Zeitschrift: Pestalozzi-Kalender

Herausgeber: Pro Juventute

Band: 58 (1965)

Heft: [1]: Schülerinnen

Rubrik: Geometrie

Nutzungsbedingungen

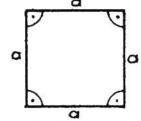
Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

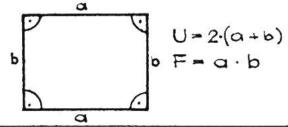
L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

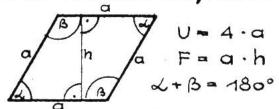
The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

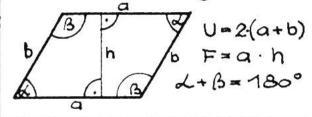

Download PDF: 12.07.2025

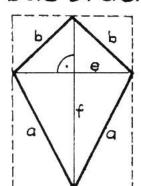
ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch


Geometrie

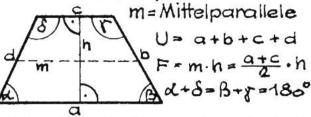
Jn den folgenden Formeln für die wichtigsten Grössen der ebenen Figuren und der Körper bedeutens U=Umfang F= Flächeninhalt O=Oberfläche K=Gesamtkantenlänge M= Mantelfläche G=Grundfläche V=Rauminhalt, Volumen L, B, g...= Winkel; a,b,c...=Seiten; r,R,q=Radien; h,h-Höhe L=rechter Winkel Für K genügt meist der Wert3,14

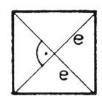

Das Quadrat


Das Rechteck

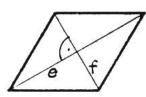

Der Rhombus, Raute

Das Parallelogramm

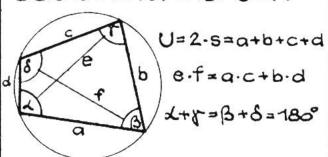

Das Drachenviereck


$$U = 2(a+b)$$

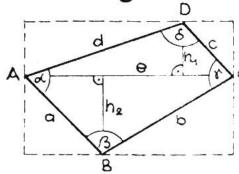
$$= \frac{e \cdot f}{2}$$
e; f = Diagonalen


Das Trapez

Spezialfälle

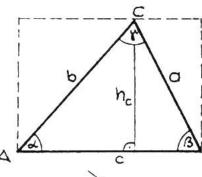


Quadrat

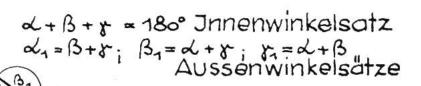


Rhombus $F = \frac{\varrho \cdot f}{2}$

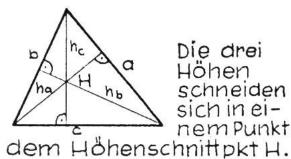
Das Sehnenviereck



Das allgemeine (unregelmässige) Viereck

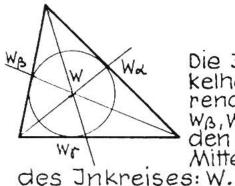


 $F = \frac{e \cdot (h_1 + h_2)}{2}$ U = a + b + c + d2+B+8+8 = 360° Zur eindeutigen Festlegung eines Vierecks sind im allgem. 5 Grössen, darunter 2 Seiten, erforderlich.

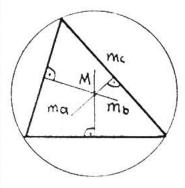

Das Dreieck

 $U = a + b + c = 2 \cdot S$ $F = \sqrt{s \cdot (s-a) \cdot (s-b) \cdot (s-c)}$ Heronische Formel $F = \frac{c \cdot h_c}{2} = \frac{a \cdot h_a}{2} = \frac{b \cdot h_b}{2} = \frac{g \cdot h}{2}$ g=Grundlinie = a od. b od. c. h=Höhe=ha oder hb oder hc

Vier merkwürdige Punkte im Dreieck



Die drei Höhen schneiden sich in einem Punkt,



nien) Sa, Sb,

Sc schneidensich im Schwerpkts. Er teilt jede Linie im Verhältnis 1:2

Die 3 Winkelhalbierrenden Wa, WB, Wr schner den sich im Mittelpunkt

Die 3 Mittelsenkrechten ma, mb, mc schneiden sich im Mittelpunkt M des Umkreises.

Acht wichtige Sätze für das Dreieck

2 Dreiecke sind

kongruent, wenn sie übereinstimmen.

1. in den 3 Seiten (sss)

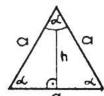
2. in 2 seiten und dem zwischen & (sws)

3. in 2 Seiten u.d. Gegen 4 der größeren Seite (ssw)

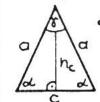
4. in 1 Šeite u. 2 gleichlie - genden & (wsw.; sww)

ähnlich, wenn sie übereinstimmen:

1. im Verhältnis der 3 Seiten

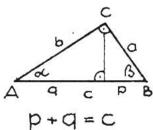

2. im Verhältnis zweier Seiten

u. dem Zwischen 4 3. im Verhältnis zweier Seiten und d. Gegen & d. gr. Seite


4. in 2 Winkeln

Spezielle Dreiecke

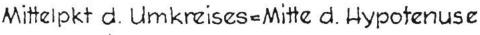
Das gleichseitige Dreieck



Das gleichschenklige Dreieck

$$A = B_i = b_i F = \frac{c \cdot hc}{2}$$
 $h_c = m_c = s_c = W_c$
 $= \frac{\sqrt{(2a-c)\cdot(2a+c)}}{2}$

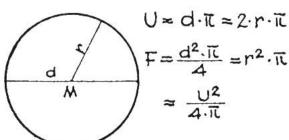
Das rechtwinklige Dreieck



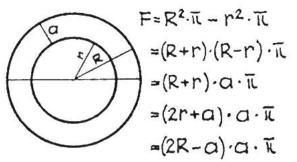
a, b = Katheten; c= Hypotenuse; x=90°; x+B=90°

 $a^2 + b^2 = c^2$ Lehrsatz des Pythagoras

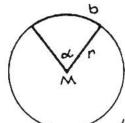
h² = p·q Höhensatz des Euklid


a2=p.c. b2=q.c Kathetensätze d. Euklid

c = Durchmesser satz des Thales x = 90°


 $F = \frac{a \cdot b}{2} = \frac{c \cdot h}{2}$ $r = \frac{c}{2}$

Der Kreis

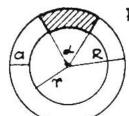

Spezialfälle Viertelkreis. Halbkreis

Der Kreisring

a=R-r=radiale Ringbreite

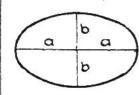
Der Kreissektor

$$b = \frac{\overline{\mathbf{n}} \cdot \lambda}{360} \cdot d = \frac{\overline{\mathbf{n}} \cdot \lambda}{180} \cdot r$$
$$= \frac{U}{360} \cdot \lambda$$

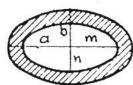

$$F = \frac{b \cdot n}{2} = \frac{n^2 \cdot 11}{360} \cdot \lambda = \frac{v^2 \cdot \lambda}{4 \cdot 11 \cdot 360}$$

Das Kreissegment

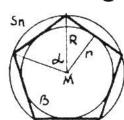
$$F = \frac{r \cdot (b-s) + s \cdot h}{2}$$


Das Kreisringstück

$$F = (R+r) \cdot (R-r) \cdot \overline{R} \cdot \frac{2}{360}$$

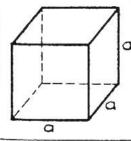

$$= (R+r) \cdot \alpha \cdot \overline{R} \cdot \frac{2}{360}$$

Die Ellipse


F= a · b · Ti a=halbe große Achse b=halbe kleine Achse

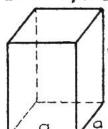
Der elliptische Ring

F= (a·b-m·n)·ī a,b=Halbachsen d. auss.Ellipse m,n=Halbachsen d.inn.Ellipse

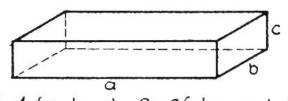

Das regelmässige Vieleck (n-Eck)

R=Radius des Umkreises r=Radius des Jnkreises n=Seitenzahl= Eckenzahl Sn=Vieleckseite d=Zentriwinkel

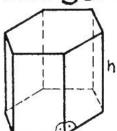
 $U = n \cdot Sn$ $\mathcal{L} = \frac{360}{n} \cdot \beta = 180^{\circ} - \lambda$ $Sn = 2 \cdot \sqrt{R^2 - r^2} = \frac{2 \cdot F}{n \cdot r}$ $F = \frac{n \cdot Sn \cdot r}{2}$


Der Würfel

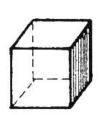
 $K = 12 \cdot a$ $M = 4 \cdot a^{2}; 0 = 6 \cdot a^{2}$ $V = a^{3}$


B=Vieleckwinkel

Die quadrat. Säule

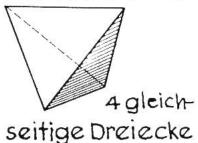

 $K = 8 \cdot a + 4 \cdot h$ $h M = 4 \cdot a \cdot h$ $0 = 2 \cdot a \cdot (a + 2 \cdot h)$ $V = a^2 \cdot h$

Der Quader


 $K=4 \cdot (a+b+c)$ 0=2(ab+ac+bc) $M=2 \cdot c \cdot (a+b)$ $V=a \cdot b \cdot c$

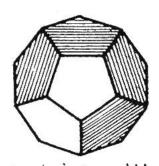
Das gerade Prisma

 $M = U \cdot h$ $0 = U \cdot h + 2 \cdot G$ $V = G \cdot h$

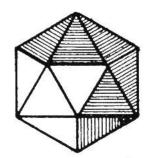

Die 5 regulären Polyeder Der Würfel Hexaeder

6 gleichseitige Vierecke

(Quadrate)


Das Tetraeder

Das Oktaeder



Das Dodekaeder

12 gleichseitige Fünfecke

Das Jkosaeder

20 gleichseitige Dreiecke

HÖCHSTE PASS-STRASSEN DER SCHWEIZ

Umbrail m 2501	Grimsel m 2165	Klausen m 1948	3
Gr. St. Bernhard 2469	Ofen 2149	Lukmanier 1916	5
Furka 2431	Splügen 2113	Maloja 181:	5
Flüela 2383	St. Gotthard 2108	Pillon 1546	5
Bernina 2323	San Bernardino 2065	La Forclaz 1527	7
Albula 2312	Oberalp 2044	Jaun 1509)
Julier 2284	Simplon 2005	Mosses 1445	5
Susten 2224			

EINIGE SCHWEIZER PASS-ÜBERGÄNGE

(über 2000 m ü. M.)	Ferret	2537	Septimer	2310
m	Gries	2462	Surenen	
Theodul 3317	Nufenen		Uomo	
Kisten 2730	Panixer 2		Joch	
Fenêtre, de 2697			Balme	
Lötschen 2690			Kl. Scheidegg.	
Segnes 2627	San Giacomo.	2313	Cheville	2038

DIE LÄNGSTEN EISENBAHNTUNNELS

Simplon 2m	19823	New-Cascade	12874	Grenchenberg	8578
N. Apennin	18510	Mont Cenis .	12849	N. Hauenstein	8134
Gotthard	15003	Arlberg	10240	Pyrenäen	7600
Lötschberg	14612	Ricken	8603	Jungfraubahn	7113

Strassentunnel Grosser St. Bernhard 5853 m