Hochleistungs-Mikrowärmetauscher

Autor(en): **Peyer, Werner**

Objekttyp: Article

Zeitschrift: Wasser Energie Luft = Eau énergie air = Acqua energia aria

Band (Jahr): 87 (1995)

Heft 11-12

PDF erstellt am: 24.05.2024

Persistenter Link: https://doi.org/10.5169/seals-940443

Nutzungsbedingungen

Die ETH-Bibliothek ist Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an den Inhalten der Zeitschriften. Die Rechte liegen in der Regel bei den Herausgebern. Die auf der Plattform e-periodica veröffentlichten Dokumente stehen für nicht-kommerzielle Zwecke in Lehre und Forschung sowie für die private Nutzung frei zur Verfügung. Einzelne Dateien oder Ausdrucke aus diesem Angebot können zusammen mit diesen Nutzungsbedingungen und den korrekten Herkunftsbezeichnungen weitergegeben werden.

Das Veröffentlichen von Bildern in Print- und Online-Publikationen ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Die systematische Speicherung von Teilen des elektronischen Angebots auf anderen Servern bedarf ebenfalls des schriftlichen Einverständnisses der Rechteinhaber.

Haftungsausschluss

Alle Angaben erfolgen ohne Gewähr für Vollständigkeit oder Richtigkeit. Es wird keine Haftung übernommen für Schäden durch die Verwendung von Informationen aus diesem Online-Angebot oder durch das Fehlen von Informationen. Dies gilt auch für Inhalte Dritter, die über dieses Angebot zugänglich sind.

Ein Dienst der *ETH-Bibliothek* ETH Zürich, Rämistrasse 101, 8092 Zürich, Schweiz, www.library.ethz.ch

Unterhaltes jedes Jahr nach der Schneeschmelze von neuem sauber vermörtelt worden und dadurch bei den Kontrollen nicht aufgefallen. Da zudem die Wasserseite mit armiertem Gunit saniert worden war, konnte der Riss auch hier nicht beobachtet werden. Bei der genaueren Kontrolle nach Aufdeckung des Schadens konnte allerdings die Lage des Risses als feuchte Linie auch im wasserseitigen Gunit festgestellt werden.

Es handelte sich also um einen zu guten Unterhalt, welcher ohne Protokoll ausgeführt wurde und dadurch einen eigentlichen Schaden verdeckte.

Der Riss verläuft durchgehend auf der gleichen Höhe ca. 5,80 m unter der Krone, das heisst 2,20 m unterhalb des Kontaktes zwischen alter Bruchsteinmauer und neuerem Beton. Neben einer detaillierten Sicherheitsüberprüfung wurden sofort Rissmessungen angeordnet. Anfang 1995 wurden in drei Schnitten Extensometer eingebaut, und zudem wird die Temperatur des Mauerbetons periodisch gemessen. Zusammen mit den intensiver durchgeführten Alignementsmessungen, welche durch geodätische Messungen kontrolliert werden, sollen der genaue Verlauf und die Entwicklung der Deformationen festgestellt werden, bevor dann ein Sanierungskonzept definiert wird.

Der Grund der Verformungen und der Rissbildung liegt mit grösster Wahrscheinlichkeit im heterogenen Aufbau der Mauer zusammen mit der speziellen Linienführung. Während der gemauerte ältere Teil der Mauer keine Bogenwirkung erzeugt, bewirkt der Beton der Mauererhöhung eine solche, da die Fugen kraftschlüssig ausgebildet wurden.

Bei der Erwärmung der Mauer im Sommer verlängert sich jeder Kronenbogen um ca. 10 mm bei 10 ° Temperaturerhöhung. Unter der Annahme von fixen Widerlagern ergibt sich daraus eine rechnerische Verschiebung des Bogenscheitels in Richtung See von 37 mm. Eine so grosse Verschiebung ist aber beim vorliegenden Gewichtsmauerquerschnitt ohne Rissbildung nicht möglich. Durch die Öffnung des Risses auf der Luftseite ergibt sich eine Verkippung des Querschnittes und damit eine lokale Überbeanspruchung auf der Wasserseite. Daraus wiederum resultiert die gemessene bleibende Deformation.

6. Schlussfolgerung

- Steinverkleidungen bilden einen guten, ästhetischen Schutz für Betonoberflächen.
- Der Unterhalt sollte sich auf die oberflächliche Reinigung und das Entfernen von Pflanzenbewuchs beschränken.
- Alle weitergehenden Reparaturen müssen unbedingt protokolliert werden, und die tieferliegende Ursache für den Schaden muss gesucht werden.

Adresse des Verfassers: *Karl M. Steiger*, Gruppenleiter Geotechnik und Talsperren, Colenco Power Consulting AG, Mellingerstrasse 207, CH-5405 Baden.

Vortrag, gehalten an der Tagung des Schweizerischen Nationalkomitees für Grosse Talsperren, Arbeitsgruppe Talsperrenbeobachtung, 1995, in Sion zum Thema «Zustandsüberprüfung und Unterhalt von Talsperren».

Hochleistungs-Mikrowärmetauscher

Eine für die Elektro- und die Wärmetechnik-Industrie interessante Neuentwicklung hat das Forschungszentrum Karlsruhe (KfK) vorgestellt: einen Hochleistungs-Mikrowärmetauscher. In einem Volumen von nur einem Kubikzentimeter können Leistungen von 20 Kilowatt übertragen werden, was dem Leistungsbedarf zur Heizung eines Einfamilienhauses entspricht.

Gemäss dem für diese Entwicklung zuständigen KfK-Leiter, Dr. Klaus Schubert, werden die Mikrowärmetauscher

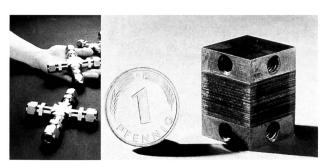


Bild 1, links. Neuentwickelter Hochleistungs-Mikrowärmeübertrager aus der Kleinserienfertigung des Forschungszentrums Karlsruhe (KfK).

Bild 2, rechts. Grössenvergleich des Mikrowärmetauschers mit einem 1-Pfennig-Geldstück. (Fotos: KfK)

vom Forschungszentrum Karlsruhe in einem neuen mechanischen Mikrofertigungsverfahren mit garantierten Spezifikationen hergestellt und an die Industrie verkauft. Damit will man zeigen, dass auch ein Forschungszentrum Mikrostrukturprodukte zuverlässig und termingerecht fertigen kann

Leistungsstärke einer EFH-Heizung

Das Forschungszentrum Karlsruhe (KfK) hat die ersten Exemplare der neuentwickelten Hochleistungs-Mikrowärme-übertrager einer im Aufbau befindlichen Kleinserienfertigung bereits an einen Industriebetrieb ausgeliefert. Das «Innenleben» der Mikrowärmetauscher ist komplex: In einem Volumen von nur einem Kubikzentimeter sind rund 8000 Mikrokanäle – jeder so dünn wie ein Menschenhaar! – im Kreuzstrom untergebracht. Damit können in dem Würfel Leistungen von rund 20 Kilowatt (entspricht etwa dem Leistungsbedarf zur Heizung eines Einfamilienhauses) mit Wasser als Medium übertragen werden. Die spezifische Leistung ist 100mal grösser als bei konventionellen Kompaktwärmetauschern.

Aufeinandergestapelte Kupferfolien

Die Mikrowärmetauscher werden durch Stapelung oberflächenstrukturierter Folien aus Kupfer hergestellt. Insgesamt 100 strukturierte Einzelfolien wurden vor dem Schweissen aufeinandergestapelt, wobei von Lage zu Lage die Längsachsen der Nuten um 90° verdreht wurden. Bei einem Wärmeübertragungsvolumen von 1 cm³ ist die wirksame Wärmeübertragungsfläche etwa 150 cm².

Werner Peyer

