Joss, Walter

Objekttyp: **Obituary**

Zeitschrift: Schweizerische Bauzeitung

Band (Jahr): 65/66 (1915)

Heft 14

PDF erstellt am: **24.05.2024**

Nutzungsbedingungen

Die ETH-Bibliothek ist Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an den Inhalten der Zeitschriften. Die Rechte liegen in der Regel bei den Herausgebern. Die auf der Plattform e-periodica veröffentlichten Dokumente stehen für nicht-kommerzielle Zwecke in Lehre und Forschung sowie für die private Nutzung frei zur Verfügung. Einzelne Dateien oder Ausdrucke aus diesem Angebot können zusammen mit diesen Nutzungsbedingungen und den korrekten Herkunftsbezeichnungen weitergegeben werden.

Das Veröffentlichen von Bildern in Print- und Online-Publikationen ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Die systematische Speicherung von Teilen des elektronischen Angebots auf anderen Servern bedarf ebenfalls des schriftlichen Einverständnisses der Rechteinhaber.

Haftungsausschluss

Alle Angaben erfolgen ohne Gewähr für Vollständigkeit oder Richtigkeit. Es wird keine Haftung übernommen für Schäden durch die Verwendung von Informationen aus diesem Online-Angebot oder durch das Fehlen von Informationen. Dies gilt auch für Inhalte Dritter, die über dieses Angebot zugänglich sind.

Ein Dienst der *ETH-Bibliothek* ETH Zürich, Rämistrasse 101, 8092 Zürich, Schweiz, www.library.ethz.ch

wie Luzern und Brig, nicht durchgehend, sondern zieht sich blos um die Streben herum, um sich an den Seitenwänden zu brechen. Wie in Obermarchtal ist auch hier der attikaartige Aufsatz über dem Gesims unterdrückt. Nur ein kurzes Gebälkstück schiebt sich ein zwischen dem Kranzgesims und dem Ansatz der Tonnengurte. In Bezug

auf den Aufbau der Nischen ist es interessant, hier das Ende einer Entwicklung vor sich zu haben, die man durch das ganze 17. Jahrhundert hindurch an den Jesuitenbauten verfolgen kann. Die Kollegskirche in Dillingen [1611 bis 1617] 1) hat noch gar keine Emporen, in Eichstätt [1617 bis 1622] 2) treffen wir sie in Form von schmalen Galerien, in Solothurn schliesslich sind es vollwertige Emporen, die sich bis an den Rand der Streben hinaus verbreitert haben.

Die zweigeschossige Westempore ruht auf zwei schlanken, quadratischen Pfeilern, die mit Pilastern verschiedener Ordnung bekleidet sind, und öffnet sich oben und unten in schönen Rundarkaden gegen das Schiff. Das untere Geschoss korrespondiert in der Höhe mit den seitlichen Emporen, als Brüstung des obern dient die Fortsetzung des Kranzgesimses über dem Strebengebälk. Beide Geschosse sind mit Kreuzgewölben untermauert.

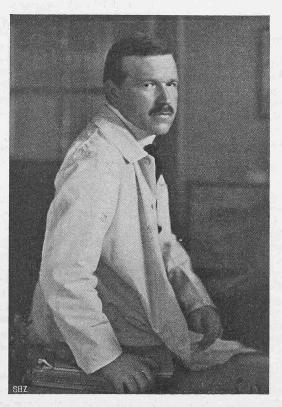
Das Innere der Kirche empfängt nicht allzureiches Licht. Die Kapellen haben kleine, die Emporen grosse und massiv umrahmte Stichbogenfenster. Ebenso die Nischen in den Querarmen unterhalb der

Emporenbrücke. Auch der Chor⁸) hat zwei Fenstergeschosse. Nur die obern spenden Licht, die untern, mit schwerfälliger Bekrönung, münden auf die Oratorien. Auch von der Fassade her fällt das Licht durch sehr verschieden gestaltete Oeffnungen.

An Weiträumigkeit steht die Jesuitenkirche in Solothurn — schon der kleinern Dimensionen wegen — hinter Luzern und Arlesheim zurück. Die Seitenkapellen nehmen zu viel Raum weg und die überreich ausgestreuten, glänzenden Stukaturen sind infolge ihres schweren Barockgepräges keineswegs geeignet, die Leichtigkeit des Baues zu heben, sondern bedeuten für die Decke beinahe eine Last. Im Uebrigen aber ist der Raum ein durchwegs harmonischer. Namentlich schön ist die Höhenentwicklung des Mittelschiffes."

+ Walter Joss.

In der Blüte seiner Jahre und aus voller Gesundheit und Lebensfreude heraus ist Architekt Walter Joss durch ein grausames Geschick plötzlich den Seinen entrissen worden. Nach achtmonatlichem Grenzwachtdienst an der Spitze seiner Truppe, der Feldartillerie-Abteilung 9, nach Bern zurückgekehrt, befiel ihn am Tage vor der Beurlaubung eine Blinddarm-Entzündung, die am 20. März eine Notoperation nötig machte. Es war zu spät; die Kunst der Aerzte vermochte ihn nicht mehr zu retten und am 24. März erlosch sein Lebenslicht.


Geboren am 4. November 1875, besuchte Joss die Schulen seiner Vaterstadt Bern, wo er nach Absolvierung des freien Gymnasiums im Jahre 1894 die Maturität erwarb. Bis zum Spätjahr 1895 machte er im Baugeschäfte seines Onkels, des nachmaligen Regierungsrats Könitzer in Worb, eine praktische Lehre durch, worauf er die Baugewerkschule

Stuttgart bezog. Diese verliess er 1898, ausgerüstet mit dem Abschluss-Diplom. Aber sein Wissensdrang war noch nicht befriedigt: bis 1901 studierte er weiter, zunächst an der Technischen Hochschule Stuttgart unter Reinhardt, Neckelmann und Halmhuber, hernach in Karlsruhe bei Schäfer, Ratzel, Durm und Läuger. Seine praktische Laufbahn als Architekt begann Joss auf dem Karlsruher Bureau von Curjel & Moser, in deren Auftrag er später die Bauleitung der Paulus-Kirche in Bern besorgte. Nach Vollendung dieses Baues machte sich Joss selbständig; er versah gleichzeitig während zweier Jahre die Stelle eines Fachlehrers für Hochbaukunde am Technikum Burgdorf und verband sich schliesslich 1907 mit seinem Kollegen Hans Klauser zur Firma Joss & Klauser.

Mit einem Achtungserfolg beim Wettbewerb um das Nationalbankgebäude in Bern trat die junge Firma 1908 zum ersten Mal an die Oeffentlichkeit. Gross ist die Reihe ihrer seither errungenen Erfolge; wir nennen die bedeutendsten solcher Wettbewerbe: Postgebäude in Aarau (1909), Kantonalbank in Chur (1909), Kunstmuseum Elisabethenschanze

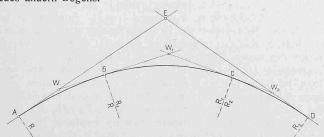
in Basel (1910), Kantonalbank-Filiale in Biel (1913), Unfallversicherungs-Verwaltungsgebäude in Luzern (1913) und neues Stadthaus in Solothurn (1914). Auch als architektonische Mitarbeiter bei Brücken-Konkurrenzen konnten wir Joss & Klauser wiederholt unsern Lesern vorführen, so für die neuen Rheinbrücken in Rheinfelden (1909) und Laufenburg (1910) und für die Lorraine-Brücke über die Aare in Bern (1911). Ausserdem sind zu nennen von ihren ausgeführten Werken die Umbauten und Erweiterung der Lorraine- und Nydeck-Kirche, die Umbauten der Eidg. Bank in Bern und des Richteramts im Schlosse Burgdorf, die Schulhäuser in Oftringen und auf dem Breitfeld in Bern, der Neubau des Zunfthauses zu Schmieden in Bern. Sodann erinnern sich unsre Leser der Zentrale des Kraftwerks Kandergrund und der Wagenremise und Reparaturwerkstätte in Spiez der Lötschbergbahn und endlich kleinerer Bauten, wie Wohnhaus Dr. Haller in Belp und Badanlage im Jegenstorfer Schlosspark. Aber auch für Gelegenheitsschöpfungen und Festbauten legten Joss & Klauser grosses Geschick an den Tag. Wir erinnern an ihre Bauten für das Eidg. Schützenfest in Bern 1910 und an jene für die Schweiz. Landesausstellung 1914, an der Architekt Joss die Oberleitung für sämtliche Bauten auf dem Viererfeld anvertraut war. Mit praktischem Sinn und grossem Dispositionsvermögen begabt, daneben an zähem Willen ein ächter Berner, verband ihn zum Segen der Firma ein festes Freundschaftsverhältnis mit seinem Mitarbeiter.

Aber nicht nur er hat in dem Verstorbenen viel verloren. Am Grabe von Walter Joss stehen trauernd auch seine Freunde vom Bund schweiz. Architekten, jener Vereinigung jüngerer, nach neuen Wegen suchenden Architekten. Joss war einer der Gründer und mehrjähriger Präsident des B. S. A. Aber auch im weitern Kreise seiner

Architekt Walter Joss
Präsident des Bundes schweiz. Architekten
Geb. 4. November 1875 Gestorben 24. März 1915

¹⁾ Braun, II. S. 117. 2) Braun, II, S. 141. 3) Der bis ans Gewölbe reichende, etwas zu schwere Hochaltar mit schlanken, hintereinander gestellten Säulen, gemässigtem Gebälk und segmentförmigem Giebelstück füllt die ganze Chornische aus und ist ein imposantes Werk. Auch die olygonale Kanzel und die Nebenaltäre sind dem barocken Milieu gut pngepasst (vergl. Tafel 29, Red.).

Fachgenossen schätzte man Joss als tüchtigen Kollegen. Es trauern um seinen hochgeschätzten Präsidenten die bernische Offiziersgesellschaft, um ihren guten Kameraden und vorbildlichen Major die ihm unterstellten Offiziere und Soldaten, um ihren verdienten Mitbürger die Zunftgesellschaft zu Schmieden. Alle, die ihn kannten, werden ihm ein gutes Andenken bewahren!


Tracé-Absteckungen.

Die Erörterungen des Herrn Kollegen Dr. v. Kager in Nr. 8 der "Schweiz. Bauzeitung" über das Korbbogenproblem haben mich dazu angeregt, hier einiges Weitere über ähnliche Absteckungsarbeiten mitzuteilen. Es mag davon gelten, was Hr. v. K. von seiner Arbeit gesagt hat, dass es sich nicht darum handle, der Wissenschaft einen besonderen Dienst zu leisten, sondern lediglich einige Winke zu geben für die Abkürzung der oft zu umständlich betriebenen Tracé-Absteckungen.

Es handelt sich bei letztern in der Regel darum, ein im Plane festgelegtes Tracé in das Terrain zu übertragen. Dabei kann das Ergebnis keinen grösseren Genauigkeitswert haben als der Plan selbst. Wenn auf diesem die Masse nur auf ½ m genau entnommen werden können, so ist die Linie im Terrain um ebensoviel unsicher. Nun sieht man allerdings nicht selten, dass jene rohen aus den Plänen entnommenen Masse mit Millimeter-Genauigkeit auf das Terrain übertragen werden. Man legt z. B. die Richtlinien eines Tracés durch Abstiche von Marksteinen, Hausecken u. dgl. aus fest, und bringt sie dann als Tangentenrichtungen mit Anwendung des Theodoliten auf umständliche Weise zum Schnitt, um so haargenau die Winkelpunkte zu bestimmen, statt dass man diese selbst einfach mit den Fluchtstäben "von Aug" oder direkt mit einigen Massen aus dem Plan bestimmt und erst darnach die Tangentenrichtungen absteckt.

Das Tracé muss natürlich, wenn einmal die Winkelpunkte festgelegt sind, etwa auf den Zentimeter genau verpfählt werden. Meist genügt aber auch eine noch etwas geringere Genauigkeit, wie sie auch ohne Zuhilfenahme des Theodoliten und ohne die Benutzung von Kurventabellen, lediglich mit dem Rechenschieber in der Hand, erreicht werden kann.

Wir wollen vorerst auf das erwähnte Korbbogenproblem zurückkommen, das kaum komplizierter ist als die Tracierung jedes andern Bogens.

Man steckt auch hier zuerst die Winkelpunkte W, W_1 , W_2 nach Abmessungen aus dem Plane ab. Dann steht es einem frei, entweder R oder die Tangentenlänge des ersten Bogens ensprechend dem Plane fest anzunehmen. Sowie dies geschehen ist, sind auch alle andern Bogen bestimmt. Für den zweiten und dritten müssen wir die Tangentenlängen im Terrain messen und daraus rückwärts R_1 und R_2 bestimmen. Wir werden hier ungerade Radienlängen erhalten, was etwas ungewöhlich sein mag, aber gar nichts schadet. Es wird übrigens bei der von Herrn v. K. angegebenen Lösung auch nicht anders werden.

Man versteift sich im allgemeinen zu sehr auf die runden Zahlen bei den Kurvenradien. Es beweist aber nicht gerade ein sorgfältiges Anpassen an alle Verhältnisse, wenn im Kurvenband nur $R=400,\ 500,\ 550,\ 600$ usw. und nicht auch $R=491,\ 517$ u. dgl. vorkommen. In dieser Beziehung wäre eine sorgfältige Ermittlung des Zweckmässigsten mehr wert, als peinliche Ausrechnungen über die Rechenschiebergenauigkeit hinaus. In wertvollem, teilweise überbautem Gelände, wird man oft durch eine Kurve von ungeradem Radius oder durch Korbbogen, wie Hr. v. K. richtig angedeutet hat, Ersparnisse erzielen können. Schon oft ist eine Hausecke der Abrundung eines Halbmessers zum Opfer gefallen.

Wo sich die Aufgabe einstellt, einer solchen Ecke auszuweichen, wird man dort eine Korbbogentangente in respektvoller Entfernung von der gefährdeten Ecke einlegen und dann verfahren, wie weiter oben angegeben wurde.

Wir kommen nun zu den Methoden der vereinfachten Absteckung. Auch für diese, bezw. die Absteckung ohne Theodolit, sind Tabellen vorhanden. Wir wollen aber den extremen Fall ins Auge fassen, wo man auch auf diese verzichtet und lediglich seinen getreuen Rechenschieber-Eckart in der Tasche hat.

Man wird dann, um eine Kurve abzustecken, die eine Tangente über den Winkelpunkt hinaus verlängern, für 30 oder 50 m Abszisse eine Ordinate bis zur andern Tangente messen, und daraus mit dem Rechenschieber sofort den Zentriwinkel α bestimmen können.

Jetzt berechnet man wieder mit einer einfachen Rechenschieberstellung die Tangentenlänge $=Rtg\frac{\alpha}{2}$ und mit einer neuen den sog. Scheitelabstand $=Rtg\frac{\alpha}{2}tg\frac{\alpha}{4}$. Nach der Absteckung dieser Punkte kann man die Bogenlänge berechnen $=0,0002909 \alpha R$ in m, worin $\alpha=$ dem Zentriwinkel in Sexagesimal-Minuten. Die Zahl 0,0002909 wird man überhaupt im Kopfe behalten, da sie für das Abstecken und Messen kleiner Winkel oft gebraucht wird. Um beispielsweise einen Winkel von 1^0 18' abzustecken, wird man bei einem Punkte, dessen Entfernung =60,25 m bekannt ist, eine Ordinate von $78 \cdot 0,0002909 \cdot 60,25 = 1,365 m$ auftragen.

Die auf diese Weise mit dem Rechenschieber ermittelten Kurvenelemente werden nicht auf Zentimeter, aber ausreichend genau sein, vorausgesetzt, dass sie nicht gerade für Tunnel- oder Brückenabsteckungen benutzt werden. Es empfiehlt sich, nach dem Scheitelabstand vorsorglich auch die Scheiteltangente abzustecken, indem man den Aussenwinkel beim Winkelpunkt halbiert und dazu eine Parallele durch den Scheitel legt.

Die Absteckung der Kurve selbst kann besonders bequem von den Tangenten aus erfolgen, wobei dann eben die Scheiteltangente mitbenutzt wird. Man erhält die Ordinaten wiederum mit einer Rechenschieberstellung nach der Formel $y=\frac{x^2}{2R}$, wobei eine mit dem Kreisbogen praktisch zusammenfallende Parabel entsteht. Für grössere Abszissenlängen (die Zentriwinkel von mehr als 30° entsprechen) wird man durch eine zweite Rechenschieberstellung an der Ordinate die Korrektur anbringen $+\frac{y^2}{2R}$. Bei einiger Uebung wird man in diesen Berechnungen das Komma ohne weiteres an die richtige Stelle setzen.

Es ist naheliegend, die von der Scheiteltangente aus abgesteckte Parabel als Tracékurve dem Kreise vorzuziehen, da sie, von den Haupttangenten ausgehend, eine allmähliche Verschärfung der Krümmung bis zum Scheitel des Bogens und dann wieder eine dazu symmetrische Verflachung bis zur andern Haupttangente ergibt. Dies wird in einfacher Weise erreicht, wenn man die Korrektur $+\frac{y^2}{2R}$ an den Ordinaten nicht anbringt, dafür aber den Scheitelabstand um diese Korrektur für x= der Haupttangenten-Länge grösser annimmt und lediglich mit Ordinaten von der entsprechenden verschobenen Scheiteltangente aus absteckt. Man wird aber bemerken, dass dabei in den meisten Fällen eine vom Kreis nur wenig abweichende Parabel entsteht, deren Krümmungsradius zudem nicht von unendlich ausgeht. Trotzdem empfiehlt sich dieses Verfahren unter Umständen für Strassen- und Strassenbahn-Kurven.

Will man beim Abstecken der Bogenpunkte mit dem Theodolit und mit Sehnenwinkeln arbeiten, so ist wieder der Rechenschieber recht bequem. Der Sehnenwinkel ist = 206 265 $\frac{l}{R}$ in Sexagesimal-Sekunden oder besser 3438 $\frac{l}{R}$ in Minuten, wobei l= der Sehnenlänge. Einfacher ist es natürlich, in diesem Falle mit Zentesimalteilung zu arbeiten, der Winkel ist dabei = 63,66 $\frac{l}{R}$ Grad.

Bei der Anwendung von Uebergangskurven wird man den Kreisbogen abstecken, aber zwischen den beiden Uebergangskurven die konstante Verschiebung des Tracés gegen den Mittelpunkt hin um die Grösse m bei jedem Punkte sogleich vornehmen.

um die Grösse m bei jedem Punkte sogleich vornehmen. Die Formel $y=\frac{x^3}{6\,P}$ für die Berechnung der Ordinaten der Uebergangskurven eignet sich wiederum gut für die Benutzung des Rechenschiebers.

Bei häufiger Anwendung von Korbbogen wird man auch genötigt sein, Uebergangskurven zwischen diese einzuschalten