Zeitschrift: Wasser Energie Luft = Eau énergie air = Acqua energia aria

Herausgeber: Schweizerischer Wasserwirtschaftsverband

Band: 91 (1999)

Heft: 3-4

Artikel: Stosswellenreduktion in Kanalkontraktionen

Autor: Reinauer, Roger

DOI: https://doi.org/10.5169/seals-940038

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 09.07.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Stosswellenreduktion in Kanalkontraktionen

Roger Reinauer

In Kanalkontraktionen mit schiessendem Abfluss, wie sie beispielsweise bei Schussrinnen oder Grundablässen vorkommen, wird die Strömung durch die Seitenwände in Richtung Kanalachse umgelenkt. Dadurch entstehen Stosswellen von beträchtlicher Höhe. Für die Bemessung der Kanalseitenwandhöhe und des Unterwasserkanals ist die Stosswellenhöhe massgebend und somit deren Reduktion von speziellem wasserbaulichem Interesse. Bisher fehlen dem konstruktiven Ingenieur Bemessungsansätze und baupraktisch realisierbare Methoden zur Strömungsverbesserung. Deshalb wurden die Charakteristiken dieser Wellen - basierend auf dem Konzept der Stosszahl - experimentell untersucht. Sogenannte Diffraktoren zur Reduktion der Stosswellen werden vorgestellt. Diese weisen eine einfache Geometrie auf und lassen sich auch in bestehende Anlagen einfach einbauen.

1. Einleitung

Obwohl schiessender Abfluss im Vergleich zum strömenden Abfluss das Potential von Stosswellenbildung aufweist, wurde diesem Strömungstyp eher wenig Aufmerksamkeit geschenkt. Dies mag einerseits am experimentellen Aufwand liegen, andererseits an der numerischen Modellierung der dreidimensionalen Strömung. Im Zusammenhang mit praktischen und sicherheitstechnischen Problemstellungen sind konkrete Aussagen zum schiessenden Abfluss unerlässlich.

Die in einer Kanalkontraktion auftretenden stehenden Stosswellen werden am Kontraktionsbeginn mit Welle 1, in Kanalachse mit Welle 2 und im Unterwasserkanal mit Welle 3 bezeichnet. Bei Nichtbeachtung der Stosswellen kann es bei *offenen* Kanälen durch Überschwappen zu Talflanken-Erosion und bei *geschlossenen* Kanälen zum Zuschlagen und damit zu planerisch nicht berücksichtigten Druckschwankungen kommen.

Da schiessende Abflüsse in der Regel auch erhöhte Fliessgeschwindigkeit aufweisen, spielt der Einfluss der Belüftung eine wesentliche Rolle, worauf *Reinauer* und *Hager* (1996a) verweisen. Weitere Fragen zu Kavitation und Abrasion werden an dieser Stelle nicht behandelt.

Heute werden Kanalkontraktionen bei schiessendem Abfluss eher selten ausgeführt, da sich der projektierende Ingenieur sehr wohl über das Auftreten von Stosswellen im klaren ist, aber weder das Abflussbild genau kennt noch einfache Massnahmen zu deren Reduktion verfügbar sind. Dennoch weisen Kanalkontraktionen bedeutende Kostenvorteile gegenüber einer geraden Schussrinne auf. Die Gründe zur Anordnung von Kanalkontraktionen können eine Gefällsvergrösserung, Einsparungen beim Ausbruch auf felsigem Untergrund (Regan und Scherich, 1988), Spannweitenreduktion bei den Kanal überquerenden Brücken, Grundablassstollen in Zwillingsanordnung oder der Übergang von Sammelkanälen in Freispiegelstollen sein (Bild 1).

Zur Bemessung von Kanalkontraktionen sind folglich die maximalen Wellenhöhen und deren Lage wichtig. In der vorliegenden, auf einer Dissertation (*Reinauer*, 1995) beruhenden Arbeit werden kurze Kanalkontraktionen unter spezieller Berücksichtigung des Gefällseffekts und Massnahmen zur Stosswellenreduktion untersucht.

2. Heutiges Bemessungsverfahren

Zur Minimierung von Stosswellen in Kanalkontraktionen wird von Ippen und Dawson (1951) die trichterförmige Kontraktion vorgeschlagen, welche im Gegensatz zu Düsenund Fächerform den geringsten Ablenkungswinkel und damit die kleinsten Stosswellen aufweist. Die Minimierungsmethode basiert auf dem Prinzip der Welleninterferenz, wobei durch richtige Wahl von Wandablenkungswinkel 9 und Verengungsverhältnis die am Kontraktionsanfangspunkt A positive Stosswelle in den Kontraktionsendpunkt E gelenkt wird und sich dort mit der beginnenden negativen Stosswelle auslöscht (Bild 2). Mit der Zufluss-Froudezahl $F_o = V_o/(gh_o)^{1/2}$, der Zuflussgeschwindigkeit V_o , der Gravitationskonstante g und der Zuflusstiefe ho berechnet sich das notwendige Breitenverhältnis $\omega = b_c/b_o$ auf der Basis des Impulssatzes (Ippen, 1951) nach Hager und Bretz (1987) zu

$$\omega = \left(1 + \sqrt{2\Theta}F_{\sigma}\right)^{-1}.$$

Für $F_o = 2.8$, $\Theta = 0.096$, $b_o = 500\,\mathrm{mm}$ und $b_e = 300\,\mathrm{mm}$ wurde das heutige Bemessungskonzept von *Ippen* und *Dawson* am hydraulischen Modell untersucht (Bild 3). Das Prinzip führt jedoch nicht zu einer Wellenminimierung, da positive und negative Stosswelle nicht dieselbe Form und Intensität aufweisen. Interferenz in der üblichen Form tritt

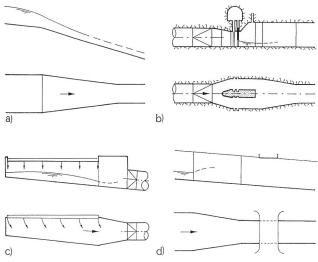


Bild 1. Anordnung von Kanalkontraktionen a) Vergrösserung der Sohlenneigung, b) Grundablassstollen in Zwillingsanordnung, c) Übergang Sammelkanal in Freispiegelstollen und d) Brückenunterguerung.

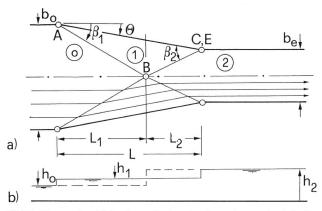


Bild 2. Stosswellenbild schematisch unter Ausnutzung des Interferenzprinzips nach *Ippen* und *Dawson* (1951). a) Grundriss und b) Längsschnitt mit angenommenem Wasserspiegelverlauf längs (–) Wand und (—·—) Achse.

demnach nicht auf. Weiterhin können heute die maximalen Wellenhöhen nur für den Bemessungsfall bestimmt werden, und auch für vom Bemessungsabfluss abweichende Fliessverhältnisse ist das Verfahren nicht überprüft worden. Weitere Untersuchungen zu Kanalkontraktionen stammen etwa von *Harrison* (1966) und *Täubert* (1971) und beruhen ebenfalls auf dem Interferenzprinzip.

Numerische Arbeiten stammen von Ellis (1985), Chaudhry (1993), Hager et al. (1994) sowie Berger und Stockstill (1995). Dabei werden Schwierigkeiten bei der Modellierung der Diskontinuitäten infolge von Stosswellen und den daraus resultierenden numerischen Instabilitäten beschrieben. Sowohl mit der Methode der Charakteristiken als auch mit einer FE-Modellierung lassen sich bis heute keine annähernd exakten Abflussbilder bestimmen.

Tursunov (1965) beschreibt die Möglichkeit, Stosswellen durch eine bombierte anstelle einer ebenen Sohle zu reduzieren. Vischer (1988) verallgemeinerte das Gestaltungsprinzip mit quergeneigter Sohle durch die Aussage, dass eine schiessende Strömung dann stossfrei abfliesst, wenn die Zentrifugalbeschleunigung durch die Querbeschleunigung kompensiert wird. Zur Erleichterung der Herstellung von Schussrinnen schlug er den Ersatz von kontinuierlich aufgewölbten Sohlen durch eine Anzahl ebener Flächenelemente vor. Eine generelle Übersicht zur Reduktion von Stosswellen gaben Vischer und Hager (1994). Das Ziel dieser Arbeit ist die Vorstellung einer neuen Möglichkeit, Stosswellen von mittlerer Höhe durch den Einsatz sogenannter Diffraktoren zu reduzieren. Das Prinzip basiert dabei auf der Wellen-Diffraktion, im speziellen dem Auseinanderziehen der ursprünglich kompakten Stosswelle quer zur Fliessrichtung. Das Resultat zeigt sich durch eine starke Verminderung der maximalen Höhe beim Auftreffen der Wellen auf eine Seitenwand. Im weiteren ist das Verfahren auch bei vom Bemessungsabfluss abweichenden Abflüssen anwendbar.

3. Stosswellen in unverbauten Kanalkontraktionen

3.1 Abflussbild

Im folgenden wird das Abflussbild in der unverbauten Kontraktion beschrieben und dient als Vergleichsbasis für die Kontraktion mit Diffraktoren. Bild 4a, d, zeigt das Abflussbild in der unverbauten Kanalkontraktion mit der Zuflussbreite b_{o} , der Endbreite b_{e} und dem Sohlenneigungswinkel α. Das Abflussbild wird massgebend durch die im Anfangspunkt A infolge der abrupten Wandablenkung um @ ausgelöste Stosswelle geprägt. Die Stosswelle breitet sich unter dem Stosswinkel Bo in Richtung Unterwasser aus, erreicht Punkt B in Kanalachse und wird dort reflektiert nach Punkt C an der Kanalwand. Am Kontraktionsendpunkt E formiert sich eine negative Welle, und im Unterwasserkanal ergibt sich ein kompliziertes Abflussbild. Die entlang der Wand auftretenden Wellen werden bezeichnet mit Welle 1 von der Höhe h_1 , Welle 3 von der Höhe h_3 und analog in Kanalachse Welle 2 von der Höhe h_2 . Wie Voruntersuchungen ergaben, bleibt die Geschwindigkeit durch die gesamte Kontraktion nahezu konstant und gleich der Zulaufgeschwindigkeit. Auch die Strömungen im Halbmodell und im Vollmodell sind, abgesehen von der Grenzschichtentwicklung entlang der Kanalachse, praktisch identisch.

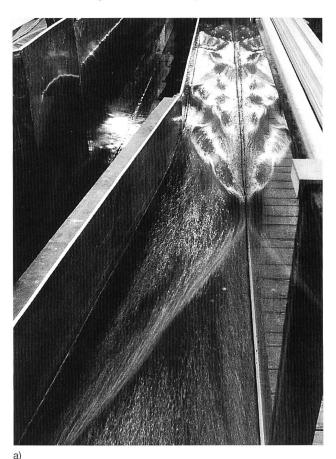


Bild 3. Stosswellen in Schussrinnen-Kontraktionen, bemessen nach dem Interferenzprinzip. Deutlich sichtbar starke Wellenentwicklung im Unterwasser. Blick in Fliessrichtung a) hydraulisches Halbmodell, b) Prototyp Peribonka Nr. 1 der Kanadischen Aluminium Gesellschaft (*Heartz* et al., 1954).

Die Bemessung von Kontraktionen umfasst deshalb hauptsächlich eine Betrachtung des Freibords und die gleichförmige Abflussverteilung über den Querschnitt des Unterwasserkanals. Die relevanten Parameter sind dementsprechend die Axial- und die Wandwellen, welche in der Folge betrachtet werden. Beide Wellen hängen ab von den Parametern: (1) Froudezahl $F_o = V_o/(gh_o)^{1/2}$ mit der Zuflussgeschwindigkeit $V_o = Q/(h_o b_o)$, der Gravitationskonstante g, der Zuflusstiefe $h_{\rm o}$ und dem Durchfluss Q; (2) Wandablenkungswinkel Θ , (3) Zuflusstiefe h_0 ; (4) Kontraktionswandlänge $L_{\rm K}$ oder dem Breitenverhältnis $\omega = b_{\rm e}/b_{\rm o}$ und (5) Sohlengefälle α . Um Massstabseffekte auszuschliessen wurde der Effekt (3) zuerst untersucht. Nach Durchführung verschiedener Experimente bei anwachsender Zuflusstiefe h_o von 10 auf 100 mm wurden Zuflusstiefen h_o < 50 mm ausgeschlossen, da diese durch Sekundäreffekte infolge von Viskosität und Oberflächenspannung beeinflusst sind. Alle weiteren Messungen wurden mit der Zuflusstiefe h_o = 50 mm durchgeführt, da dies die Anwendbarkeit des Modellgesetzes nach Froude gewährleistet.

3.2 Wellenhöhen

Bei den Wellen 1 und 2 ist der Parameter $\omega=b_{\rm e}/b_{\rm o}$ vernachlässigbar, denn beide Wellen vergrössern sich ausschliesslich mit dem Anwachsen von ${\rm F_o}$ oder Θ . Gemäss Hager (1989) ist bei der abrupten Wandablenkung mit schiessendem Abfluss die Stosszahl ${\rm S_o}=\Theta{\rm F_o}$ der dominante Parameter. Somit berechnen sich für entsprechende Werte von ${\rm F_o}$ und Θ die gleichen Wellenhöhen h_1 bzw. h_2 . Die Lage der Wellenmaxima ist abhängig von der Rouse-Koordinate $X=x/(h_{\rm o}{\rm F_o})$, wie bereits von Mazumder und Hager (1993) gezeigt wurde.

Die Welle 3 ist sowohl von der Stosszahl als auch vom Breitenverhältnis ω abhängig. Da die mittlere Geschwindigkeit durch die Kontraktion konstant bleibt, ergibt sich aus Kontinuitätsgründen für die Abflusstiefe $h_{\rm u}$ im Unterwasser $h_{\rm o}b_{\rm o}=h_{\rm u}b_{\rm u}$. Daraus folgt für Welle 3 die Maximalhöhe $h_3=h_{\rm u}+\Delta h_3$ als Summe von eindimensionaler Strömung $h_{\rm u}=\omega^{-1}h_{\rm o}$ und Δh_3 infolge der nur von der Stosszahl abhängigen Störung. Der Einfluss der Sohlenneigung wurde

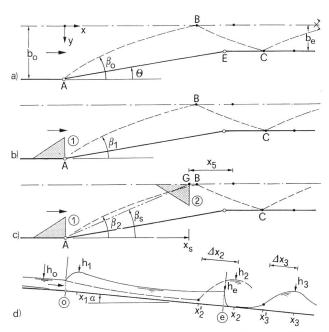


Bild 4. Definitionen zur Kanalkontraktion a) ohne Einbau, b) Diffraktor 1, c) Kombination der Diffraktoren 1 und 2 mit (---) Stossfronten und d) genereller Längsschnitt Wasserspiegel (----) Achse und (---) Wand.

untersucht für $\alpha=0^\circ$, 10° und $27,5^\circ$. Dabei zeigen Wellen 1 und 2 praktisch keinen Gefällseinfluss. Infolge der Strömungsbeschleunigung ist ein eindeutiger Einfluss des Gefälles auf die *Lage der Wellenmaxima* festzustellen, wobei sich die Stossfront in Richtung Unterwasser krümmt (Bild 4b).

Die Höhen der Wellenmaxima bestimmen sich mit dem Wandablenkungswinkel Θ [rad] und dem Sohlenneigungswinkel α [°] anhand ausführlicher Experimente zu (*Reinauer*, 1995)

für Welle 1
$$Y_1 = \frac{h_1}{h_o} = \left(1 + \frac{S_o}{\sqrt{2}}\right)^2$$
, (2)

für Welle 2
$$Y_2 = \frac{h_2}{h_o} = (1 + \sqrt{2S_o})^2$$
, (3)

und für Welle 3
$$Y_3 = \frac{h_3}{h_o} = \frac{1}{\omega} + 1.8S_o - 0.2\alpha^{0.6}$$
. (4)

Aus den Gleichungen (2) bis (4) geht der dominante Einfluss der Zufluss-Stosszahl $S_o = \Theta F_o$ hervor. Damit lassen sich Kanalkontraktionen bis $S_o < 1,8$ bemessen. Bei grösseren Stosszahlen erfolgt bei Welle 2 Strahlteilung mit einem sprunghaften Anstieg von Welle 3 im Unterwasserkanal.

3.3 Wellenlagen

Die Lage des Maximums $X_1 = x_1/(h_o F_o)$ von Welle 1 mit Θ [rad] sowie α [°] lautet

$$X_1 = x_1 / (h_o F_o) = (2 + 0.126\alpha)\Theta + (1.4 - 0.015\alpha).$$
 (5)

Die Einflüsse von Θ und α sind relativ klein und näherungsweise gilt $X_1 = 2$.

Die Lage des Maximums x_2 setzt sich zusammen aus der Teilstrecke x_2' vom Wandablenkungspunkt A bis zum Auftreffpunkt B der Stossfront in Kanalachse plus der halben Wellenlänge Δx_2 , und es gilt (Bild 4d)

$$x_2 = x_2' + \Delta x_2. \tag{6}$$

Die Bestimmung der Lage x_2 und x_3 von Welle 2 und 3 gestaltet sich für allgemeine Zuflussbedingungen komplexer und umfasst eine Senkungskurven-Berechnung (*Reinauer*, 1995). An dieser Stelle soll nur der einfache Fall, bei dem sich Sohlengefälle $J_{\rm s}$ und Reibungsgefälle $J_{\rm e}$ kompensieren, beschrieben werden. Die Position des Auftreffpunktes und der halben Wellenlänge lauten dann

$$x'_{2} = b_{o} \left[\Theta + \left(0.7/F_{o}\right)\right]^{-1},$$
 (7)

$$\Delta x_2 = \frac{h_o}{\Theta} (8/3) S_o. \tag{8}$$

Analog wird die *Lage des Maximums* von Welle 3 bestimmt zu

$$x_3 = x_3' + \Delta x_3, \tag{9}$$

$$x'_{3} = (b_{o} + b_{e})[\Theta + (0.7/F_{o})]^{-1},$$
 (10)

$$\Delta x_3 = \frac{h_o}{\Theta} (10/3) S_o. \tag{11}$$

Mit den Gleichungen (2) bis (11) ist damit das für eine Bemessung erforderliche Abflussbild in unverbauten Kanalkontraktionen komplett beschrieben. Die Geichungen (7) und (10) sind dabei abgesehen vom Korrekturfaktor 0,7 in Übereinstimmung mit den theoretischen Ansätzen (*Ippen*, 1951, *Hager*, 1989).

In Kanalkontraktionen mit Sohlenneigungen J_s <5 % sollte im weiteren sichergestellt werden, dass Strömungszusammenbruch, das heisst der ungewollte Übergang vom Schiessen zum Strömen, nicht auftritt (*Reinauer*, 1995, 1996).

4. Stosswellenreduktion mit Diffraktoren

4.1 Abflussbild

Zur Reduktion einer infolge abrupter Wandablenkung entstehenden Stosswelle wurde der Diffraktor entwickelt (Reinauer und Hager, 1996b). Das Prinzip der Wellenreduktion ist dabei das folgende: Die vom Wandablenkungspunkt A ausgehende Wandwelle ist in der unverbauten Kontraktion kompakt mit einer annähernd vertikalen Stossfront. Bei Verwendung des pyramidenförmigen Diffraktors mit dreieckigem Grundriss und vertikalem Heckabschluss tritt ein Wellenmaximum der Höhe h_1 , gefolgt von einem wenig ins Unterwasser verschobenen Minimum auf (Bild 5). Folglich wird die kompakte Welle quer auseinandergezogen und damit sowohl deren Höhe als auch Intensität reduziert. Infolge der Strahlanhebung durch den Diffraktor wird Welle 1 leicht vergrössert. Dies hat aber keine Relevanz, da die

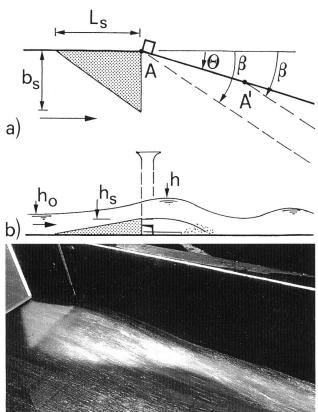


Bild 5. Diffraktion von Welle 1 mit Sohlenelement und seitlicher Belüftung a) Grundriss, b) Wandwasserspiegel und c) Abflussbild im Strömungsmodell (VAW 47/97-9).

Wellen 2 und 3 für die Bemessung des Freibordes massgebend sind und diese sehr wohl reduziert werden. Zur Optimierung des Diffraktors wurden Experimente mit Diffraktoren verschiedener Schenkellängen $L_{\rm s}$, Breiten $b_{\rm s}$ und Höhen $h_{\rm s}$ ausgeführt. Neben Trapez- und doppelter Dreieckform wurde aufgrund der minimalen Dimensionen die einfache Dreiecksform gewählt. Dabei ist der Einfluss der Froudezahl $F_{\rm o}$ auf die Diffraktorhöhe $h_{\rm s}$ vernachlässigbar. Diese wie auch $b_{\rm s}$ und $L_{\rm s}$ hängen nur von der Zuflusstiefe $h_{\rm o}$ ab und lauten (Reinauer und Hager, 1996b)

$$h_{\rm s} = 0.9h_{\rm o},\tag{12}$$

$$b_{\rm s} = 4.0h_{\rm o},\tag{13}$$

 $L_{\rm s} = 6.0h_{\rm o}.$ (14)

Aufgrund der vertikalen Unterwasserseite kann der Diffraktor mit einer Belüftung zur Vermeidung von Kavitation versehen werden (Bild 5a, b). Diese kann jedoch eine konventionelle Sohlenbelüftung durch ihre lokal beschränkte Wirksamkeit nicht ersetzen.

4.2 Diffraktorbemessung

Die grösste Wirksamkeit lässt sich bei Anordnung von zwei Diffraktoren in der Kanalkontraktion erreichen. Dabei ist Diffraktor ① im Anfangsguerschnitt der Kontraktion und Diffraktor 2 axial im Oberwasser von Welle 2 angeordnet (Bild 4c). Vereinfachend kann auch nur Diffraktor ① am Kontraktionsbeginn plaziert werden (Bild 4b). Die optimale Position des Diffraktors 2 zeichnet sich dadurch aus, dass das Maximum von Welle 2 mit der Lage des Minimums x_5 im Diffraktorheck zusammenfällt (Bild 4c). Bild 6 zeigt eine typische Versuchsserie mit $h_o = 50 \,\mathrm{mm}$, $F_o = 5$, $b_o = 500 \,\mathrm{mm}$, $\omega = 0.6$ und $\Theta = 5.5^{\circ}$. Dabei sind die Wellenhöhen h_2 und h_3 als Funktionen der relativen Diffraktorposition $X_s = (\Theta x_s)/b_{\Theta}$ aufgetragen mit x, als Diffraktorposition ausgehend vom Kontraktionsanfangspunkt A. Bei optimaler Diffraktorposition haben beide Wellen ein ausgesprochenes Minimum, wobei die Wellenhöhen mit der Verwendung von Diffraktoren ① und ② weniger sensitiv auf die Lage x_s reagieren als bei Verwendung von Diffraktor 1 allein. Dies ist ein enormer Vorteil der neuen Methode verglichen mit dem konventionellen auf dem Interferenzprinzip beruhenden Verfahren zur Stosswellenminimierung (Ippen und Dawson, 1951). Die optimale Lage x_s von Diffraktor @ in Punkt G kann ermittelt werden, indem von der Lage des Maximums $x_2 = x_2' + \Delta x_2$ nach den Gleichungen (7) und (8) die Sprunglänge x₅ abgezogen wird

$$x_s = x_2' + \Delta x_2 - x_5. {15}$$

Die Sprunglänge ergibt sich nach mit dem Sohlenneigungswinkel α [°], dem Diffraktorwinkel $\gamma \cong \tan(h_o/L_s) = 0.15$ und $f_5 = F_o(\cos\alpha)^{1/2}$ zu (Reinauer, 1995)

$$x_5 = \frac{F_o h_o}{(\cos \alpha)^{1/2}} \left[\frac{\Phi}{f_5} + \sqrt{2\Phi} \right],\tag{16}$$

mit
$$\Phi = \left[\frac{\left(F_o \sin \gamma \right)^2}{\cos \alpha} + \frac{s}{h_o} \right].$$
 (17)

4.3 Wellenhöhen

Der Einfluss des Diffraktors wurde für verschiedene Wandablenkungswinkel, Zufluss-Froudezahlen, Verengungs-

verhältnisse und Sohlenneigungswinkel untersucht. Die Charakteristiken der Wellen bei Verwendung von Diffraktoren ergeben sich zu

Welle 1
$$Y_1 = \frac{h_1}{h_0} = \frac{1 + 1.7S_o + 0.011(S_o/\Theta)^2}{\cos \alpha}$$
, (18)

$$X_1 = x_1 / (h_o F_o) = (0.6 + 0.16\alpha^{1/2}) S_o,$$
 (19)

Welle 2
$$Y_2 = \frac{h_2}{h_o} = (1 + S_o)^2$$
, (20)

Welle 3
$$Y_3 = \frac{h_3}{h_a} = \frac{1}{\omega} + \Delta Y_3 - 0.2\alpha^{0.6}$$
. (21)

Die exakten Positionen der Maxima von Wellen 2 und 3 folgen dann wiederum durch eine Senkungskurven-Berechnung oder für den Spezialfall mit $J_{\rm s}=J_{\rm e}$ nach den Gleichungen (6) bis (11). Verglichen mit der unverbauten Kontraktion sollten die folgenden Punkte beachtet werden: a) abgesehen von Wandablenkungswinkeln Θ > 0,17 wird Welle 1 mit Diffraktoren immer grösser als in der unverbauten Kontraktion. Dabei liegen die Werte von Y_1 typischerweise zwischen 3 und 5;

b)Welle 2 variiert ausschliesslich mit der Stosszahl S_o und ist unabhängig vom Sohlenneigungswinkel α . Die Grösse der Axialwelle hängt vom Quadrat der Stosszahl S_o multipliziert mit $\sqrt{2}$ nach Gleichung (3) bzw. 1 bei Verwendung von Diffraktor ① resp. Kombination der Diffraktoren ① und ② ab. Dabei kann Welle 2 problemlos um 30 bis 40 % reduziert werden:

c)Welle 3 hängt von drei unabhängigen Parametern, namentlich dem Breitenverhältnis ω , dem Sohlenneigungswinkel α und der Stosszahl $S_{\rm o}$ ab. Dabei wirkt sich der Einfluss der Diffraktoren nur auf den letzten Parameter aus und lässt eine Wellenreduktion von typischerweise 20 % zu.

Die Stosszahl $S_{\rm o}$ stellt folglich bei schiessendem Abfluss in Kanalkontraktionen den die Fliessstruktur bestimmenden Parameter dar. Im weiteren treten bei $S_{\rm o} < 0.5$ schwache Stosswellen auf, verbunden mit Oszillationen der Wasseroberfläche, vergleichbar mit ondulierenden Wassersprüngen. Andererseits sind die Stosswellen bei $S_{\rm o} > 1.8$ überforciert und stark. Dabei kann die Stossfront zusätzlich verbunden mit Luftaufnahme brechen und ein überproportionaler Anstieg der Wellenhöhe auftreten. Der Anwendungsbereich der Gleichungen (18) bis (21) liegt deshalb bei $0.5 < S_{\rm o} < 1.8$ (Reinauer, 1995).

4.4 Effizienz der Diffraktoren

Die Effizienz der Diffraktoren in einer Kanalkontraktion wird definiert als Verhältnis der Differenz der maximalen Wellenhöhen bei unverbauter Kontraktion und bei Verwendung von Diffraktoren dividiert durch die Wellenhöhe mit Diffraktoren. Für Welle 3 beispielsweise lautet die Effizienz

$$\eta_3 = \left[(Y_3)_0 / (Y_3)_2 \right] - 1.$$
(22)

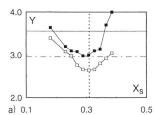
Index 3 bezeichnet dabei die Welle, und die Indizes der Klammern bezeichnen die Anzahl der verwendeten Diffraktoren. Wird $(Y_3)_0$ ausgedrückt durch Gleichung (4), $(Y_3)_2$ durch Gleichung (21) und bei Verwendung des Kontraktionsverhältnisses $b_{\rm o}/L_{\rm K}$ anstelle des Wandablenkungswin-

kels Θ ergibt sich für η_3 eine Funktion in ω für unterschiedliche Zufluss-Froudezahlen F_\circ . Nach Bild 7 weist η_3 ein Maximum an der Stelle $\omega=2/3$ auf, im Intervall $0,5<\omega<0,8$ liegt eine akzeptable Effizienz vor. Sowohl für $\omega\to0$ (komplette Kontraktion) als auch für $\omega\to1$ (keine Kontraktion) tendiert die Effizienz gegen Null. Der besprochene Fall ist somit für mittlere Verengungsverhältnisse vorteilhaft, kann jedoch bei Einläufen mit Endbreiten $b_e < b_o/3$ nicht empfohlen werden. Ein direkter Vergleich der beiden Zustände zeigt die Reduktion der Stossfronthöhe mit den Diffraktoren \oplus und \oplus (Bild 8a) gegenüber der unverbauten Kontraktion (Bild 8b). Bei Verwendung von Diffraktoren sind die Stosswellen im Unterwasserkanal deutlich reduziert, und das Abflussbild erscheint ausgeglichener.

4.5 Durchflussabweichungen vom Bemessungsabfluss

Eine Kanalkontraktion wird bemessen für wohldefinierte Kontraktionsgeometrien und Zuflussbedingungen. Dabei interessiert sich der projektierende Ingenieur aber auch für den Zustand, bei dem der Durchfluss grösser oder kleiner als der Bemessungsabfluss $Q_{\rm D}$ ist. Eine Kanalkontraktion kann nämlich nur für einen Abflusszustand, und zwar den Bemessungszustand, optimal ausgelegt werden.

Normalerweise treten bei Kanalkontraktionen drei unterschiedliche hydraulische Konfigurationen auf: a) unterhalb von Einläufen zu Schussrinnen am Fuss von Überfallbauwerken, b) unterhalb von Grundablässen in Zwillingsanordnung und c) an Gefällszunahmen von Schussrinnen mit Normalabfluss im Zuflussbereich (Bild 9). Die Geschwindigkeit V lässt sich mit z als praktisch konstanter Stauspiegellage über dem Ausflussguerschnitt für $z \gg h$ und dem Geschwindigkeits-Koeffizienten φ ausdrücken durch $V=\varphi(2gz)^{1/2}$. Bei Bild 9c herrscht annähernd Normalabfluss im Zuflussbereich, und es gilt $V_{\rm n} = k_{\rm st} J_{\rm s}^{1/2} h^{2/3}$ mit dem hydraulischen Radius $R_h \cong h$ für breite Kanäle, dem Rauhigkeitsbeiwert k_{st} nach Strickler und dem Sohlengefälle J_{s} . Normiert man den Durchfluss Q und die Froudezahl F_0 mit den Bemessungsgrössen (Index «D») und setzt weiterhin $\mu = Q/Q_D$ ein, so erhält man für das Verhältnis der entsprechenden Froudezahlen ϕ = F_o/F_{oD} im Fall a und b nach einfacher Rechnung



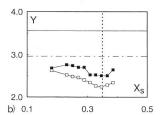
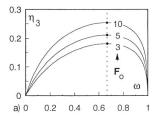


Bild 6. Diffraktorlage X_s für $F_o=5$, $\Theta=5,5^\circ$ und $b_c/b_o=0,6$ a) nur Diffraktor ② und b) Diffraktoren ① und ②. Kanalkontraktion ohne Einbauten (-) $Y_2=3,56$ und (---) $Y_3=2,96$. (---) optimale Diffraktorlage. (\blacksquare) Y_2 und (\square) Y_3 .



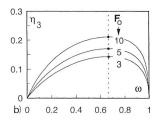


Bild 7. Effizienz $\eta_2(\omega)$ der Diffraktoren ① und ② bezogen auf die Wandwelle 3 für $\alpha=0^\circ$ mit $b_\circ/L_{\rm K}=$ a) 0,5 und b) 0,25. (–) Gleichung (5,34) und (-------) Optimum bei $\omega=2/3$.

Bild 8. Stosswellen in Kanalkontraktion mit Blick in Fliessrichtung a) Diffraktoren ① und ② und b) unverbaute Kontraktion. F_o = 4, L_K = 2080 mm und Θ = 5,5° (1-15, 2-15).

$$\phi = \mu^{-1/2} \tag{23}$$

und im Fall c
$$\phi = \mu^{1/10}$$
. (24)

Bei Einläufen und Grundablässen steigt die Froudezahl F_o bei Verkleinerung des Durchflusses an im Gegensatz zum Normalabfluss, wo ϕ praktisch konstant bleibt.

Die Zuflusstiefe $h_{\rm o}$ kann berechnet werden mit der Kontinuitätsgleichung und ergibt für die Fälle a und b $h_{\rm o}$ = $Q/[b(2{\rm g}z)^{1/2}]$ und im Fall c $h_{\rm o}$ = $[Q_{\rm N}/(b{\rm S_o}^{1/2})]^{3/5}$. Die relative Abflusstiefe $\eta=h_{\rm o}/h_{\rm oD}$ in den Fällen a und b lautet damit

$$\eta = \frac{h_o}{h_{oD}} = (Q/Q_D) = \mu , \qquad (25)$$

und im Fall c
$$\eta = \frac{h_o}{h_{oD}} = (Q/Q_D)^{3/5} = \mu^{3/5}$$
. (26)

Im ersten Fall ist das Verhältnis folglich linear und im zweiten Fall unterproportional.

Normiert man die in der Kanalkontraktion gemessenen maximalen Wellenhöhen $Y_{iD} = h_i/h_{iD} = f(\mu = Q/Q_D)$ mit i = 1, 2 und 3, so ergibt sich beim Bemessungsabfluss definitionsgemäss für alle Maxima $Y_{\rm iD}$ = 1. Es zeigt sich dabei, dass die Wellenhöhen Y_{1D} , Y_{2D} und Y_{3D} stetig zunehmen und für $\mu > 1$ ziemlich exakt mit den Gleichungen (25) bzw. (26) zusammenfallen (Bild 10). Somit können bei einer Kanalkontraktion in allen Fällen a, b und c der Maximalabfluss als Bemessungsabfluss Q_{D} angesetzt und damit die maximalen Wellenhöhen bestimmt werden. Auch bei einer unplanmässigen Überlastung mit $Q > Q_D$ ergibt sich ein stetiger Anstieg der Wellenhöhen, jedoch keine sprunghafte Verschlechterung infolge der Diffraktoren. Treten also Durchflüsse $Q > Q_D$ auf, so können die maximalen Wellenhöhen mit den Bemessungswerten $Y_{\rm iD}(Q_{\rm D})$ und anschliessender Multiplikation mit Gleichung (25) in den Fällen a und b bzw. Gleichung (26) im Fall c in Abhängigkeit von μ bestimmt werden.

5. Zusammenfassung und Schlussfolgerungen

Bis anhin wurden Kanalkontraktionen eher selten projektiert, da das Abflussbild nicht bestimmt werden konnte und

Methoden zur Stosswellenreduktion nicht zur Verfügung standen. Mit der vorliegenden systematischen Untersuchung und dem neuen Bemessungskonzept lassen sich kurze Kanalkontraktionen entwerfen und die Stosswellen mit Diffraktoren erheblich reduzieren. Es wird einerseits das Abflussbild beschrieben und andererseits die unverbaute Kontraktion mit der Methode der Stosswellenreduktion durch Diffraktoren verglichen.

Der Diffraktor zur Reduktion von Stosswellen an abrupten Wandablenkungen wird vorgestellt. Er weist einen dreieckförmigen Grundriss und eine Höhe von 90 % der Zuflusstiefe auf. Durch Belüftung des Diffraktors im Heckbereich kann Kavitation vermieden werden. Ein erster Diffraktor wird dabei beidseitig an der Seitenwand des Kontraktionsanfangs und ein zweiter Diffraktor in Kanalachse stromauf des Kontraktionsendes plaziert. Durch den Diffraktor wird die kompakte Stosswelle auseinandergezogen und folglich deren Höhe reduziert. Abhängig von Verengungsgeometrie und Zuflussgrössen kann bei der axial auftretenden Stosswelle 2 eine Höhenreduktion von 30 bis 50 % und bei der im Unterwasserkanal lokalisierten Wandwelle 3 eine Reduktion von 10 bis 30 % gegenüber der unverbauten Kontraktion erreicht werden. Das optimale Verengungsverhältnis der Unterwasserkanalbreite beträgt zwischen 50 und 80 % der Zuflussbreite. Mit Diffraktoren lassen sich Stosswellen deutlich reduzieren, sie sind bautechnisch einfach realisierbar und lassen sich auch nachträglich in bestehende Anlagen einbauen.

Bei geneigten Kanalkontraktionen ist sowohl bei der unverbauten Kontraktion als auch bei Verwendung von Diffraktoren der Gefällseffekt auf Welle 1 und 2 vernachlässigbar. Bei Welle 3 ist ein Senkungskurventerm zur Bestimmung der maximalen Höhe zu berücksichtigen.

Mit dem Konzept der Stosszahl als Produkt von Zufluss-Froudezahl und Wandablenkungswinkel lassen sich Stosswellen mit und ohne Diffraktoren beschreiben. Dabei liegt der Anwendungsbereich bei Stosszahlen zwischen 0,5 und 1,8. Ansonsten tritt entweder eine Unter- oder Überforcierung der Stosswellen auf.

Bei der unverbauten Kontraktion und bei Verwendung von Diffraktoren ist immer der *Maximalabfluss* für die Bemessung massgebend. Bei einer Überbelastung der Anlage tritt zudem kein sprunghafter Anstieg der Abflusstiefe infolge der Diffraktoren auf.

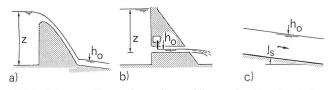
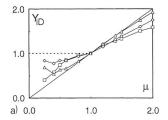


Bild 9. Arten von Bauwerken mit anschliessenden Kanalkontraktionen a) Überfallbauwerk, b) Grundablass und c) Schussrinne.



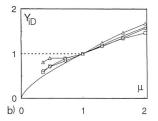


Bild 10. Normierte maximale Wellenhöhen $Y_{\mathrm{iD}}=h_{\mathrm{i}}/h_{\mathrm{iD}}$ mit i = (\square) 1, (\diamondsuit) 2 und (Δ) 3 in Abhängigkeit des Durchflussverhältnisses $\mu=Q/Q_{\mathrm{D}}$. (\neg) $Y_{\mathrm{oD}}=h_{\mathrm{o}}/h_{\mathrm{oD}}$ nach a) Grundablass Gleichung (25) und b) Kanal Gleichung (26).

Bezeichnungen

Algebraische Zeichen:

A		Ablenkungspunkt
В		Reflexionspunkt
C		Aufprallpunkt Welle 3
E		Endpunkt
b	[m]	Kanalbreite
F	[-]	Froudezahl
g	$[ms^{-2}]$	Gravitationskonstante
g h	[m]	Fliesstiefe
J_{e}	[-]	Energieliniengefälle
$J_{\rm s}$	[-]	Sohlengefälle
L	[m]	Länge
Q	$[m^3s^{-1}]$	Durchfluss
R	[-]	Reynoldszahl
S	[-]	Θ F Stosszahl
V	[m/s]	Fliessgeschwindigkeit
X	[m]	Längskoordinate
X	[-]	relative Längskoordinate
y	[m]	Querkoordinate
Y = Y	[-]	normierter Wasserspiegel
α	[°]	Neigungswinkel
ß	[-,°]	Stosswinkel
Δ	[-]	Differenz
Θ	[-,°]	Wandablenkungswinkel
Ω	[-]	$1-\omega$ Verengungsverhältnis
ω	[-]	$b_{\mathrm{e}}/b_{\mathrm{a}}$ Breitenverhältnis

Indizes:

a b	Anfangsquerschnitt breitenbezogen
e	Endquerschnitt
c	kritisch
i	Welle i mit $i = 1-3$
K	Kanalkontraktion
m	Minimum
N	Normalabfluss
O	Zuflussquerschnitt
u	Unterwasser

Literatur

Berger, R. C., und Stockstill, R. L. (1995): «Finite element model for high-velocitiy channels». Journal of Hydraulic Engineering 121(10): 710–716

Chaudhry, M.H. (1993): «Open-channel flow». Prentice-Hall, Inc.: New Jersey.

Ellis, J. (1985): "Numerical modelling of spillway flows". The hydraulics of floods and flood control, Cambridge UK B1: 73–90. Hager, W. H., und Bretz, N. V. (1987): Diskussion zu "Simplified design of contractions in supercritical flow". Journal of Hydraulic Engineering 113 (3): 422–425.

Hager, W. H. (1989): "Supercritical flow in channel junctions". Journal of Hydraulic Engineering 115 (5): 595–616.

Hager, W. H., Schwalt, M., Jimenez, O., und Chaudhry, M. H. (1994): «Supercritical flow near an abrupt wall deflection». Journal of Hydraulic Research 32(1): 103–118.

Harrison, A.J.M. (1966): "Design of channels for supercritical flow". Proc. Institution Civil Engineers, London 35: 475–490; 36: 557–565.

Heartz, R.E., Thomas J.A., und Grout, R.E. (1954): «Engineering aspects of the Peribonka developments». The Engineering Journal of Canada 37(9): 1051–1067.

Ippen, A.T. (1951): «Mechanics of supercritical flow». Trans. ASCE 116: 326–346.

Ippen, A.T., und Dawson, J. H. (1951): «Design of channel contractions». Trans. ASCE 116: 268–295.

Mazumder, S. K., und Hager, W. H. (1993): «Supercritical expansion in Rouse modified and reversed transitions». Journal of Hydraulic Engineering 119 (2): 201–219.

Regan, R.P., und Scherich, E.T. (1988): «Spillway design and construction». Advanced dam engineering for design construction and rehabilitation. Jansen R.B. ed. Van Nostrand Reinhold: New York.

Reinauer, R. (1995): «Kanalkontraktionen bei schiessendem Abfluss und Stosswellenreduktion mit Diffraktoren». Dissertation 11320: ETH Zürich.

Reinauer, R., und Hager, W.H. (1996a): «Shockwave in air-water flow». Journal of Multiphase Flow 22 (6): 1255–1263.

Reinauer, R., und Hager, W.H. (1996b): «Shockwave reduction by chute diffractors». Experiments in Fluids 21: 209–217.

Reinauer, R. (1996): «Unverbaute Kanalkontraktionen bei schiessendem Abfluss». Österreichische Wasser- und Abfallwirtschaft 48 (3/4): 101–108.

Täubert, U. (1971): «Der Abfluss in Schussrinnenverengungen». Der Bauingenieur 46 (11): 385–392.

Tursunov, A. A. (1965): «The methods of governing of geometrical forms of supercritical high velocity flows». 11 IAHR Congress Leningrad 1 (23): 1–9.

Vischer, D. (1988): «Von einem Kinderspiel zum hydrodynamischen Gestaltungsprinzip». Schweizer Ingenieur und Architekt 106 (6): 138–141.

Vischer, D. L., und Hager, W. H. (1994): "Reduction of shockwaves: a typology". International Journal on Hydropower and Dams 1 (4): 25–29

Verdankung

Die Basis der vorliegenden Publikation stellt eine vom Schweizerischen Nationalfonds finanzierte Dissertation dar (*Reinauer*, 1995). Vorzüglicher Dank für die Unterstützung der Arbeit gilt meinem Doktorvater Prof. Dr. Dr. h. c. D. Vischer und ebenfalls Prof. Dr. W. H. Hager. Für die praktischen Anregungen sei Prof. R. Sinniger, ETH Lausanne, herzlichst gedankt.

Adresse des Verfassers: Dr. sc. techn., dipl. Bauing. ETH Roger Reinauer. Hauptabteilungsleiter Stadtentwässerung, Amt für Umwelt und Energie Basel-Stadt, Hochbergerstrasse 158, CH-4019 Basel.

Auswirkungen der neuen Stauanlagenverordnung auf Flusskraftwerke

Walter Hauenstein

1. Einleitung

Am 1. Januar 1999 wurde die neue Verordnung über die Sicherheit der Stauanlagen oder kurz Stauanlagenverordnung (StAV) in Kraft gesetzt (vgl. Ankündigung in «wasser, energie, luft», Heft 1/2-1999). Sie löst die Talsperrenverordnung aus dem Jahre 1957 ab und stützt sich wie diese auf das Bundesgesetz über die Wasserbaupolizei, Artikel 3^{bis}.

Die neue Stauanlagenverordnung gilt für alle Anlagen zum Aufstau oder zur Speicherung von Wasser oder Schlamm. Als Stauanlagen gelten auch Bauwerke für den Rückhalt von Geschiebe, Eis und Schnee, sofern sie Wasser aufstauen können. Damit gilt die neue Verordnung insbesondere auch für Stauwehre, wie sie in Flusskraftwerken vorkommen. Solche Anlagen fielen in der alten Talsperrenverordnung nicht unter den Begriff «Talsperren».

Der Geltungsbereich basiert wiederum auf einem Grössenkriterium. Die Verordnung gilt für Stauanlagen, deren Stauhöhe über Niederwasser des Gewässers oder über Geländehöhe mindestens 10 m beträgt oder die bei mindestens 5 m Stauhöhe einen Stauraum von mehr als 50 000 m³ aufweisen. Sie gilt aber auch für Stauanlagen mit geringeren Ausmassen, sofern sie eine besondere Gefahr für Personen oder Sachen darstellen. Das oben erwähnte Grössenkriterium ist von der alten Talsperrenverordnung über-

