Objekttyp:	TableOfContent
Zeitschrift:	Schweizerische Bauzeitung

PDF erstellt am: 24.05.2024

Band (Jahr): 69/70 (1917)

Heft 15

Nutzungsbedingungen

Die ETH-Bibliothek ist Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an den Inhalten der Zeitschriften. Die Rechte liegen in der Regel bei den Herausgebern. Die auf der Plattform e-periodica veröffentlichten Dokumente stehen für nicht-kommerzielle Zwecke in Lehre und Forschung sowie für die private Nutzung frei zur Verfügung. Einzelne Dateien oder Ausdrucke aus diesem Angebot können zusammen mit diesen Nutzungsbedingungen und den korrekten Herkunftsbezeichnungen weitergegeben werden.

Das Veröffentlichen von Bildern in Print- und Online-Publikationen ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Die systematische Speicherung von Teilen des elektronischen Angebots auf anderen Servern bedarf ebenfalls des schriftlichen Einverständnisses der Rechteinhaber.

Haftungsausschluss

Alle Angaben erfolgen ohne Gewähr für Vollständigkeit oder Richtigkeit. Es wird keine Haftung übernommen für Schäden durch die Verwendung von Informationen aus diesem Online-Angebot oder durch das Fehlen von Informationen. Dies gilt auch für Inhalte Dritter, die über dieses Angebot zugänglich sind.

Ein Dienst der *ETH-Bibliothek* ETH Zürich, Rämistrasse 101, 8092 Zürich, Schweiz, www.library.ethz.ch

INHALT: Das Versuchswesen in der Praxis des Eisen- und Eisenbetonbaues.

— Wettbewerb für eine reformierte Kirche in Solothurn. — Lasthebemagnete. —
Miscellanea: Nutzbarmachung der schweizerischen Wasserkräfte. Kesselfeuerung mit
ausgeglichenem Zug. Kohlenvorkommen in der Schweiz. Simplon-Tunnel II, Verein

deutscher Ingenieure. Entwässerung der Ebene von Magadino. Schweizerische Bundesbahnen. — Konkurrenzen: Aargauisches Museum für Natur- und Heimatkunde. — Nekrologie: † A. Tobler. G. Griot. — Vereinsnachrichten: Gesellschaft ehemaliger Studierender: Stellenvermittlung.

Band 70. Nachdruck von Text oder Abbildungen ist nur mit Zustimmung der Redaktion und nur mit genauer Quellenangabe gestattet.

Nr. 15.

Das Versuchswesen in der Praxis des Eisenund Eisenbetonbaues

von Fritz Hübner, Kontrollingenieur im Schweiz. Eisenbahn-Dep., Bern.

(Fortsetzung von Seite 167.)

Die, wenigstens dem Namen nach bekanntesten Nebenspannungen sind diejenigen, die sich, bei Fachwerkträgern, aus der festen Vernietung der Knotenpunkte ergeben. Ueber den Verlauf derartiger Spannungen in Gurtstäben gibt Abbildung 7 deswegen interessanten Aufschluss, weil die dargestellten Ergebnisse sich einmal auf zwei Brücken beziehen, die annähernd gleiche Grössenverhältnisse besitzen, und sodann, weil die in mehreren Querschnitten angestellten Messungen auch den Spannungsverlauf über einen Knoten, in dem ein theoretischer Stabkraftwechsel in der Gurtung auftritt, erkennen lassen. Bei der Brücke I handelt es sich um den T-förmigen Obergurt und bei Brücke II um den kastenförmigen Untergurt einer offenen Brücke. Bei beiden Brücken erkennt man vorerst eine starke Veränderlichkeit der Spannungen in den Rändern der Stege. Diese Veränderlichkeit der Stegbeanspruchungen schwankt gegenüber der theoretischen Stabspannung bei Brücke I zwischen

von den aus den Messungen abgeleiteten um bloss 4 bezw. o 0 / $_{0}$ ab, wenigstens bei den massgebenden, stark beanspruchten Stäben; dass diese Abweichungen bei geringer beanspruchten Stäben grösser sind, liegt teilweise an Trägheiten der Apparate, sowie an den bereits früher schon erwähnten Lastenverteilungen durch die Fahrbahn.

Ueber den Verlauf der Schwerpunktspannung innerhalb der Knotenpunkte besagen die Ergebnisse der Untersuchung, dass in beiden Fällen der Kraftzuwachs sich so ziemlich auf die ganze Breite des Strebenanschlusses verteilt und zwar nahezu gleichmässig. Diese Feststellung war möglich dank dem Umstand, dass mit dem "Mantel" auch Punkten der Knotenbleche beizukommen war, die es ermöglichten, in den betreffenden Schnitten die wirklichen Schwerpunkt-Spannungen abzuleiten.

Aus der Darstellung der an den beiden Rändern der Lamellen des Obergurtes gemessenen Spannungen erkennt man endlich noch sehr deutlich, wie der Gurtstab sich an dieser Brücke wagrecht verwindet. Es rührt dies von der Durchbiegung der Querträger her, die bewirkt, dass die Hauptträgerpfosten sich nach innen neigen; da aber für ein und dieselbe Lastenstellung nicht alle Querträger gleich hoch belastet sind, können die seitlichen Ausbiegungen

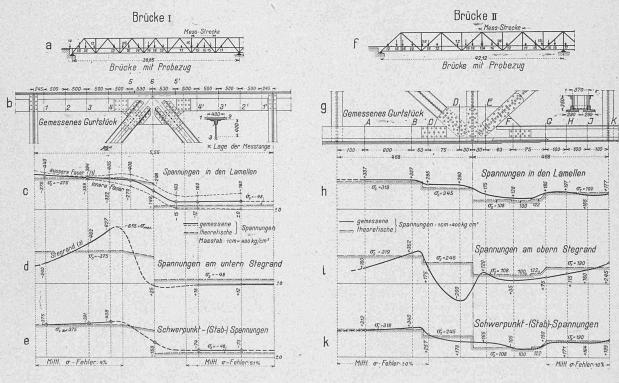


Abbildung 7.

 $-54\,^{\circ}/_{0}$ und $+75\,^{\circ}/_{0}$ und bei den Stegen der Brücke II zwischen $-65\,^{\circ}/_{0}$ und $+16\,^{\circ}/_{0}$. Zudem können unter scheinbar gleichen Verhältnissen solche Spannungen ganz unvermutet tolle Sprünge machen. Die Beanspruchung der Stege im gemessenen Untergurtstab der Brücke II, im allgemeinen eine Zugspannung von theoretisch $=319\,kg/cm^{2},$ wird einmal im Knotenpunkt vorübergehend sogar zu einer Druckspannung von etwa — 200 kg/cm^{2} .

Die Schwerpunkte der fraglichen Gurtstäbe sind in beiden Fällen nahe den Lamellen; daher sind die Spannungen in den letztern nicht wesentlich verschieden von den theoretischen Stabspannungen. Diese weichen übrigens der Obergurte auch nicht gleichmässig ausfallen und müssen also dort am grössten sein, wo höchstbelastete Querträger sind; es ist dies in der Abbildung auch sehr schön zu erkennen. Infolgedessen können Nebenspannungen dieser Art unter Umständen die Knickungsgefahr der Obergurte offener Brücken wesentlich begünstigen; da aber solche Verhältnisse theoretisch kaum fassbar sind, ersieht man auch hieraus wieder, wie wichtig es ist, der Sicherung derartiger Gurte gegen Knicken die grösste Aufmerksamkeit zu schenken.

Bei ältern Brücken findet man noch sehr oft, dass sie mittels Flachlagern auf den Widerlagern und Pfeilern