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Summary

The fluid mechanics of blood flow in the pharynx and cibarium of Phlebotomus

papatasi are described using a simple static model. The flow is characterized

as viscous laminar. The Hagen-Poiseuille equation is used to assess the
effects of attached parasites in the foregut of Leishmania-infecled sandflies on
blood flow. The reductions in flow rate imposed by parasite colonization ofthe
pharynx and cibarium will reduce the ability of an infected fly to take a bloodmeal,

thus encouraging further probing, enhancing transmission. Regurgitation
of the contents of the foregut is also possible. This will aid the deposition of
infective forms from the foregut. Transmission by means of regurgitation of
parasites from the midgut is considered unlikely.

Key words: sandflies; P. papatasi; feeding behaviour; Leishmania; transmission;
fluid mechanics; blood flow; viscous flow.

Introduction

Many authors have noted the difficulty which sandflies infected with
Leishmania often experience in obtaining a bloodmeal (Smith et al., 1940; Adler
and Ber, 1941; Chung et al., 1951; Strangeways-Dixon and Lainson. 1966;

Williams, 1966; Killick-Kendrick et al., 1977, 1985a; Beach et al.. 1984. 1985).
Killick-Kendrick et al. (1977) found that 14 out of 17 Lutzomyia longipalpis
infected with Leishmania mexicana amazonensis experienced difficulty in
taking a second bloodmeal. Many probed repeatedly but took only a small meal.

Correspondence: Dr. David Jefferies, Swiss Tropical Institute. Socinstrasse 57. CH-4051 Basel.

Switzerland

43



Analysis ofthe data of Chung et al. (1951), by the same authors showed that
Phlebotomus chinensis was able to transmit L. donovani to hamsters with greater
success when flies probed but took no blood. The chances of transmission were
significantly lower when flies took a bloodmeal. Recently Beach et al. (1985)
have provided strong evidence that infections anterior to the midgut are necessary

in order to adversely affect feeding behaviour.
Shortt et al. 1926) and Shortt and Swaminath (1928) found that the foregut

of infected flies anterior to the oesophagus appeared to be blocked by parasites.
Smith et al. (1940) identified blocked flies as those that pierced the skin ofthe
host, but were unable to obtain blood. Of 58 infected P. argenlipes, 49 were
found on dissection to be heavily infected with flagellates of L. donovani. The
role of the occlusion of the foregut by parasites in the alteration of sandfly
feeding behaviour has been largely overshadowed by the possible implications
for the transmission ofLeishmania. Transmission by regurgitation has received
support from a number of authors (Smith et al., 1940; Napier. 1946; Parrot and
Donatien, 1952: Bray, 1974; Lainson et al., 1977). However, Adler and Theodor
(1934, 1957) rejected this idea, pointing out that the pharynx and buccal cavity

cibarium) have powerful dilator muscles which they inferred would increase
their internal diameter sufficiently to allow the ingestion of blood, even when
heavily infected with parasites. These authors also provided convincing
evidence that transmission of Leishmania is accomplished by the transfer of
promastigote "proboscis forms" from the fascicle ofthe fly into the skin ofthe host
(Adler and Theodor, 1929, 1931, 1934).

Killick-Kendrick et al. 1977) suggested that parasites in the cibarium block
the pores of chemoreceptors responsible for the initiation of engorgement,
thereby increasing the frequency ofprobing in infected flies. However, no direct
evidence of this has been put forward.

Recent studies of vector-parasite interactions between Glossina and salivarian

trypanosomes (Jenni et al., 1980; Livesey et al., 1980) prompted Killick-
Kendrick and Molyneux (1981), to suggest that proper functioning ofthe
pharyngeal and cibarial pumps may be adversely affected by the presence of parasites

in the foregut, which may impede the flow of blood.
In this paper an attempt is made to determine the effects of attached

parasites within the foregut of Leishmania-infecled sandflies on the uptake of
blood, applying the principles of fluid mechanics. The procedure used was
adapted from that of Livesey et al. (1980). Phlebotomus papatasi was chosen as
the subject of this study as all the data necessary for the calculation ofbloodflow
were available from published literature.

Materials and Methods

Calculation of foregut dimensions: the sizes ofthe partially and fully expanded cross-sections of
the pharynx and cibarium of P. papatasi were estimated from the dimensions ofthe corresponding
collapsed lumen, illustrated in Adler and Theodor (1926). Scale drawings were then made and the
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necessary calculations performed, assuming triangular and circular cross-sections for the partially
and fully expanded foregut lumens, respectively.

Calculation of increased pressure drop: for circular cross-sections the increased pressure drop
(-Ap) was calculated according to Poiseuille's law as the inverse ofthe fourth power of the diameter
(see Livesey et al.. 1980). The pressure drop in tubes of various cross-sectional shapes can bc

determined from the fRe factor. For triangular ducts where h/b>0.5, as in all examples considered
here, fRe 13 (Shah and London. 1978). For a circular duct fRe 16. The increased (-Ap) for a

triangular cross section is thus 13/16 ofthat of a circular duct ofthe same hydraulic diameter.

Results

In order to estimate the effects of parasites attached within the pharynx and
cibarium it is first necessary to characterize the type of flow encountered. The
foregut, pumping chambers ofthe sandfly have distensible walls and change in
both shape and dimensions as blood is pumped toward the midgut. A rigorous
analysis of unsteady flow, i.e. a uni-directional flow with a superimposed
oscillating pressure gradient in a tube with non-rigid walls, is not possible, as flow

lOOjun

Fig. 1. Cross-sections ofthe pharynx and cibarium of P. papatasi. a) Posterior region of pharynx
behind brain; b) mid-region of pharynx; c) anterior end of pharynx; d) mid-region of cibarium. Kev:
c shape of collapsed cross-section; p partially expanded lumen; f fully expanded lumen.
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cannot be time-averaged over the pumping cycle. However, an approximation
of flow in such a passage can be arrived at by considering flow through a typical
cross-section during different stages ofthe pumping cycle. In the present analysis

a single cross-section of the cibarium and 3 separate cross-sections of the
pharynx are used to illustrate flow (Fig. 1).

Flow regime

In a rigid tube of constant cross-sectional area the flow regime is characterized

by the Reynolds number (Re). A parameter termed the Womersley number
(a) is used to assess the effects of an oscillating pressure gradient superimposed
on a fully developed steady flow (Womersley, 1955; Uchida, 1956).

Reynolds number: Re VDh/v

where: Dh hydraulic diameter of food canal
V velocity of blood
v kinematic viscosity of blood

Hydraulic diameter (Df): the dimensions ofthe expanded cross-sections ofthe cibarium and
pharynx of P. papatasi are shown in Fig. 1. Dh is calculated from the following relationship:

„ 4 x cross-sectional area
Ui,

perimeter

This can be used to determine the hydraulic diameter of passages of a wide variety of cross-sectional

shapes. For a circular tube of radius r, this reduces to 2r, which is the actual diameter.

Velocity (V): the velocity ofthe blood is calculated from the relationship: AV Q

where: A cross-sectional area of food canal

Q volume flow rate

The volume flow rate is equivalent to the amount of blood taken per second, i.e. the volume
divided by the duration ofthe bloodmeal.

Theodor 1936) gives an average first bloodmeal weight of 0.45 mg for P. papatasi. Div idtng by
the density of blood (p 1.06 mg/mm') this gives a bloodmeal volume of 0.42 mm\ The duration of
the bloodmeal is about 2 min 30 sec (Whittingham and Rook, 1923).

Kinematic viscosity (v): Livesey et al. (1980) used a value of 3x10"'' mV1 for the kinematic
viscosity of blood.

Womersley parameter: a DhX\ to/v

where co radian or circular frequency 2tt Hz).

Adler and Theodor (1926) observed that the cibarial pump of P. papatasi contracted up to 120

times per minute, a frequency of 2 Hz.

The resultant Reynolds and Womersley numbers for each cross-section
considered are shown in Table 1. The magnitude of the Reynolds numbers
(Re<Kl) reveals that the flow is markedly laminar and that viscous forces
predominate. In addition the values of a (a<l) confirm that the unsteady
component of the flow, caused by the action of the cibarial and pharyngeal
pumps, will not seriously alter the velocity distribution, which will remain in
phase with the pressure fluctuations (Livesey et al., 1980).
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Table 1. Characterization ofthe flow regime in the pharynx and cibarium of P. papatasi

Cross-section' Dimensions of Cross- Perimeter D„ (m) Re a

cross-sections sectional (m)
(pail- area (m:)

b li D

Pharvnx a P 52 45 _ 1.17x10-' 1.56x10-' 3.0x10 s 2.4x10 ; 6.1x10 ;

f - - 60 2.83x10-" 1.88x10-"' 6.0x10 ' 1.9xl0-; 1.2x10

b P 25 33 - 4.12x10-" 9.4 xlO-4 1.7x10-' 3.9x10"- 3.5x10 ;

f 46 1.66x10-" 1.44x10-' 4.6x10-' 2.6xl0-: 9.4x10 '

c P 24 21 - 2.52x10-" 7.2 xlO-4 1.4x10' 5.2xl0-; 2.9x10 -'

f - 32 8.04xl0-? 1.0 xlO-3 3.2x10-" 3.7x10 ; 6.5x10 ;

Cibarium d f 41 32 - 6.56x10-" 1.17x10-' 2.2x10 "3 3.1xl0-: 4.5x10 ¦'

1 Letters correspond to the drawings in Fig. 1

:b base width; h height; D diameter: m metre

The viscous nature of blood flow in blood feeding has been confirmed by
studies with various groups of haematophagous arthropods (Daniel and King-
solver. 1983; Jefferies, 1984). Furthermore any possible error in the magnitude
of the values used to calculate the above parameters, such as the size and
duration ofthe bloodmeal, will not alter the nature ofthe flow. The Re number
could be increased 100-fold and a 10-fold and the flow would remain viscous
laminar.

Thus the Hagen-Poiseuille theory can be applied to the time-averaged flow and time-averaged
pressure gradient when assuming a constant cross-sectional area. i.e.

nD„-' (-Ap)

8p L

where: p dynamic viscosity vxp)
(-Ap) negative pressure drop
L length of food canal

Clearly the pressure drop (-Ap) required to maintain a given flow rate will be most affected by
changes in the diameter ofthe food canal, as the flow rate is inversely proportional to the fourth power
ofthe diameter.

Effects ofattached parasites onflow
Molyneux and Killick-Kendrick (in press) state that paramastigote forms of

Leishmania found attached in the foregut are typically 5-10 microns in length
and 4-6 microns wide. Taking a conservative view ofthe occlusion ofthe lumen
ofthe pharynx by parasites, the reduction in hydraulic diameter of each cross-
section shown in Fig. 1, assuming an average parasite length of 7.5 microns, has
been used to estimate the factor by which the pressure drop must be increased in
order for the fly to feed normally. Or conversely, the factor by which the flow
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Table 2. Occlusion of foregut lumen by attached parasites

Cross-section D„ (pm) Proportion Factor of
unoccluded increase in

(-Ap)fRe un- occluded
occluded

Pharynx a P 13 30 15 0.5 130
f 16 60 45 0.75 3.2

b P 13 17 2 0.12 3920
f 16 46 31 0.67 5.0

c P 13 14 0 0 oo

f 16 32 17 0.53 12.7

Cibarium d f 13 22 12-1 0.54 9.5

' Letters and numbers correspond to the drawings in Fig. 1

'Estimated with only dorsal wall colonized i.e. :A reduction in diameter compared with that ofthe
pharynx.

rate will be reduced if (-Ap) remains the same (Table 2). In infections of the
cibarium, paramastigotes normally colonize only the roof or dorsal wall
(Killick-Kendrick, 1979). Hence, the extent of occlusion is estimated accordingly.

It is clear from the data that an infection in which a substantial length ofthe
foregut is colonized by paramastigotes could seriously impair the ability of a

sandfly to take a bloodmeal (Table 2). In the posterior region of the pharynx,
where the lumen is at its largest, the pressure drop (-Ap) is increased at least by-a
factor of 3 when fully expanded, and by a factor of 13 when only partially
expanded. However, this region ofthe pharynx, which lies behind the brain.
only occupies a very short proportion of its total length. Along the greatest
proportion ofthe length ofthe pharynx the dimensions are those ofcross-section
(b) (Fig. 1 tapering towards (c) (Fig. 1 at the anterior end (Adler and Theodor,
1926). Hence for the majority of its length (-Ap) in the pharynx is increased 5 to
13 fold, even when the walls are fully expanded. At other stages ofthe pumping
cycle flow, to all practical extents and purposes, virtually ceases. Colonization of
the cibarium causes a 10-fold increase in (-Ap) (Fig. 1, d), adding to the already
considerable problems an infected fly may have in maintaining the rate ofblood
uptake at a comparable level to that of an uninfected fly.

An additional factor which must be considered is the effect of attached
parasites on the pumping efficiency of the pharynx and cibarium. The power
generated by the pharyngeal and cibarial dilator muscles is a product ofthe force
produced by the contraction ofthe muscles, multiplied by the distance moved
by the walls of these chambers. Occlusion ofthe lumen ofthe cibarium and/or
the pharynx by parasites will effectively reduce the latter, decreasing the pumping

power to an extent equivalent to the reduction in diameter ofthe lumen (see
Table 2). Thus a pharyngeal infection would decrease the power output ofthe
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pharyngeal dilator muscles by 25-50% were the same force exerted. Similarly in
the cibarium the loss of power would be about 50%.

It is possible that an infected fly may generate greater force in distress.
However, even if the force could be raised to the levels indicated as necessary by
the required pressures to achieve the same flow rate as in normal feeding, the

power requirements would be directly proportional to the required pressures
(i.e. a D4). The maintenance of such power outputs is likely to be momentary at
the factors quoted of say 5-10 fold or above. Thus the power losses experienced
by a heavily infected fly will decrease pump performance and therefore prevent
effective compensation for a reduced flow rate.

Discussion

Adler and Theodor (1934, 1957) rejected the theory that the foregut of an
infected sandfly could be blocked to such an extent that the uptake of blood
would be prevented, claiming that the pharynx and cibarium as pumping
chambers with strong dilator muscles were capable of great distention which
would allow the unimpeded passage of blood. The above analysis shows this
argument to be invalid. Despite expansion, colonization by parasites will reduce
flow through the foregut and decrease the power output of the cibarial and
pharyngeal pumps to a significant extent.

It is now well documented that sandflies can transmit Leishmania by
probing alone without engorgement (Killick-Kendrick et al., 1977, 1985a;
Killick-Kendrick, 1979; Beach et al., 1984, 1985) by the inoculation of infective
free-swimming promastigotes from the proboscis into the wound (Killick-Kendrick,

1979; Killick-Kendrick and Molyneux, 1981). The observation that
infected sandflies indulge in multiple probing is explained by their inability to
engorge as a result of effective blockage of the pharynx. Reductions in the
sensory input to flow-detecting mechanoreceptors on the labrum and in the
cibarium will induce a fly to break off probing, while the "hunger state" brought
on by its inability to feed will ensure further probing attempts. Thus transmission

will be enhanced as infective proboscis forms can be extruded at each probe
(Beach et al., 1984, 1985; Killick-Kendrick et al, 1985a, b).

Killick-Kendrick et al. (1977) suggested that parasites attached in the
cibarium might cover the pores of chemosensilla thought to be present in the
cibarium, thus preventing engorgement and encouraging continued probing.
However, the presence of chemoreceptors in the cibarium of sandflies has not
been established (Jefferies, 1984; in preparation). If found, such receptors are
likely to be on the ventral wall ofthe cibarium, their position in all other groups
of Diptera examined (Rice, 1970). Parasites in the cibarium are attached mainly
to the roof or dorsal wall (Killick-Kendrick, 1979), and would therefore be

unlikely to interfere with the function of these sense organs. The only sensilla
found within the cibarium to date (Lewis, 1984), appear to be mechanoreceptors
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arising from the dorsal wall which possibly monitor the flow ofblood within the
cibarium (Lewis, 1975; Jefferies, 1984; in preparation). Direct interference with
the function of these receptors is possible, as with trypanosome-mechanorecep-
tor interactions in the proboscis of Glossina (Jenni et al., 1980). However, once
an infection has reached this site, such effects are likely to be of minimal
importance compared to the effects of the occlusion of the pharynx.

Recently it has been shown that forms infective to the vertebrate host
develop in the midgut of sandflies as early as day 3 post-infection and are
especially virulent on day 5 after the bloodmeal has been passed (Sacks and
Perkins, 1984, 1985). This clearly gives credence to the theory that regurgitation
of parasites from the midgut is a possible mode of transmission (see Molyneux.
1977; Killick-Kendrick, 1979).

It was not possible to determine the effects of parasites in the midgut on
flow as the dimensional data are lacking and flow into the midgut is difficult to
model. However, indirect evidence suggests that midgut infections alone are not
capable of regularly initiating infections in the vertebrate host. Adler and Theodor

(1931, 1934) showed that only P. perniciosus flies which had proboscis
infections of L. infantum deposited parasites when induced to feed in a Hertig
apparatus.

Furthermore it appears that invasion ofthe anterior station is necessary to
alter the feeding behaviour of infected flies (Smith et al.. 1940: Beach et al,
1985). The latter authors found that flies with midgut only infections fed
normally. This hardly fits in with the theory that transmission of Leishmania is

analogous to the transmission of plague (Shortt et al., 1936; Shortt and Swaminath,

1928; Smith et al.. 1940), where blockage ofthe proventriculus ofthe flea
vector causes it to make repeated efforts to obtain blood and thereby regurgitate
plague organisms into the wound (Bacot and Martin, 1914).

It appears from the work of Sacks and Perkins (1984. 1985) that were
midgut forms readily transmissible to the vertebrate host then there would be no
necessity for further development in the vector, which undoubtedly occurs
(Killick-Kendrick, 1979). Killick-Kendrick (loc. cit.) has presented the strongest
arguments to support the view that the transmission of Leishmania by bite is

accomplished by the transfer of small free-swimming promastigotes from the
fascicle of the fly into the tissues of the vertebrate host (Adler and Theodor.
1931, 1934, 1957). However, due to the occasional transmission of Leishmania
in laboratory experiments in the apparent absence of proboscis forms (Lainson
et al., 1977; Killick-Kendrick et al., 1985b), the impression that transmission
can occur when parasites are regurgitated from other regions ofthe foregut has

persisted (Killick-Kendrick, 1979).
Lainson et al. (loc. cit.) achieved transmission ofL. chagasi to hamsters by

the bite of Lutzomyia longipalpis from day 7 post-infection onwards. Although
no proboscis infections were found by dissection until day 14, free-swimming
promastigotes were observed in the pharynx of one fly 7 days after infection.
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Any impairment ofthe feeding ability of an infected fly caused by the occlusion
of the pharynx by parasites would increase the possibility of regurgitation of
blood, together with parasites from the foregut. Thus although passive transfer
of infective forms from the proboscis into the skin ofthe host is likely to be the
normal mode of transmission (Killick-Kendrick. 1979). active expulsion of
infective parasites from other regions of the foregut is a possibility.

It has been demonstrated that forms from the cibarium and pharynx (Adler
and Theodor, 1957) and from the midgut (Sacks and Perkins. 1984. 1985) are
infective for the vertebrate host when inoculated in large numbers. Promastigotes

from the proboscis ofthe fly on the other hand, are likely to be inoculated
in very low numbers. The ability of these forms to survive in the host is therefore
of paramount importance. Thus the production of a morphologically distinct
form, seen to arise initially in the thoracic midgut (L. infantum in P. perniciosus:
Adler and Theodor. 1931) or the pharynx (L. Infantum in P. ariasi: Killick-
Kendrick. 1979; L. chagasi in Lutzomyia longipalpis: Lainson et al.. 1977).
which subsequently migrates to the proboscis, may represent an adaptation to a

form more capable of surviving the transition to the vertebrate host, in a similar
manner to the appearance of metacyclic forms ofsalivarian trypanosomes in the
vector (Baker, 1977).
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