Raketen-Abschuss-Basen

Autor(en): Schnitter, Niklaus

Objekttyp: Article

Zeitschrift: Schweizerische Bauzeitung

Band (Jahr): 80 (1962)

Heft 38

PDF erstellt am: **04.06.2024**

Persistenter Link: https://doi.org/10.5169/seals-66234

Nutzungsbedingungen

Die ETH-Bibliothek ist Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an den Inhalten der Zeitschriften. Die Rechte liegen in der Regel bei den Herausgebern. Die auf der Plattform e-periodica veröffentlichten Dokumente stehen für nicht-kommerzielle Zwecke in Lehre und Forschung sowie für die private Nutzung frei zur Verfügung. Einzelne Dateien oder Ausdrucke aus diesem Angebot können zusammen mit diesen Nutzungsbedingungen und den korrekten Herkunftsbezeichnungen weitergegeben werden.

Das Veröffentlichen von Bildern in Print- und Online-Publikationen ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Die systematische Speicherung von Teilen des elektronischen Angebots auf anderen Servern bedarf ebenfalls des schriftlichen Einverständnisses der Rechteinhaber.

Haftungsausschluss

Alle Angaben erfolgen ohne Gewähr für Vollständigkeit oder Richtigkeit. Es wird keine Haftung übernommen für Schäden durch die Verwendung von Informationen aus diesem Online-Angebot oder durch das Fehlen von Informationen. Dies gilt auch für Inhalte Dritter, die über dieses Angebot zugänglich sind.

Ein Dienst der *ETH-Bibliothek* ETH Zürich, Rämistrasse 101, 8092 Zürich, Schweiz, www.library.ethz.ch

Sack hat ein Gewicht von rund 2800 kg. Zum Umladen genügt ein Autokran, falls nicht die Baustelle mit einem eigenen Kran ausgerüstet ist. Man rechnet in den USA mit einer Verschleissdauer von 1000 Transporten für einen Sack. Versuche haben sogar 1400 Transporte ergeben. Mit diesem Sackverfahren wurde in den USA eine Verbilligung des Betons von 40 bis 45 Fr./m³ erzielt. Die Kosten der Betonaufbereitung allein sind dabei um 75% gesenkt worden.

Das Verfahren wurde von den Rodeffer Industries Inc. in Pasadena entwickelt. Diese Firma ist einer der grössten Hersteller von Betonzuschlagsstoffen und Transportbeton. Sie konnte dadurch ihren Park von 80 Transportmischern erheblich verkleinern. Die verwendeten Säcke werden von der General Tire & Rubber Co. in Acron/Ohio hergestellt. Der erwähnte Aufsatz, dem wir diese Angaben entnommen haben, gibt neben anschaulichen Illustrationen auch noch einen Hinweis auf amerikanische Literaturquellen über dieses neue Verfahren.

Raketen-Abschuss-Basen

DK 623.4

Die nordamerikanischen Abschussbasen für interkontinentale Raketen stellen ein ungewöhnliches Bauvorhaben gigantischen Ausmasses dar. Insgesamt sind dabei rund 30 Mio m³ Aushub zu bewältigen, 2 Mio m³ Beton zu erstellen und je 300 000 t Armierungseisen und Baustahl einzubauen. Die Summe der Bauaufträge allein übersteigt bereits den Betrag von 5 Milliarden sFr. Das gegenwärtig etwa zur Hälfte ausgeführte Programm umfasst die Erstellung von 24 Abschussbasen für insgesamt rund 200 Erstgeneration-Raketen der Typen «Atlas» und «Titan» mit flüssigen Treibstoffen und 4 Abschussbasen für insgesamt etwa 600 Zweitgeneration-Raketen des Typs «Minuteman» mit festem Treibstoff. Alle Raketentypen werden, zumeist in lotrechter Stellung, in unterirdischen Silos stossicher aufgehängt. Während ein Teil der Erstgeneration-Raketen nach dem komplizierten und, an den Masstäben des Raketenkriegs gemessen, zeitraubenden Auftanken der Treibstoffe zwecks Abschuss über die Erdoberfläche ausgefahren werden müssen, können die «Minuteman»-Raketen augenblicklich und direkt aus ihren Silos abgefeuert werden. Die Reichweite sämtlicher Raketentypen beträgt rund 10000 km. Die Sprengwirkung ihrer thermonuklearen Ladung wird auf 500 000 bis 1 000 000 t TNT geschätzt.

Bautechnisch ergaben sich bei der Erstellung der Raketenbasen folgende ungewohnte Gesichtspunkte und Probleme:

- a) Die militärisch-politisch bedingte Gleichzeitigkeit der Entwicklungs- und Projektierungsarbeiten mit der Ausführung, welche bis heute über 5000 Aenderungen während des Baues und Kostenüberschreitungen von bis zu 80 Prozent, namentlich bei den zuerst in Angriff genommenen «Atlas»- und «Titan»-Basen, zur Folge hatte. Wenn auch diese Zahlen im Lichte der schweizerischen Gepflogenheiten (siehe z. B. Nationalstrassenbau) nicht besonders erschreckend wirken, so fallen sie hingegen bei der starreren und im allgemeinen auf einer detaillierten Projektvorbereitung fussenden amerikanischen Bauwirtschaft ins Gewicht.
- b) Der hohe Grad der verlangten Genauigkeit, die z. B. für die mehrere Stockwerk hohen Siloschächte $^{1}/_{500}$ in der Lotabweichung und 0,5 bis 1,0 cm im Durchmesser beträgt.
- c) Die Auseinandergezogenheit der einzelnen Baustellen, umfasst doch z.B. die «Minuteman»-Basis Malmstrom in Montana mit ihren 150 Raketensilos und 15 Kommandobunkern ein Gebiet, welches grösser als die ganze Schweiz ist. Die beauftragte Bauunternehmung hat ihre Organisation entsprechend der künftigen militärischen Ordnung aufgebaut. Der Chefbauführer und die drei Geschwaderbauführer verfügen über mit Funk ausgerüstete Flugzeuge, von denen aus übrigens auch der Zahltag auf die einzelnen Baustellen abgeworfen wird (165 Landungen und Starte nähmen für diesen Zweck viel zu viel Zeit in Anspruch). Ebenfalls mit Funk ausgerüstet sind die Automobile der 15 Staffelbauführer und der 60 Unterbauführer.

d) Die grosse Zahl gleichartiger Bauwerke, die vorzüglich der — in den USA ohnehin beliebten und oft meisterhaft beherrschten — Durchrationalisierung der Bauvorgänge Hand bietet. Bei der vorerwähnten «Minuteman»-Basis ist die Erstellung vor allem der 150 Raketensilos in zahlreiche einzelne Arbeitsgänge zerlegt worden, die nacheinander von fliegenden Arbeitsequipen ausgeführt werden. So erfolgt zuerst ein 4 m tiefer Voraushub mit Schürfkübelwagen und Planierraupen, dann ein Baggeraushub um weitere 6 m und schliesslich, durch eine dritte Mannschaft, die bergmännische Abteufung des Siloschachtes auf die volle Tiefe von 26 m unter der Erdoberfläche. Nachfolgende Equipen besorgen das Befestigen von Schalungen an den Schachteinbaubogen; das Eingiessen von Mörtel hinter dieselben; die Betonierung einer Sauberkeitsschicht auf dem Schachtboden; die Montage der stählernen Bodenplatte und der mit einem Teil der Armaturen und mit der Aussenarmierung versehenen Schachtpanzerung von 26 m Länge und 3,65 m Innendurchmesser; das Einbringen von Prepakt-Kies hinter die Schachtpanzerung; die Prepakt-Mörtelinjektion; die Betonierung der übrigen Bauwerksteile einschliesslich der 80 t schweren, im Bedarfsfall durch eine Sprengladung wegzuschiebenden Abdeckplatte; die ebenerdige Rückfüllung um den fertiggestell-

Trotz der tiefern Sinnlosigkeit, die dem ganzen, was die USA betrifft allerdings unfreiwillig aufgezwungenen Unternehmen innewohnt, stellt es rein als Bauaufgabe eine Leistung ersten Ranges dar. In diesem Sinne und in Anbetracht ihrer Schlüsselposition für die Wahrung von Freiheit und Frieden, hat die «American Society of Civil Engineers» den Raketenbasen die Auszeichnung als «Hervorragende Verwirklichung der Bauingenieurkunst» pro 1962 zugesprochen und ihnen die Aprilnummer 1962 des Vereinsorganes «Civil Engineering» gewidmet. Vorstehende Ausführungen beruhen auf den zahlreichen Aufsätzen in dieser Publikation und auf den laufenden Veröffentlichungen in «Engineering News Record», alles Veröffentlichungen, die der hochgradigen militärischen Aktualität des Themas zum Trotz mit grosser Freimütigkeit und einer erheblich abgeklärteren Auffassung des Geheimhaltungsproblems, als es andernorten noch Brauch ist, erfolgen.

Niklaus Schnitter, dipl. Ing. ETH, Baden

O.-H.-Ammann-Tag

DK 624.007.2

«Engineering News-Record», die führende Bauingenieur-Zeitschrift der USA, bringt am 6. September unter dieser Ueberschrift einen redaktionellen Leitartikel, den wir unsern Lesern, ins Deutsche übersetzt, zur Kenntnis bringen möchten.

«Die praktische Ingenieurtätigkeit kam zu ihrem wahren Glanz anlässlich der Eröffnungsfeierlichkeiten von letzter Woche für die untere Fahrbahn der George Washington-Brücke über den Hudson River zwischen New York und New Jersey. Das hier vollbrachte Ingenieurwerk, das man feierte, ist in der Tat bemerkenswert. Und ebenso bemerkenswert war es, dass der Bauherr, die Port of New York Authority, bei der Feierlichkeit einen Ehrenplatz dem dafür verantwortlichen Ingenieur einräumte, indem sie seine Bronzebüste enthüllen liess, welche in der Busstation der Brückenzufahrt für jedermann sichtbar aufgestellt wird.

Aber noch eindrücklicher als diese Feier ist die Tatsache, dass der geehrte Ingenieur, O. H. Ammann, sowohl bei diesem Bau wie auch bei allem, was er in seiner ganzen, über mehr als ein halbes Jahrhundert sich erstreckenden Laufbahn geschaffen hat, den Eigenschaften treu blieb, die die Ingenieure so hoch in Ehren halten: Technisches Wissen und Können, persönliche Integrität und Hingabe an den technischen Fortschritt. Niemand hätte der Welt besser demonstrieren können, was Ingenieurarbeit ist und was Ingenieure tun, als O. H. Ammann.

Als Chefingenieur der Port Authority hatte er vor 35 Jahren schon, bevor er seine eigene Firma gründete, die George Washington-Brücke entworfen und dabei einen gewaltigen Schritt vorwärts getan hinsichtlich der Spannweite