Festigkeitsberechnung von Kugelschalen

- Autor(en): La Bolle
- Objekttyp: Article

Zeitschrift: Schweizerische Bauzeitung

Band (Jahr): 65/66 (1915)

Heft 9

PDF erstellt am: 23.05.2024

Persistenter Link: https://doi.org/10.5169/seals-32287

Nutzungsbedingungen

Die ETH-Bibliothek ist Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an den Inhalten der Zeitschriften. Die Rechte liegen in der Regel bei den Herausgebern. Die auf der Plattform e-periodica veröffentlichten Dokumente stehen für nicht-kommerzielle Zwecke in Lehre und Forschung sowie für die private Nutzung frei zur Verfügung. Einzelne Dateien oder Ausdrucke aus diesem Angebot können zusammen mit diesen Nutzungsbedingungen und den korrekten Herkunftsbezeichnungen weitergegeben werden.

Das Veröffentlichen von Bildern in Print- und Online-Publikationen ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Die systematische Speicherung von Teilen des elektronischen Angebots auf anderen Servern bedarf ebenfalls des schriftlichen Einverständnisses der Rechteinhaber.

Haftungsausschluss

Alle Angaben erfolgen ohne Gewähr für Vollständigkeit oder Richtigkeit. Es wird keine Haftung übernommen für Schäden durch die Verwendung von Informationen aus diesem Online-Angebot oder durch das Fehlen von Informationen. Dies gilt auch für Inhalte Dritter, die über dieses Angebot zugänglich sind.

Ein Dienst der *ETH-Bibliothek* ETH Zürich, Rämistrasse 101, 8092 Zürich, Schweiz, www.library.ethz.ch

http://www.e-periodica.ch

Festigkeitsberechnung von Kugelschalen. Von Ing. L. Bolle, La Chaux-de-Fonds.

Die Festigkeitsberechnung der Kugelschalen, die z. B. in der Dampfturbinenkonstruktion als Zwischenböden Verwendung finden, ist nur in seltenen Fällen mathematisch genau durchgeführt worden.¹) Die dazu verwendete Methode hat sich nicht als praktisch erwiesen, weil sie die umständliche durch Reihenentwicklung ausgeführte Integration einer Differentialgleichung 5. Ordnung erforderte. Dieses Umstandes wegen, und in Anbetracht der technischen

Wichtigkeit des Problems, erschien es angezeigt, die betreffenden Konstruktionsteile nach einem angenäherten Verfahren²) zu berechnen und auf die genaue Lösung zu verzichten.

Andererseits hat Herr Reissner³) durch eine andere Wahl der Grundvariablen die mathematische Lösung auf eine neue Form gebracht, in der die Grundgleichungen, für den Fall einer konstanten Dicke, ganz symmetrisch erscheinen. Diese Symmetrie hat Prof. Meissner dazu benutzt, um eine grosse Vereinfachung der Integration zu erzielen; er zeigte4) nämlich, dass sich die Lösung der Elastizitätsaufgabe eines Torus (und dessen Grenzfälle, Kegel und Kugel) auf die Integration einer einzigen Differentialgleichung 2. Ordnung zurückführen lässt. Auf diese Resultate gestützt, liess sich im Falle der Kugel ein auch für die Praxis bequemes Berechnungsverfahren finden, dessen Ergebnissen zu zeigen den Zweck der folgenden Seiten bildet.

Es bezeichnen im Folgenden:

R den Radius der Mittelkugel.

2 h die Dicke der Schale.

a das Komplement der geographischen Breite eines Punktes P der Mittelfläche.

Wählen wir in P ein rechtwinkliges Koordinatensystem: die x-Axe in der Richtung der Tangente an die Meridiankurve (+x = mit wachsendem a); die y-Axe in der Richtung der Tangente an den Parallelkreis; die z-Axe in der inneren Flächennormalen.

¹) Dr. E. Fankhauser, "Exp. und theoret. Untersuchungen über die Festigkeit von Kegel- und Kugelböden". Berlin 1913.

²) Dr. H. Keller, "Berechnung gewölbter Böden". Berlin 1912. (Bauzeitung, Bd. LXI, Seite 111 ff, März 1913).

⁸) Reissner, "Spannungen in Kugelschalen", in der Müller-Breslau Festschrift. Leipzig, Kröner 1912.

4) Physikalische Zeitschrift 1913. S. 343 bis 349. — Vergl. ferner: Meissner, "Ueber Elastizität und Festigkeit dünner Schalen" in Vierteljahrsschrift der Naturforsch. Gesellschaft in Zürich, 1. u. 2. Heft 1915.

Emporen-Grundriss 1:600. - Entwurf Nr. 61. - Predigtraum gegen Südwest.

- X, Y, Z die Komponenten der auf die Flächeneinheit der Mittelkugel bezogenen Belastung in P (X, Y, Z sind gegebene Funktionen von α).
- σ_r , σ_t die gleichmässig verteilte Spannung in "radialer" (x-Axe) bezw. "tangentialer" (y-Axe) Richtung, normal auf die zugehörigen Schnitte.
- σ_x , σ_y die Maximalwerte (z = + h, Innenfaser) der reinen Biegungsspannungen in "radialer" und "tangentialer" Richtung.
- τ den Mittelwert der Schubspannungen in einem Parallelschnitte.

Wettbewerb Kirchgemeindehaus Zürich-Wiedikon.

III. Preis, Entwurf Nr. 61. - Verfasser: Knell & Hässig, Architekten in Zürich.

 σ_{H} die Komponente der resultierenden Spannung aus σ_{r} und τ in horizontaler Richtung (normal zur Rotationsaxe).

 $\sigma_s = -\frac{R}{2h} \cdot \frac{p}{2}$ die Kugelspannung, d. h. diejenige Spannung, die in allen Punkten einer von aussen her

mit dem Drucke *p kg/cm*² belasteten Kugel herrscht. *u*, *v*, *w* die in der Richtung der Axen fallenden Komponenten der elastischen Verschiebung von *P*.

nenten der elastischen Verschiebung von P. ϑ den Verdrehungswinkel der Normalen, infolge der

Formänderung.

 ε_r , ε_t die auf der Mittelkugel gemessenen spezifischen Dehnungen in "radialer" bezw. "tangentialer" Richtung.

 $v = \frac{\mathbf{I}}{m}$ das Verhältnis der Querkontraktion zur Längen-Dilatation.

E den Elastizitätsmodul.

 $\mu = \sqrt[]{3 (1 - r^2) - r^2} = r^2$ eine für die Bequemlichkeit

Ι.

2.

der Rechnung eingeführte Konstante.

Wegen der vorausgesetzten axialen Symmetrie aller Bedingungen ist Y = o, v = o und ϑ wird in der Meridianebene liegen.

Zerlegung der Aufgabe.

Wir denken uns einen durchbohrten Boden, aus einer Hohlkugel längs der beiden Parallelkreise α_i und α_a herausgeschnitten. Wie in allen Festigkeitsaufgaben wird hier der Spannungszustand, ausser von der stetigen Belastung, noch linear von den Grössen $(\sigma_r, \tau, \sigma_x)_a$ und $(\sigma_r, \tau, \sigma_x)_i$ abhängen, welche die Randbedingung charakterisieren. Diese sechs Parameter dürfen wir aber nicht willkürlich annehmen, wenn die Schale im Gleichgewicht bleiben soll. Es gibt eine Gleichgewichtbedingung, die trotz der vorausgesetzten Symmetrie der Belastung nicht identisch erfüllt wird; diese drückt aus, dass die Summe der Kräfte in der Richtung der Symmetrieaxe verschwinden muss. Diese Gleichung reduziert die Anzahl der von einander unabhängigen Parameter, von denen der Spannungszustand linear abhängt, auf fünf. Zählen wir aber die Abhängigkeit von der stetigen Belastung noch hinzu, so folgt aus dem Superpositionsprinzip, dass wir nur für sechs verschiedene Belastungsfälle die Lösungen zu kennen brauchen, um dann jede andere Lösung durch lineare Zusammensetzung darstellen zu können.

Der Klarheit unserer Darstellung wegen wollen wir aber zuerst annehmen, dass die stetige Belastung, wenn eine solche überhaupt vorkommt, nur durch den Druck einer Flüssigkeit erzeugt wird, dass also X = Y = o und $Z = p kg/cm^2$ sei; andere Belastungsgesetze werden wir erst später betrachten.

In der Abbildung I sind diejenigen sechs Belastungsfälle, die wir in der Folge berechnen werden, schematisch dargestellt. Dieses Schema zeigt deutlich, was wir mit dem ersten Falle meinen; er enthält den Einfluss des Belastungsgesetzes. Bei dem zweiten sind die Spannungen σ_{ri} und σ_{ra} so gewählt, dass die Schale im Gleichgewicht ist. Für die Fälle 3 und 4 soll die punktiert eingezeichnete Ergänzung des Kreisbogens nur andeuten, dass wir es entweder mit einem vollen Boden zu tun haben, oder wenn das nicht der Fall ist, dass wir auf dem inneren Rande diejenigen Spannungen angreifen lassen, die in den entsprechenden Punkten des auf dem Aussenrande gleich belasteten vollen Bodens herrschen würden. In den zwei letzten Fällen bleibt der Aussenrand vollständig frei, während jetzt der Innenrand belastet wird.

Belastungsfälle 1 und 2.

Diese zwei Fälle nehmen in der mathematischen Lösung eine ganz besondere Stelle ein; sie sind von der Integration der Grunddifferentialgleichung des Problems unabhängig, und können in geschlossener Form (und mit Hülfe von elementaren Funktionen) wie folgt ausgedrückt werden:

$$\sigma_r = \sigma_t = -\frac{R}{2h} \cdot \frac{p}{2} = \sigma_s$$

$$\sigma_x = \sigma_y = \tau = \vartheta = 0$$

$$\varepsilon_r = \varepsilon_t = -\frac{R}{2h} \cdot \frac{p}{2} (1 - v)$$

$$w = R \varepsilon_t \quad u = 0$$

$$\sigma_r = -\sigma_t = -\frac{C}{R^2 \sin^2 a} \cdot \frac{R}{2h}$$

$$\sigma_x = \sigma_y = \tau = \vartheta = 0$$

$$u = -\frac{(1 + v)C}{2hE} \left[\sin a \cdot \lg \left(\lg \frac{a}{2} \right) - \cot g a \right]$$

$$w = -\frac{(1 + v)C}{2hE} \left[\cos a \cdot \lg \left(\lg \frac{a}{2} \right) + 1 \right]$$

Die Konstante C des zweiten Falles hat den Wert: $C = -\sigma_{ri} R \sin^2 \alpha_i$

Das Anwendungsgebiet dieser zwei Lösungen allein ist natürlich dadurch eingeschränkt, dass wir hier nur gewisse Randbedingungen zu erfüllen vermögen. Die gemeinsamen Werte $\sigma_x = \tau = o$ verlangen z. B., dass bei einer Auflagerung der Platte die Reaktion der Unterlage genau in der Richtung der Tangente an den Meridian der Mittelfläche wirke.

Nehmen wir eine Halbkugel, die auf einer horizontalen Ebene frei aufliegt, und nur durch den auf der konvexen Seite wirkenden Druck p beansprucht wird, so ist die erwähnte Auflagerungsbedingung erfüllt, und die erste Lösung gibt uns das bekannte Resultat, dass unsere Schale sich in demselben Spannungszustande befindet, in dem sie sich als Teil der gleich belasteten vollen Kugel befinden würde; in allen Punkten herrscht die konstante Spannung

$$\sigma_{s} = -\frac{R}{2h} \cdot \frac{p}{2}$$

Wir schneiden jetzt unsere Halbkugel längs des Parallelkreises a_i ab und lassen den so enstandenen inneren Rand vollständig frei. Dieser neue Belastungsfall ist mit einer Superposition unserer beiden Lösungen leicht zu erreichen; es genügt die Grösse σ_{ri} im zweiten Falle gleich — σ_s zu wählen, woraus sich für die Konstante *C* folgender Wert ergibt:

$$C = -\frac{p}{r} R^2 \sin^2 \alpha_i$$

Diese zusammengesetzte Lösung gilt ohne weiteres noch für irgend einen Teil $\alpha_a \alpha_i$ unserer Halbkugel; die einzige Bedingung dafür ist die, dass die erwähnte Auflagerungsbedingung auf dem neuen Rande immer noch erfüllt wird.

Belastungsfälle 3 und 4.

Diese zwei Belastungsfälle treten nicht mehr wie die beiden vorigen direkt als unabhängige Integrale in der mathematischen Lösung auf; sie sind vielmehr gemeinsam mit den Fällen 5 und 6, als vier verschiedene Zusammensetzungen der Integrale einer Differentialgleichung¹) 4. Ordnung zu betrachten. Der Umstand aber, dass wir es bei den Fällen 3 und 4 mit einem in der Mitte geschlossenen Boden zu tun haben, bedingt in den zugehörigen Zusammensetzungen das Verschwinden zweier Integrale.²)

Zu jedem Integral der Differentialgleichung gehört natürlich eine bestimmte Lösung, d. h. es gehören zu jedem Integral bestimmte Werte für jede Spannungs- oder Deformationsgrösse. Gehen wir z. B. von den zwei Integralen (in ihrer Reihendarstellung geschrieben) aus, die bei den Fällen 3 und 4 vorkommen:

$$X_1 = A_0 + A_1 x + A_2 x^2 + \dots$$

 $Y_1 = B_0 + B_1 x + B_2 x^2 + \dots$ wobei $x = \sin^2 \alpha$ und A_n, B_n von μ abhängende Zahlenkoeffizienten sind, und führen wir noch die zwei Reihen ein:

¹) Auf die Integration der Grunddifferentialgleichung der Aufgabe werde ich nicht näher eintreten; es genügt zu sagen, dass die neue Form, die ihr Prof. Meissner gegeben hat, die Integrale durch vier Reihenentwicklungen darstellt, die nach Potenzen von $x = \sin^2 \alpha$ fortschreiten.

²) Die Spannungen, die zu diesen zwei Integralen gehören, würden in der Mitte unendlich grosse Werte annehmen; solche Spannungen werden aber nie in unsern Fällen 3 und 4 auftreten und diese Bedingung könnte schon das Verschwinden dieser Lösungen erklären.

Werte der spezifischen Spannungen, in kg/cm^2 (R = 143 cm, 2h = 6 cm, $\nu = 0,2$). Lösung X_1 .

Inclusion of the Owner, where	Construction of the local division of the lo	NAME OF TAXABLE PARTY OF					Inclusion of the second second second			and the second
α	00	5°	100	150	200	250	300	35°	400	45°
$ \begin{array}{c} \sigma_r \\ \sigma_t \\ \sigma_x \\ \sigma_y \end{array} $	+ 23,83 + 23,83 + 0,12 + 0,12	$ \begin{vmatrix} + 23,71 \\ + 23,56 \\ - 10,36 \\ - 5,08 \end{vmatrix} $	$ \begin{vmatrix} +22,59 \\ +19,95 \\ -40,82 \\ -20,39 \end{vmatrix} $	$\begin{vmatrix} & + & 19,52 \\ & + & 4,77 \\ & - & 87,55 \\ & - & 44,12 \end{vmatrix}$	$ \begin{vmatrix} + & 11,44 \\ - & 34,32 \\ - & 135,3 \\ - & 70,9 \end{vmatrix} $	$ \begin{array}{c} - & 3,85 \\ - & 108,6 \\ - & 141,9 \\ - & 86,5 \end{array} $	27,31 215,7 35,7 67,0	$ \begin{array}{r} - 56,29 \\ - 319,1 \\ + 277,7 \\ + 18,6 \end{array} $	$ \begin{vmatrix} - & 81,33 \\ - & 313,6 \\ + & 897,6 \\ + & 204,9 \end{vmatrix} $	$ \begin{vmatrix} - & 8_{3,9} \\ + & 8 \\ + & 1798 \\ + & 492 \end{vmatrix} $

Lösung .	Y_1 .
----------	---------

α	00	5°	100	150	200	250	300	35°	400	45°
$ \begin{array}{c} \sigma_r \\ \sigma_t \\ \sigma_x \\ \sigma_y \end{array} $	$ \begin{array}{c} 0 \\ - 50,56 \\ + 50,56 \end{array} $	+ 1,82 + 5,54 + 50,10 + 50,32	+ 7,23 + 21,75 + 43,43 + 47,13	+ 15,70 + 46,37 + 15,54 + 36,30	$ \begin{vmatrix} + 25,86 \\ + 71,20 \\ - 56,2 \\ + 8,3 \end{vmatrix} $	$ \begin{vmatrix} + & 34,25 \\ + & 73,5 \\ - & 193,2 \\ - & 45,1 \end{vmatrix} $	+ 35,36 + 12,5 - 391,1 - 124,4	+ 21,57 - 162,0 - 584,3 - 212,4	$ \begin{array}{r} - & 15,13 \\ - & 505,2 \\ - & 584,9 \\ - & 255,1 \end{array} $	78,1 1001 20 146

 $\Phi_{1} = \sum_{\substack{n=0\\n=0}}^{n=\infty} (2n+1) \cdot A_{n} \cdot x^{n} \text{ und } \Psi_{1} = \sum_{\substack{n=0\\n=0}}^{n=\infty} (2n+1) \cdot B_{n} \cdot x^{n}$

die in einem gewissen Differentialzusammenhang mit X_1 und Y_1 stehen, so werden die zu X_1 und Y_1 entsprechenden Lösungen wie folgt ausgedrückt:

$$\begin{array}{c} \text{Integrale } X_{1} \\ \sigma_{r} = -\frac{R}{2h} \cdot \cos a \cdot X_{1} \\ \sigma_{t} = -\frac{R}{2h} \cdot \cos a \cdot A_{1} \\ \sigma_{t} = -\frac{R}{2h} \cdot \cos a \cdot \Phi_{1} \\ \tau = +\frac{R}{2h} \cdot \sin a \cdot X_{1} \\ \sigma_{H} = -\frac{R}{2h} \cdot X_{1} \\ \theta = \frac{1}{E} \cdot \frac{R}{2h} \cdot \sin a [v X_{1} - \mu Y_{1}] \\ \theta = \frac{1}{E} \cdot \frac{R}{2h} \cdot \sin a [v X_{1} - \mu Y_{1}] \\ \sigma_{y} = -\frac{\cos a}{2(1-v^{2})} [v(\Phi_{1}+vX_{1}) - \mu(\Psi_{1}+vY_{1})] \\ -\mu(\Psi_{1}+v\Psi_{1})] \\ \phi_{y} = \frac{\cos a}{2(1-v^{2})} [v(X_{1}+v\Phi_{1}) - \mu(W_{1}+v\Psi_{1})] \\ -\mu(Y_{1}+v\Psi_{1})] \end{array}$$

Im Gegensatz zu den Hauptfällen 1 und 2 sind hier die Spannungen nicht mehr mit Hülfe von elementaren (d. h. aus einer Tafel direkt abnehmbaren) Funktionen ausgedrückt; die Berechnung der vorkommenden Funktionen muss für jede Platte wiederholt werden. Es würde uns zu lange aufhalten, wenn wir auf diesen Teil der Rechnung eingehen würden; wir nehmen daher an, X_1 und Y_1 seien bekannte Funktionen von a, die wir für eine gusseiserne Kugelschale ($\nu = 0,2$) von gegebenem Radius (R = 143 cm) und gegebener Dicke (2h = 6 cm) gerechnet haben.¹) Die zugehörigen Lösungen sind in den Zahlentafeln 1 und 2 in der Weise dargestellt, dass wir für alle a (von 5⁰ zu 5⁰ bis $a = 45^0$) zugleich die entsprechenden Werte von σ_{r} , σ_x , σ_t und σ_y angeben.

Aus diesen zwei partikulären Lösungen gelangen wir zu den gesuchten Lösungen (Belastungsfälle 3 und 4) durch eine einfache Superposition; die Konstanten a_1 und b_1 , die die Art der Zusammensetzung bestimmen, sind so zu wählen, dass die Randbedingungen erfüllt sind; diese lauten (vergl. Schema 1):

Fall 3 σ_{H} = gegeben σ_{x} = ofür a= a_{a} Fall 4 σ_{H} = gegeben ϑ = ofür a= a_{a}

Mit Rücksicht auf eine spätere Superposition der Fälle 3 und 4 mit 1, wählen wir $\sigma_{II} = -\sigma_{S}$, wo σ_{S} diejenige Kugelspannung bezeichnet, die zu einem bestimmten Drucke +p gehört (z. B. $p = +20 \text{ kg/cm}^2$; $\sigma_{II} = +238 \text{ kg/cm}^2$). Wird weiter $\alpha_a = 39^{\circ}$ angenommen²), so gestatten uns die

¹) Die Integrale und die zugehörigen Lösungen hängen aber nur von dem Verhältnis $\frac{R}{h}$ und von ν ab; sie sind also für alle aus demselben Material ausgeführten ähnlichen Kugeln die gleichen. vorigen Gleichungen, für jeden Fall 3 und 4, a_1 und b_1 zu berechnen; mit den entsprechenden Superpositionen gelangen wir ohne weiteres zu den gesuchten Lösungen.

In den Abbildungen 2 und 3, wo wir diese Lösungen wiedergeben, sind in Abhängigkeit von a zugleich die radiale und die tangentiale Spannung für Punkte der Mittelfläche (punktiert; σ_r und σ_t) und für Punkte der innern $(\sigma_r + \sigma_x; \sigma_t + \sigma_y)$ und der äusseren $(\sigma_r - \sigma_x; \sigma_t - \sigma_y)$ Oberfläche aufgetragen.

	5/ 5 5	0 17 1 1
3:	Axe OO; $I cm == 800 kg/cm^2$	4: Axe OO; 1 $cm = 800 kg/cm^2$
3':	Axe O'O'; I $cm = 800 \cos 39^{\circ}$	4': Axe O'O'; I $cm = 800 \cos 39^0$
	$\simeq 622 \ kg/cm^2$	$\simeq 622 \ kg/cm^2$
3'':	Axe O'' O''; 2,85 $cm = 238 kg/cm^2$	4": Axe O" O"; 1,25 cm = $238 kg/cm^2$
	$I cm = 83.6 kg/cm^2$	$I cm = I \Omega I k\sigma/cm^2$

Als erste Anwendung des Vorstehenden betrachten wir zwei neue Belastungsfälle, die schon früher von Dr. H. Keller untersucht worden sind. Bei diesen zwei Fällen, die wir mit 3' und 4' bezeichnen wollen, ist der Boden von aussen her mit einem Drucke $p = +20 \text{ kg/cm}^2$ belastet und die Randbedingungen drücken sich durch die folgenden Gleichungen aus:

3')
$$\sigma_H = \circ$$
 4') $\sigma_H = \circ$
 $\sigma_x = \circ$ $\vartheta = \circ$

Im Falle 3' liegt folglich der Boden frei auf einer Ebene auf; im Falle 4' wird noch (durch Anbringen des nötigen Randmomentes) die Neigung der äusseren Tangente festgehalten.

Es ist leicht einzusehen, wie sich diese neuen Fälle aus den gerechneten 1, 3 und 4 ableiten lassen. Die Randwerte: Fall $\tau \frac{\sigma_H}{\sigma_x = 0} + \sigma_S \cos a_a$ Fall $3 \frac{\sigma_H}{\sigma_x = 0} - \sigma_S$ Fall $4 \frac{\sigma_H}{\vartheta} = 0$ zeigen, dass folgende Superpositionen zum Ziele führen: $[1] + [3] \cdot \cos a_a = [3]$ und $[1] + [4] \cdot \cos a_a = [4']$ (die in [] gesetzten Ziffern bedeuten Lösungen).

²) Den gleichen Boden, auf einer horizontalen Ebene frei aufliegend und mit dem Drucke p = 20 at auf der konvexen Seite belastet, hat Dr. Keller loc. cit. mit Hülfe seines angenäherten Verfahrens gerechnet.

(3)

Zur Darstellung dieser zwei Lösungen 3' und 4' können wir die Abbildungen 4 und 5 benutzen, wenn wir dort zuerst den Masstab der Spannungen im Verhältnis von 1 zu $\cos \alpha_a$ reduzieren und nachher die a-Axe nach O'O' verlegen. Die Aenderung des Masstabes bedarf keiner Erklärung, die Verschiebung der Axe dient dazu, die überall herrschende konstante Spannung σ_s des ersten Falles zu den Beträgen [3] $\cdot \cos \alpha_a$ bezw. [4] $\cdot \cos \alpha_a$ zu addieren. Die Strecke OO', um die man den Ursprung aller Spannung – $\sigma_s = +238 \ kg/cm^2$ dar. Diese neue Interpretation der Abbildungen 4 und 5 führt uns also sehr bequem zu den Spannungen der Belastungsfälle 3' und 4'.

Abbildung 4.

Abbildung 5.

Der Vergleich dieser numerischen Resultate mit denjenigen des Herrn Dr. H. Keller¹) zeigt im allgemeinen nur geringe Abweichungen. Nur im Scheitel und für die Lösung 4' in der Nähe des Randes, ist die Uebereinstimmung nicht sehr befriedigend; beide Abweichungen finden ihren Grund in der angewandten Berechnungsmethode selbst; einerseits ist eine Extrapolation unsicher, anderseits wird das Rechnen mit kleinen Differenzen sehr ungenau oder dann recht unbequem, dort wo die Spannungen zu rasch variieren. (Dr. Keller erhält als maximale Spannung 1150 kg/cm^2 , während bei uns dieses Maximum 1350 kg/cm^2 beträgt).

Als zweite Anwendung der Lösungen 1, 3 und 4 berechnen wir noch zwei weitere Belastungsfälle 3" und 4", die ein gewisses technisches Interesse haben und die sich in mathematischer Hinsicht nur wenig von 3' und 4' unterscheiden. Der Boden ist immer noch auf der konvexen Seite mit dem Drucke $p = + 20 \frac{kg}{cm^2}$ belastet, die Unterstützung wird durch die folgenden Randbedingungen erläutert:

$$3'') \begin{array}{l} \varepsilon_t = 0 \\ \sigma_r = 0 \end{array} \qquad 4'') \begin{array}{l} \varepsilon_t = 0 \\ \vartheta = 0 \end{array}$$

An Stelle der Gleichung $\sigma_{H} = 0$, die bei den Fällen 3' und 4' die Superposition bestimmt hat, kommt hier die andere $\varepsilon_{\ell} = 0$, die ausdrückt, dass die Auflagerung keine Verschiebung des Randes in horizontaler Richtung zulässt. Nach 3'') ist der äussere Parallelkreis (α_{a}) der Mittelfläche festgehalten und der Rand kann sich frei um diese Punkte drehen, während nach 4'') der Boden fest eingespannt ist.

Wie früher setzen sich 3" und 4" allein aus 1 und 3 bezw. 1 und 4 zusammen und die gemeinsame Bedingung $\epsilon_{\ell} = o$ gestattet uns, wieder die Art der Zusammensetzung zu bestimmen. Zu diesem Zwecke drücken wir zuerst mit Hülfe des Elastizitätsgesetzes die spezifische Dehnung ϵ_{ℓ} in den Spannungen σ_{ℓ} und σ_{r} aus:

$$\sigma_t = \frac{1}{E} \left(\sigma_t - \nu \sigma_r \right)$$

8

die Gleichung $\varepsilon_t = o$ kann durch die gleichwertige $\sigma_t = v \cdot \sigma_r$ ersetzt werden.

Wir führen unsere jetzige Superposition von 1 mit 3 bezw. 1 mit 4 direkt auf den Abbildungen 2 und 3, durch

1) Loc. cit. S. 32.

Aenderung des Masstabes und Verschiebung der a-Axe aus. Mit Hülfe der Gleichung $\sigma_t = \nu \cdot \sigma_r$ bestimmen wir zuerst die neue Lage der Axe O''O''. Die Kurven der Abb. 2 und 3 stellen auch die Spannungen der Fälle 3" und 4" dar; bezeichnet man die Schnittpunkte der Kurven σ_r und σ_t mit der letzten Ordinate $(\alpha = \alpha_a)$ mit A und B, und ist O'' der Schnittpunkt dieser Ordinate mit der neuen α -Axe, so besteht zwischen den Strecken $\overline{O''A}$ und $\overline{O''B}$ die gleiche Beziehung, wie zwischen den entsprechenden Spannungen σ_r und σ_t (für $\alpha = \alpha_a$); daraus folgt, dass

$$\frac{\overline{P'}^{A}A}{\overline{P'}^{B}} = + \frac{1}{\nu} = m$$

(für Gusseisen m = 5); der Punkt O" ist durch dieses Verhältnis eindeutig bestimmt und somit auch die neue a-Axe. Da die Strecke OO", um die sich die Axe verschiebt, die Spannung — $\sigma_s = + 238 \ kg/cm^2$ darstellt, kennt man auch den neuen Masstab; damit ist die Aufgabe vollständig gelöst.

Es bleibt uns nur noch übrig, unsere vorige Untersuchung noch bezüglich der Deformation des Bodens zu vervollständigen; wir werden dabei auf keine neuen Schwierigkeiten stossen, denn die analytische Lösung gibt Beziehungen zwischen den gerechneten Spannungen σ_r und σ_t und den Deformationsgrössen u und w. Die Gleichungen

$$u = k \cdot \sin a - \frac{K(1+\nu)}{E} \cdot \sigma_r \cdot \operatorname{tg} a$$
$$w = k \cdot \cos a - \frac{R}{C} \cdot (\sigma_r + \sigma_t)$$

gelten nämlich für alle Lösungen, die sich aus den Fällen 3, 4, 5 und 6 allein zusammensetzen lassen. Wir wenden diese Formeln auf die Fälle 3 und 4 an,

Wir wenden diese Formeln auf die Fälle 3 und 4 an, und wählen die Integrationskonstante k so, dass sich der Scheitel während der Formänderung nicht verschiebt $(w_{e} = 0)$; dann ist:

$$k = \frac{R}{E} \cdot \mathbf{2} \sigma_{ro}$$

In den Abb. 4 und 5 sind die Ergebnisse dieser Rechnung wiedergegeben; wir haben auch die Grössen $f = u \sin a + w \cos a$

$$\Lambda r = u \cos a - w \sin a$$

aufgetragen, welche die axiale Durchbiegung und die horizontale Verschiebung eines Punktes der Schale angeben.

Für die Fälle 3', 4', 3'' und 4'' gelten die Beziehungen (2) nicht mehr; wie wir aber vorher den Spannungszustand bei diesen Lösungen aus den Resultaten der Fälle I und 3 (bezw. I und 4) ableiteten, könnten wir hier das gleiche für die Deformation tun. Wir hätten zuerst den Masstab (Abb. 4 und 5) in denselben Verhältnissen wie oben (Abbildungen 2 und 3) abzuändern, und zu diesen Beträgen die Lösung I, d. h. die Werte:

$$\begin{split} u_1 &= \frac{R}{E} \cdot \sigma_s \left(1 - \nu \right) \sin a \quad w_1 = \frac{R}{E} \sigma_s \left(1 - \nu \right) \left(\cos a - 1 \right) \\ \text{zu addieren. Mit Rücksicht auf die Deutlichkeit der Ab$$
bildungen 4 und 5 wollen wir dies nicht einzeichnen, dasich diese Addition nicht mehr einfach durch Verschiebung $der <math>\alpha$ -Axe ausführen lässt. (Schluss folgt.)

Miscellanea.

Die Eisenbahnbrücke über den Ganges bei Sara Ghat. In den ersten Monaten dieses Jahres ist für die von Calcutta aus gegen Norden führende Linie der Eastern Bengal State Ry etwa 190 km nördlich dieser Stadt, bei Sara Ghat, eine neue Brücke über den Ganges fertiggestellt worden, die in verschiedener Hinsicht bemerkenswert ist. Bei einer Gesamtlänge von 1798 mweist diese gleichzeitig dem Eisenbahn- und Strassenverkehr dienende Brücke fünfzehn Oeffnungen von je 109,5 m Spannweite sowie auf jedem Ufer drei Vorlandöffnungen von je 24 m Weite auf. Die Hauptöffnungen sind mittels parabolischer Träger von 105 m Länge und 16 m grösster Höhe überbrückt; der Abstand der Hauptträger voneinander beträgt 9,75 m, die Gesamtbreite der Brücke, einschliesslich der beidseitigen Stege für Fussgänger, 14,80 m.

Infolge der geringen Tragfähigkeit des Untergrundes sowie empfindlicher Einwirkung der Hochwasser auf die Ufer, die häufigen Ueberschwemmungen und starker Erosion unterworfen sind, war