
Interdisciplinary enhancement of VLSI design
tools towards an integrated CAS system

Autor(en): Joerg, W.

Objekttyp: Article

Zeitschrift: Bulletin des Schweizerischen Elektrotechnischen Vereins, des
Verbandes Schweizerischer Elektrizitätsunternehmen = Bulletin de
l'Association Suisse des Electriciens, de l'Association des
Entreprises électriques suisses

Band (Jahr): 74 (1983)

Heft 5

Persistenter Link: https://doi.org/10.5169/seals-904775

PDF erstellt am: 24.05.2024

Nutzungsbedingungen
Die ETH-Bibliothek ist Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an
den Inhalten der Zeitschriften. Die Rechte liegen in der Regel bei den Herausgebern.
Die auf der Plattform e-periodica veröffentlichten Dokumente stehen für nicht-kommerzielle Zwecke in
Lehre und Forschung sowie für die private Nutzung frei zur Verfügung. Einzelne Dateien oder
Ausdrucke aus diesem Angebot können zusammen mit diesen Nutzungsbedingungen und den
korrekten Herkunftsbezeichnungen weitergegeben werden.
Das Veröffentlichen von Bildern in Print- und Online-Publikationen ist nur mit vorheriger Genehmigung
der Rechteinhaber erlaubt. Die systematische Speicherung von Teilen des elektronischen Angebots
auf anderen Servern bedarf ebenfalls des schriftlichen Einverständnisses der Rechteinhaber.

Haftungsausschluss
Alle Angaben erfolgen ohne Gewähr für Vollständigkeit oder Richtigkeit. Es wird keine Haftung
übernommen für Schäden durch die Verwendung von Informationen aus diesem Online-Angebot oder
durch das Fehlen von Informationen. Dies gilt auch für Inhalte Dritter, die über dieses Angebot
zugänglich sind.

Ein Dienst der ETH-Bibliothek
ETH Zürich, Rämistrasse 101, 8092 Zürich, Schweiz, www.library.ethz.ch

http://www.e-periodica.ch

https://doi.org/10.5169/seals-904775


Interdisciplinary enhancement of VLSI design
tools towards an integrated CAD system
W. Joerg

The transformation process of traditional
instruments or apparatus towards VLSI

based products is outlined in the context of
instrumentation industries. A brief analysis of
the CAD market compared to current needs
shows the necessity for interdisciplinary
efforts to enhance the design tools. Some
basic requirements for an integrated VLSI

design system are explained and steps
towards full integration are sketched.

Der Wandel von traditionellen Instrumenten
und Apparaten zu VLSI-Produkten wird am
Beispiel der Apparateindustrie dargestellt.
Eine kurze Analyse des CAD-Marktes, verglichen

mit den aktuellen Bedürfnissen, zeigt
die Notwendigkeit interdisziplinärer
Bemühungen, um die Hilfsmittel für den Entwurf zu
fördern. Es werden einige grundsätzliche
Anforderungen an integrierte VLSI-Entwurfs-

systeme erläutert und verschiedene Schritte
in Richtung voller Integration skizziert.

On présente l'évolution des instruments et
appareils traditionnels vers des produits VLSI

à l'exemple de l'industrie de l'appareillage.
Une analyse succincte du marché CAD comparé

aux besoins actuels démontre la nécessité

d'efforts interdisciplinaires pour faire

progresser les outils de conception. Quelques-
unes des exigences fondamentales des
systèmes de conception intégrés pour VLSI sont
expliquées et différentes étapes en direction
de l'intégration complète sont esquissées.

This paper has been presented on the Fall 1982 Meeting
on Computer Aided Design of the IEEE Swiss Section,

Chapter on Solid State Devices and Circuits, on 19th
October 1982 at Bern.

Author's address
W. Joerg, LGZ Landis & Gyr Zug Corp., Zentrallabor
3967, 6301 Zug.

1. Introduction
The current instrumentation market

is undergoing significant changes: the
manufacturers have to cope with
demands for higher integration of more
and more functions, higher reliability
with increasing production costs and
tougher competition conditions. A
very promising solution to this optimisation

problem lies in the use of custom

ICs.
For several reasons the already

widely accepted approach of connecting
standard ICs on printed circuit

boards proves to be insufficient for
many applications, and the approach
of using microprocessors may not
always be adequate.

Some instrumentation companies
have therefore started a product
transformation process (fig. 1), which
integrates functions of existing products
and new requirements on dedicated
VLSI chips or chip sets.

existing
product

definition of
new product

chip i

design
i

tools for
fast and
reliable
design

Fig. 1 Product transformation process

2. A need for design tools
Most of these companies cannot

afford their own VLSI production line
(which, in fact, could be hard to justify
commercially since current trends
rather indicate a saturation of the
worldwide chip production capacity).
So they prefer the "silicon foundry"
approach which means that they have
to struggle through the design steps of
their chips, from the product definition

down to the geometric layout. The
"pattern generation" tape which is
generated from the geometric layout,
acts as interface between the designers
and the chip manufacturer. At that
point they partly lose control of the
fabrication process till they get prototypes,

and again some time later, after
debugging the assembled production
chips to be incorporated in the final
product.

The facts that more and more
products will become involved in this
transformation process, that the
complexity of design and verification is
dramatically increased, and that several

expensive steps of the overall
production process can hardly be
influenced, stress the need for efficient and
reliable high quality design tools.

3. Current situation of
design tools
A look at the current CAD market,

shows an emphasis on particular tools
("application packages") aimed at
solving specific sub-problems like
schematic entry, logic simulation,
circuit simulation, placement and routing,

layout editing,, design rule check,
etc. Unfortunately incompatibility
appears to be the only feature common to
such packages.

The CAD activities of universities
are mainly focused on the development

of newer and better application
packages; only little effort is put on
integration problems.

Bull. SEV/VSE 74(1983)5, 5. März (A 143) 243



Some (more or less lucky) attempts
at connecting several application
packages are being carried out by
semiconductor industries and software
houses. But none of the commercially
available systems deserve the denomination

"integrated CAD system" and
so the user is still faced with major
problems like lack of data exchange
possibilities, lack of checks for data consistency,

need for "manual" data conversion

from one package to another,
inconsistent (and clumsy) user interface,
spreading of conceptually related data
over large amounts of files (paraphrased

as "data bases"), questionable
software quality, etc.

Such a situation is not acceptable to
small and medium scaled industries
entering the application field of
microelectronics. Joint efforts of industries

and universities have to focus on
an integrated design system which puts
together design tools in a safe and
transparent way.

4. Interdisciplinary efforts
to enhance design systems
Distinction has to be made between

"design with CAD-tools" and " design
of CAD-tools". The latter will be of
major interest in the following discussion.

The motivations for design system
enhancement are found in the needs
for management of higher complexity,
higher reliability and increased productivity.

This involves both the definition
of a VLSI design methodology as a con¬

ceptual base of an operational frame
and the improvement of individual
application packages with respect to
integration requirements within that
frame. Figure 2 shows some interdisciplinary

connections in the design
process of an integrated design system.

Managing higher complexity suggests

the use of structuring tools which
emphasise partitioning into subpro-
blems, classifying into similar
problems, construction of hierarchies and
reuse of already solved problems.
Computer science in this field supplies
good experience with a basic structuring

concept called "module" which
should find its counterpart in VLSI
design methodology. A module is an
abstract entity which allows structuring
of problems, hiding their solution
("semantics") within fences ("black
boxes") and describing the associated
interface (fig. 3).

In VLSI environment a module
would be described by e.g.: management

parameters (name, creation date,
updates, version, etc.), physical
parameters (location, orientation, dimensions,

etc.), interface parameters (type
and location of interconnects, use of
external entities, definition of internal
entities to the outside, etc.), overall
behaviour (required by hierarchical
simulation) and the internal structure in
terms of previously defined entities.

When a module is embedded in a

larger environment or hierarchy, the
interface is expected to be checked
("context-sensitive syntax") by
processing programs ("compile-time
checks", "run-time checks").

a module is described by:

• management parameters
• physical parameters
• interface parameters
• overall behaviour
• internal structure

abstract data types

libraries

rLJ-h
!1 h

7
instances

Fig. 2 Design process of a design system Fig. 3 Basic structuring element : module

D Uci
system library

user library

I I application library

L_i I I

application

Fig. 4 Structuring an application

Parametrised modules ("module
type" in PORTAL, or more restrictive:
"class" in SIMULA) are used to
describe parametrised solutions of classes

of similar problems (e.g.: shift register
with n elements, circular buffer with m
elements of type t). Tested modules of
"general" interest are collected in
libraries on the appropriate level of
generality (application level, user level,
project level, etc.).

Figure 4 shows an example of
application structuring. It is important to
recognise that this structuring is
performed on a given abstraction level.
An efficient design system is expected
to provide facilities for object-oriented
manipulation ("syntax-driven
editing"), debugging ("program-tuning
step by step") and simulation ("execution")

which, from the users sight,
only deal with concepts, primitives
and entities of that particular abstraction

level and hide all non-related,
often frustrating activities required by
the underlying system (e.g.: file
manipulations, program sequencing, etc.).

Achieving higher reliability on the
one hand demands applying modern
software design techniques and tools,
incorporating accurate functional
packages (e.g.: "interval arithmetic"
which allows accurate numerical error
estimation of simulations) and
upgrading university built packages to
industrial quality; on the other hand it
requires appropriate user interfaces
which guide the designer and restrict
his freedom to what he really needs to
do and to know, prevent many
reliability and consistency problems; but

244 (A 144) Bull. ASE/UCS 74(1983)5, 5 mars



the most important contribution will
be given by internal data manipulation
mechanisms which guarantee data
integrity and check their consistency at
modification time.

Productivity increase can be
achieved by reducing the number of
feedback loops in the design process
due to design errors. There are of
course feedback loops in VLSI design
which cannot really be eliminated: one
typical example would be feeding
interconnect capacitance, extracted
from geometric layout, back to the timing

simulation.
The basic idea here may be summarised

by the slogan "correctness by
design": once a program or design has

proven correct on a particular abstraction

level, it may become less efficient
on lower abstraction levels and this
may imply manipulations for optimisation,

but the system should guarantee
that the behaviour on the higher

abstraction level is not changed. This
requires reliable transition algorithms,
guidance of the operator by the system
and restriction of possible manipulation.

A substantial contribution to
productivity increase can be given by
increasing throughput: adapting
application packages to the design methodology

(e.g.: hierarchical simulation
reusing results from earlier operations)
and using new software technologies
(e.g.: simulation with parallel
processes).

Further productivity increases are
implied by the design methodology
itself: for instance reuse of already
solved problems. But other requirements

like reliability and data consistency

cannot be implemented without
serious effects on efficiency. The choice
of how far all of the above mentioned
requirements should be fulfilled is a

very challenging optimising problem.

5. The VLSI design process
The VLSI design process may be

viewed as a sequence of steps back and
forth through several abstraction levels:

defining objects on lower levels,
characterising their behaviour and
using them as building blocks or primitives

on higher levels ("bottom up
design") or subdividing objects on higher
levels into sub-objects which have to
be described by means of lower level
objects ("top down design").

The "top down" versus "bottom
up" war is rather an academic one,
since both methods may be necessary
for practical industrial designs: for
instance device specialists have to
construct efficient building blocks which
require a high technology knowledge
and make them accessible to circuit
designers as "black boxes". On the other
hand project leaders want to subdivide
customers' specifications into sub-problems

which they want to resolve by a

functional description, which itself
will be characterised by logic components,

etc.
Figure 5 represents a possible

classification of abstraction levels and
shows an example of design structure.
The aims of such a subdivision are an
easier management of complexity by
means of appropriate abstractions and
the achievement of the best possible
technology independence.

To make things clear: whatever the
abstraction level is, the designers
always track the same object; only the

way of looking at it and representing it
varies with the level. Therefore all
application structuring capabilities (fig. 3

and 4), manipulation, debugging and
simulation facilities asked for in the
previous discussion, should be conceptually

available at any abstraction
level.

Computer scientists may find here
an analogy to multi-pass compilation
of high level languages: starting at the
language level (functional level), a

program is translated down to an
intermediate language (inherent
program structure), from there down to an
abstract machine level (e.g.: "stack
machine") and finally down to the target
machine.

The specification level which is
aimed at formal program specification
is still controversial (and this is
particularly true for the VLSI design area).
A major difference between language
compilation and VLSI design is that
the latter requires the possibility for
designer interaction at virtually every
abstraction level. For some less critical
applications (e.g.: gate arrays) this
need for interaction may be negligible,
therefore programs for automatic
translation from e.g. logic level down
to geometric level are emerging. Such

programs are given the rather mystified

name of "silicon compilers".

6. Summary of
requirements for an
integrated CAD system
Supply the users with a system that

- guides them through "all" design
steps;

- asks for their interaction only where
design related decisions and actions
are required;

- gives them access to the design at

any abstraction level by means of
homogeneous and consistent I/O
tools;

- guarantees consistency of modified
data throughout all abstraction levels

(or at least records changes and
directs users);

- supports principle of modular,
hierarchical design and concept of
libraries on every level;

- provides capabilities for design
exchanges with other users at any
level;

- makes the design as technology-
independent as possible.

7. Steps towards an
integrated CAD-system
The analysis of the current situation

in the CAD field, in comparison with
what is needed particularly by
instrumentation industries shows that, first
of all, experienced VLSI designers and
software designers have to work out a
VLSI design methodology.

Bull. SEV/VSE 74(1983)5, 5. März (A 145) 245



Fig. 6 Integrated CAD-system : integration
concept

The next activities have to concentrate

on definition and implementation
of an operational frame (fig. 6) for

successive integration of existing and
most required application packages.
These activities are split into two major

topics:

- design and implementation of a
human interface that fulfills the above
mentioned requirements, particularly

operation consistency and operator

guidance;
- design and implementation of a fast

and reliable design data base with its
associated manipulation mechanisms.

Both activities have to be completed
by conceptual work for interfacing
application packages: I/O adaption
interfaces and data base interfaces.

In a next step useful and accessible
application packages are successively
integrated in the operational frame.
This step in fact is very critical because
most existing packages will not easily
fit into a new VLSI design methodology

and cause inefficiencies within the
new environment.

Finally new design tools have to be
developed: they should be conceived
for the new design methodology; they
should be built with appropriate
software techniques, be devised for the in¬

tegration concept; hence they should
fit better into the operational frame
and provide a substantial increase in
efficiency.

8. Conclusion
It is not the aim of this discussion to

make things look easier than they are.
We are aware that we have just
pinpointed (and also omitted) some very
difficult problems. Many of them are
still pure research topics and no one
can really make committments with
respect to their issues. We have also
omitted any hardware considerations
for possible implementation.

We just wanted to sketch some basic
requirements, to show the need for
interdisciplinary joint efforts and to outline

a way to build an industrial tool
which really deserves the qualification
"integrated VLSI design system".

246 (A 146) Bull. ASE/UCS 74(1983)5, 5 mars


	Interdisciplinary enhancement of VLSI design tools towards an integrated CAS system

