y) f (z),

which can be evaluated recursively by

s(y) s{y~ 1) + / (0) (y 2,3,...)
s(l) /(0)

h{z,y) h{z,y - 1) - f (z) (z 1,2,..., y - 1)

(5.4)

(5.5)

h{y,y) nyf (y)

Let us first consider the case y 1. To evaluate h(l,l) we need one dot

operation, and for s(l) we need no algebraic operations. To evaluate fn* (1)
by (5.3) we need two dot operations. Thus, totally we need three dot operations.
Let us now consider y > 1. We need two dot operations to find h (y,y), and to
find h (z,y) by (5.5) we need one bar operation for each 2 1,2,..., y — 1.

To evaluate s (y) by (5.4) we need one bar operation. Finally we need y — 1 bar

operations and y+ 1 dot operations to evaluate fn* (y) by (5.3). Thus, totally we
need 2y — 1 bar operations and y + 3 dot operations.

Summing up the number of operations that we have found, we obtain that for
evaluation of fn* (y) for y 0.1,..., x we need

X

y
(5.6)

bar operations and

X

dr (x) — a (n) + 3 + ^ (y + 3) ^ (x + 7) + a (n) - 1 (5.7)

dot operations.

6 Evaluation by De Pril transforms

Sundt (1995) defined the De Pril transform ipf of / by

J / ^^ \

(6.1)



137

The De Pnl transform determines j uniquely By solving (6 1) for j (y) we obtain

1
y

f (y) =(z)f (y - z) • (2/ 1,2, (6.2)
y z—i

Furthermore, Sundt (1995) showed that

</?/"* (y) rvpf (y) {y 1,2,. (6 3)

Thus, we can evaluate fn* by first evaluating ipf by (6 1), then finding </?/». by
(6.3), and finally evaluating fn* by (6 2), obtaining the starting value /"* (0) by
(5 2).
As argued in Section 5 we need a (n) dot operations and no bar operations to
evaluate fn* (0).
Let us now consider y > 0. To evaluate iff (y) by (6 1) we need y — 1 bar

operations and y + 1 dot operations. To evaluate <pfn» (y) by (6.3) we need one
dot operation, and to evaluate fn* (y) by (6 2) we need y — 1 bar operations and

y + 1 dot operations. Thus, we totally need 2y — 2 bar operations and 2y + 3 dot

operations to evaluate fn* (y), and by summation over y and adding the operations
for evaluation of jn* (0) we obtain that to evaluate /"* (y) for y 0,1, ,x
we need

X

bp (.x) (2y - 2) x (x - 1)

y= 1

bar operations and

X

dp (x) a (n) + ^ (2y + 3) x (x + 4) + a (n)
y= I

dot operations

7 Comparison of the methods

7A. We easily see that dp (x) — dr (x) is always positive On the other hand,

bp(x) - br(x) is negative for all m > 1, that is, dot and bar operations give
opposite conclusions Let us therefore compare the total number of algebraic

operations required for the two methods. We have

bp (x) + dp (x) - (br (x) + dr (x)) ^ (x - 1) + 2 > 0,



138

that is, totally the De Pril transform method requires more algebraic operations
than De Pril's method. Furthermore, as dv (x) — dr (x) > 0, and our reason for
distinguishing between bar and dot operations was that the latter would be more
time-consuming, we conclude that De Pril's method is more efficient than the De
Pril transform method. Thus, we can concentrate on comparing De Pril's method
and traditional evaluation. However, we point out that for large n the method of
Section 6 will be more efficient than traditional evaluation.

7B. To compare the number of operations needed in De Pril's method and the

method of Section 4 we introduce the differences

bnA (x) bn (x) - br (X); dnA (x) dn (x) - dr (x)

By application of (4.4), (3.4), (3.6), (2.1), (4.1), and (5.6) we obtain

bnA (x)

| ((c (n) — 4) x2 + 2 (a (n) + k (n)) x + 4) (x even)

^((c(n) — 4)x2 + 2(a(n)
+k(n))x + 4 — k(n)) (x odd)

and by (4.5), (3.5), (3.7), (2.2), (4.1), and (5.7)

dnA (x)

| ((c (n) — 2) x2 + (3c (n) + k (n) — 14) x + 4) (x even)

li{c(n) - 2)x2 + (3c{n)
+ k(n) — \4)x + 4 — k(n)). (x odd)

From (7.1), (4.2), (4.3), and Table 4.1 we see that for all n > 5 except for n 8

we have bnA {x) > 0 for all x > 0. For n 8 and n < 5 we have bnA {x) < 0

except for some small values of x. Thus, we conclude that with respect to bar

operations traditional evaluation is preferable when n 8 and n < 5 whereas De
Pril's method is at least as good for all other values of n.
Let us now turn to dot operations. For all n except 2 and 4 we have dnA (x) > 0
for all x > 0. For n 2 and n 4 we have dnA {x) < 0 except for some small
values of x. Thus, with respect to dot operations we conclude that traditional
evaluation is preferable when n 2 and n 4 whereas De Pril's method is at

least as good for all other values of n.
We see that the conclusions with respect to bar and dot operations are consistent

except for n 3 and n 8. In both these cases we have bna (x) + dnA (x) > 0
for all x, and by similar reasoning as in subsection 7A we conclude that in both
these cases De Pril's method is more efficient than traditional evaluation, that is,
we prefer De Pril's method for all values of n except 2 and 4.



139

8 Evaluation of fn*

Until now we have discussed evaluation of /"* (0), fn* (1),..., /"* (x), and

our conclusion was that for most values of n, De Pril's method is preferable to
traditional evaluation with regard to the number of algebraic operations. If we also
need f3* (0), f3* (1),..., /3* {x) for j 2,3,..., n — 1, the picture changes.
Whereas De Pril's method is a recursion in y for fn* (y), in traditional evaluation

we also evaluate /•?* for some values of j < n.
The most efficient way of traditional evaluation of f2*, /3*,..., /"* seems to be

to evaluate f>* by the method of Section 2 with g /C-1)* when j is odd, and

when j is even, as the two-fold convolution of fi* by the method of Section 3.

With De Pril's method we will have to perform the recursion (5.3) for each

value of j. The only places where it seems possible to obtain some gain, are in
evaluation of fn* (0), s (1), and h (y,y).
Without going into further detail we conclude that in this situation, traditional
evaluation is preferable to De Pril's method.
Traditional evaluation will also be more efficient than the De Pril transform
method. However, the latter method may be more efficient in some cases where

we want to evaluate f3* (0), f3* (1),..., f3* (x) for r non-consecutive values

of j.
Acknowledgements

The present research was carried out while the first author stayed as GIO Visiting
Professor at the Centre for Actuarial Studies, University of Melbourne. We are

grateful to W.S. Jewell for useful suggestions in connection with Sections 3 and 5.



140

References

De Pril, N (1985) Recursions for convolutions of arithmetic distributions. ASTIN Bulletin 15,

135-139

Kuon, S Reich, A & Reimers, S (1987) Panjer vs Kornya vs De Pril A comparison ASTIN
Bulletin 17, 183-191 Letter to the editors ASTIN Bulletin 18, 113-114

Panjer, HH & Wang, S (1993) On the stability of recursive formulas ASTIN Bulletin 23,

227-258.
Sundt, B (1995) On some properties of De Pril transforms of counting distributions ASTIN
Bulletin 25, 19-31

Bj0rn Sundt
Vital Forsikrtng ASA
P.O. Box 250

N-1326 Lysaker
Norway

David C.M. Dickson
Centre for Actuarial Studies

University of Melbourne
Parkville
VIC 3052
Australia

Abstract

In the present paper three methods for evaluating the n-fold convolution of an arithmetic distribution
are compared by counting the number ot elementary algebraic operations

Resume

L'article compare trois methodes devaluation du ememe produit de convolution d'une distribution
arithmethique en comptant le nombre d'operations algebnques elementaires lequises

Zusammenfassung

Im vorliegenden Artikel werden drei Methoden zur Berechnung der n-fachen Faltung einer
arithmetischen Verteilung verglichen, indem jeweils die Anzahl elementarer Rechenoperationen
bestimmt wird


	Comparison of methods for evaluation of the n-fold convolution of an arithmetic distribution

