Zeitschrift: Schweizerische Bauzeitung

Herausgeber: Verlags-AG der akademischen technischen Vereine

Band: 88 (1970)

Heft: 26

Artikel: Mitteilung der EMPA über die Prüfbarkeit von Betonprobekörpern

Autor: [s.n.]

DOI: https://doi.org/10.5169/seals-84548

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 15.07.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Bungalows, Wochenendhäusern oder Garagen ist denkbar, siehe Bilder 3 und 4. In den meisten Fällen kann bei Verwendung von Dachelementen aus diesen Schalen auf besondere Tragwerkkonstruktionen verzichtet werden, denn die Festigkeit reicht bei normalen Spannweiten völlig aus.

Im Betonbau lassen sich solche Elemente sowohl als verlorene wie auch als wiederverwendbare Schalung für Sichtbeton einsetzen, ausserdem als Spezialschalung für Betonhohlräume wie Kabel- und Installationsschächte. Auch für den Innenausbau öffnen die Halbrund-Schalenelemente viele Möglichkeiten, zum Beispiel für den dekorativen Ausbau von Geschäfts- und Versammlungsräumen, Schulräumen, Turn-

hallen und – wegen der akustisch günstigen Wirkung von Holz – für Theater- und Konzertsäle.

Ferner können auch Rohre serienmässig nach diesem Verfahren hergestellt werden. Diese könnten in der chemischen Industrie und in der Landwirtschaft Anwendung finden. Selbst in der Verpackungsindustrie könnten solche Rohre angewendet werden, um Flaschen oder empfindliche Folien in Rollen zu schützen. Eine weitere, wirtschaftlich interessante Anwendungsmöglichkeit besteht in der Herstellung von einteiligen Wasserrinnen für den Waldweg- und Alpwegbau, und im Einsatz für Lawinenverbauung. Selbst für den Bau von Paddel- und Motorbooten hat sich die Holz-Halbrund-Schale bereits bewährt (Bild 5).

Mitteilung der EMPA über die Prüfung von Betonprobekörpern DK 620.173:666.97

In letzter Zeit haben mehrere Bauverwaltungen, Bauunternehmungen und Höhere Technische Lehranstalten Betonpressen angeschafft, um damit die auf Baustellen hergestellten Betonprobekörper auf ihre Festigkeit zu prüfen. Es zeigt sich aber, dass das Personal dieser Prüfstellen in den seltensten Fällen über die Kriterien, welche bei der Festigkeitsbestimmung des Betons wichtig sind, Bescheid weiss. Sehr oft wird in einem bestehenden Erdbau- oder Belagslaboratorium eine Betonprüfpresse aufgestellt und der Erdbau- oder Belagsfachmann muss neben seinen sonstigen Arbeiten Betonwürfel «zerdrücken». Dass zum Beispiel schon eine Unebenheit von einigen Zehntelmillimetern der Druckfläche des Betonwürfels die Würfeldruckfestigkeit massgebend beeinflussen kann, ist den wenigsten bekannt. Kontrollen an der EMPA haben ergeben, dass etwa 90% der eingesandten Würfel keine einwandfreien plan-parallelen Druckflächen aufweisen, so dass diese geschliffen werden müssen. Neben einer Betondruckpresse sollte also in jeder Prüfstelle eine für diese Zwecke geeignete Betonschleifmaschine vorhanden sein.

Wenn man die Investitionen für Prüfpresse, Schleifmaschine und die sonstigen Installationen für die Betonprüfung bei der meistens nur sehr kurzen täglichen Betriebszeit der Maschine normal amortisiert und auch die übrigen Kosten (Arbeitslohn usw.) berücksichtigt, würde die Prüfung eines Betonkörpers bedeutend mehr kosten, als von der EMPA dafür verrechnet wird. Dazu kommt, dass diese Prüfstellen nicht als neutral gelten können, weil sie sehr oft von einem der Beteiligten (Bauherrschaft oder Unternehmung) betrieben werden. Die EMPA hat schon öfters als neutrale Instanz Differenzen schlichten müssen, weil eine Partei die Ergebnisse der Prüfstelle nicht anerkannte. Es müssen dann aus der fertigerstellten Betonkonstruktion Betonproben entnommen und im Laboratorium geprüft werden, was ungefähr gleich viel Kosten verursacht wie die Festigkeitsprüfung an 40 Betonwürfeln.

Auch terminmässig weist die private Betonprüfstelle kaum einen Vorteil gegenüber der EMPA auf. Die Prüfungsergebnisse werden von der EMPA noch am Tage der Prüfung der Post übergeben, so dass der Auftraggeber innerhalb von 24 Stunden nach der Prüfung im Besitze des amtlichen Untersuchungsberichtes ist. Wenn gewünscht, werden die Resultate sofort nach der Prüfung telephonisch übermittelt.

In bezug auf den Transport sind die von der EMPA verwendeten Zylindermodelle (Ø 20 cm, Höhe 20 cm) sehr günstig, da die Betonprobekörper nicht mehr in Kisten verpackt werden müssen, sondern im Modell verschickt werden können.

Ob in Anbetracht der obigen Ausführungen die Errichtung weiterer Betonprüfstellen wirtschaftlich verantwortet werden kann, muss bezweifelt werden.

Dichtung und Deckwerk von Binnenschiffahrtskanälen

DK 626.134

Dieses Thema behandelt Prof. Dr.-Ing. Rudolf Kuhn in einer umfassenden Darstellung in «Der Bauingenieur» 1969, H. 9. Dabei werden unter Dichtungen Baumassnahmen verstanden, die ein Versickern des Kanalwassers durch die Verkleidung des Kanals in den Untergrund verhindern, während Deckwerke das Kanalprofil gegen hydraulische und mechanische Angriffe schützen.

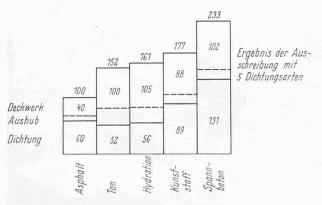


Bild 1. Kostenverteilung von Dichtung und Deckwerk beim Main-Donau-Kanal, Haltung Hausen.

Die Kanalbereiche, wo eine Dichtung notwendig ist, werden durch die Form des Geländes und die Grundwasserstände bestimmt. Die Dichtung wird in der Regel mindestens einen halben Meter über den normalen Kanalwasserspiegel geführt. Ein höherer Grundwasserstand gefährdet die Standsicherheit der Dichtung durch einen erhöhten Druck auf ihre Unterseite. Die gleiche Gefahr ergibt sich durch die Absenkung des Kanalspiegels bei der Vorbeifahrt eines Schiffes. Um dem zu begegnen, wird unter Umständen eine Drainage auf Höhe des abgesenkten Kanalwasserspiegels notwendig. Die Kanalverkleidung wird durch vier Erscheinungsformen der Wasserbewegung aus der Schiffahrt beansprucht: Rückströmung (gemessene Spitzenwerte 1,5 m/s), Schraubenstrahl, Wellen und Absenkung des Wasserspiegels (bei einer Geschwindigkeit des leeren Europaschiffes von 15 km/h bis 0,85 m im Main-Donau-Kanal). Das Ankern ist zwar in Binnenschiffahrtskanälen in der Regel verboten; man muss aber trotzdem mit einem Ankerwurf rechnen, wenn dadurch die Dichtung zerstört werden kann.

Die Grundlage für die Bemessung einer Dichtung ist in der Regel die höchstzulässige Sickerverlustmenge in 1/s und km Kanal. So wurde z. B. für den Main-Donau-Kanal im Hinblick auf den knappen Wasserhaushalt $Qs_{zul} = 10 \, 1/s$ und