Spectre hertzien du cyclohexanol

Autor(en): Arnoult, R. / Lebrun, A. / Boullet, Cl.

Objekttyp: Article

Zeitschrift: Archives des sciences [1948-1980]

Band (Jahr): 9 (1956)

Heft 5: Colloque Ampère

PDF erstellt am: **14.09.2024**

Persistenter Link: https://doi.org/10.5169/seals-739000

Nutzungsbedingungen

Die ETH-Bibliothek ist Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an den Inhalten der Zeitschriften. Die Rechte liegen in der Regel bei den Herausgebern. Die auf der Plattform e-periodica veröffentlichten Dokumente stehen für nicht-kommerzielle Zwecke in Lehre und Forschung sowie für die private Nutzung frei zur Verfügung. Einzelne Dateien oder Ausdrucke aus diesem Angebot können zusammen mit diesen Nutzungsbedingungen und den korrekten Herkunftsbezeichnungen weitergegeben werden.

Das Veröffentlichen von Bildern in Print- und Online-Publikationen ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Die systematische Speicherung von Teilen des elektronischen Angebots auf anderen Servern bedarf ebenfalls des schriftlichen Einverständnisses der Rechteinhaber.

Haftungsausschluss

Alle Angaben erfolgen ohne Gewähr für Vollständigkeit oder Richtigkeit. Es wird keine Haftung übernommen für Schäden durch die Verwendung von Informationen aus diesem Online-Angebot oder durch das Fehlen von Informationen. Dies gilt auch für Inhalte Dritter, die über dieses Angebot zugänglich sind.

Ein Dienst der *ETH-Bibliothek* ETH Zürich, Rämistrasse 101, 8092 Zürich, Schweiz, www.library.ethz.ch

Spectre hertzien du cyclohexanol

par R. Arnoult, A. Lebrun et M^{11e} Cl. Boullet Laboratoire de radioélectricité et électronique, Faculté des sciences, Lille, France.

Afin de mettre au point, d'améliorer et de comparer entre elles dans un large domaine de fréquence différentes méthodes de mesure, nous avons examiné les propriétés diélectriques du cyclohexanol, entre 0,5 et 10.000 MHz. Les déterminations des parties réelle et imaginaire de la permittivité complexe $\varepsilon^* = \varepsilon' - j\varepsilon''$ ont été effectuées à température constante et fréquence variable (pour le liquide: à 25 et 45° C, pour le solide: à 1° C), en s'efforçant de n'utiliser qu'un nombre aussi restreint que possible de cellules de mesure différentes. Toutes ces cellules étaient du type coaxial, avec une faible distance entre les armatures afin de permettre au diélectrique étudié de se mettre rapidement en équilibre thermique.

Les méthodes suivantes ont été utilisées: a) pont d'admittances du type Sauty [1]; b) pont double-T 821-A General Radio; c) pont 1601-A General Radio; d) résonance de tension avec montage à éléments localisés [2]; e) résonance de tension avec montage à éléments répartis [3]; f) admittancemètre 1602-B General Radio; g) détermination du taux d'ondes stationnaires dans un guide d'ondes.

En 1935, White et Morgan [4] avaient étudié les variations de ε' du cyclohexanol solide, en opérant à température variable, aux fréquences 1, 10 et 100 kHz; récemment [5] M^{me} Reinisch a repris plus largement cette étude et a mesuré ε' et ε'' en opérant à fréquence variable (de 10 kHz à 40 MHz) pour différentes températures comprises entre + 49 et — 42° C; la bande de fréquence utilisée ne permettait que l'étude du premier domaine de dispersion.

Le cyclohexanol que nous avons examiné (échantillon provenant des établissements Eastman) avait une température de fusion de $22^{\circ},5 \pm 0,5^{\circ}$ C. Les résultats expérimentaux (tabl. I) ont été analysés à l'aide des trois diagrammes [6]: $\epsilon'' = \varphi(\epsilon'), \epsilon' = \varphi(\nu \epsilon''), \epsilon' = \varphi(\epsilon''/\nu)$. Le premier (cercle de Cole et Cole) permet de déterminer l'importance d'une éventuelle dis-

TABLEAU I.

·	1 1		ı	
Fré- quences v (MHz)	Mé- thodes utilisées	1° C ± 0,5 (so.)	Températures $25^{\circ}~\mathrm{C}~\pm~0,5~$ (liq.)	45° C ± 0,5 (liq.)
		ε' ε''	ε ^t ε''	ε' ε''
0,5	a b		16,8 0,15	
0,0	u 0	*	(0,1) $(0,03)$	
0,7	a b	18,3 0,63	(3,1)	
		(0,1) $(0,05)$		
1	a b d	18 1,41	16,8 0,18	15,3 0,09
		(0,1) $(0,05)$	(0,1) $(0,05)$	(0,1) $(0,03)$
2	a b d	17,52 $2,65$	16,8 0,45	
		(0,1) $(0,05)$	(0,1) (0,05)	
3,5	a b d		16,8 0,70	
1	_		(0,1) $(0,05)$	
4	a b	16,28 4,66		
	, ,	(0,1) $(0,05)$	40.5	450 010
6	a b d	14,57 5,92	16,7 1,08	15,3 0,40
- 8	a b	(0,1) $(0,1)$	(0,1) $(0,05)$	(0,1) $(0,05)$
0		$ \begin{array}{ccc} 12,70 & 6,77 \\ (0,1) & (0,1) \end{array} $		
10	$\begin{bmatrix} a & b & d \end{bmatrix}$	(0,1) $(0,1)$ $11,15$ $7,10$	16,6 1,75	15,3 0,86
10	a o a	(0,1) $(0,15)$	(0,1) $(0,05)$	(0,1) $(0,05)$
12	$\begin{vmatrix} a & d \end{vmatrix}$	10,05 7,08	(0,1) (0,03)	(0,1) (0,00)
1		(0,1) $(0,15)$		
16	a c d	8,62 6,62	15,94 2,61	15,3 0,97
		(0,15) $(0,1)$	(0,15) $(0,05)$	(0,1) $(0,05)$
23	a c d	7,05 5,60		(-,-,
		(0,15) $(0,10)$		
33	a c d	5,87 4,79	14,50 4,8	15,3 1,94
		(0,05) $(0,1)$	(0,2) $(0,1)$	(0,2) $(0,1)$
48	a c d	5,13 3,52	12,2 6,2	15 2,2
		(0,05) $(0,1)$	(0,2) $(0,15)$	(0,2) $(0,1)$
72	c e f	4,60 2,74	10 6,4	14,8 2,85
0.0	,	(0,1) $(0,1)$	(0,15) $(0,15)$	(0,2) $(0,15)$
96	c e f	4,26 $2,2$	8 6,1	13 4,8
162	0.4	(0,1) $(0,08)$	(0,15) $(0,1)$ $(0,1)$	(0,2) $(0,15)$
102	e f	4,09 1,4 $(0,1)$ $(0,08)$	$\begin{array}{ccc} 5,73 & 4,12 \\ (0,1) & (0,1) \end{array}$	$ \begin{array}{ccc} 10,55 & 5,5 \\ (0,2) & (0,15) \end{array} $
265	e	3,7 $1,0$	4,65 2,55	8,7 $5,2$
-00		(0,1) $(0,08)$	(0,1) (0,08)	(0,2) $(0,15)$
497	e	$3,40 \qquad 0,62$	4,42 2,20	5,97 4,35
	10770	(0,1) $(0,05)$	(0,05) $(0,05)$	(0,1) $(0,1)$
700	e		4,10 1,67	5 2,92
			(0,05) $(0,05)$	(0,1) $(0,1)$
1388,8	e	$3,21 \qquad 0,40$	3,77 0,96	4,16 1,75
		(0,05) $(0,04)$	(0,05) $(0,05)$	(0,1) $(0,05)$
3300	e	$3,19 \qquad 0,33$	3,31 0,63	3,57 1,01
00==		(0,06) $(0,03)$	(0,05) $(0,05)$	(0,08) $(0,06)$
9375	g	2,69 0,22	3,04 0,38	$3,26 \qquad 0,54$
1		(0,05) $(0,02)$	(0,03) $0,03)$	(0,05) $(0,05)$
			1	

Les valeurs de ϵ'' sont celles obtenues après correction de la conductivité à fréquence nulle; l'erreur absolue est indiquée entre parenthèses sous chaque valeur de ϵ' et de ϵ'' .

tribution de temps de relaxation; les deux autres se prêtent particulièrement bien, par extrapolation linéaire et mesure de la pente, à la détermination des paramètres caractérisant chaque domaine de dispersion: valeurs limites $(\varepsilon'_0 \text{ et } \varepsilon'_\infty)$ de la permittivité et fréquence critique ν_c (Tabl. II).

	Tempé- rature	ν _{C1} (MHz)	ν _{C2} (MHz)	$arepsilon_{\infty1}=arepsilon_{02}$	ε∞2
Liquide »	45° C 25	$\begin{array}{c} 210 \pm 10 \\ 65,5 \pm 0,5 \end{array}$	$egin{array}{cccc} 2400 & \pm & 400 \ 1000 & \pm & 200 \ \end{array}$	$\begin{array}{ c c c } & \textbf{4,1} & \pm & 0,2 \\ \textbf{4,3} & \pm & 0,2 \end{array}$	$\begin{array}{c} 3,4 \ \pm \ 0,5 \\ 3,5 \ \pm \ 0,4 \end{array}$
Solide	1	$10\ \pm\ 0,2$	100 ± 5	$\textbf{4,8}\ \pm\ 0,2$	$3,5\ \pm\ 0,2$

TABLEAU II.

Cette analyse nous a montré l'existence indiscutable, aux trois températures considérées, d'un deuxième domaine de dispersion. Les valeurs de $\varepsilon_{\infty 2}$ obtenues étant supérieures à n_{opt}^2 ($n_{opt}^2=2.14$), il existe même certainement une ou plusieurs autres régions de dispersion; la troisième apparaît déjà nettement, aux fréquences supérieures à 500 MHz, pour $t=1^{\circ}$ C.

On peut remarquer que le rapport v_{c2}/v_{c1} est du même ordre de grandeur à 45° et à 25° C. A ce point de vue le comportement du cyclohexanol liquide est semblable à celui de certains alcools aliphatiques à longue chaîne. Mais, par contre, alors que ceux-ci présentent, à la solidification, un saut brusque de la fréquence critique, on n'observe rien de semblable pour le cyclohexanol - ni pour le premier, ni pour le second domaine (qui paraissent se déplacer tous deux sensiblement de la même façon).

(Des mesures à -25° C sont actuellement en cours.)

- 1. LEBRUN, A., communication à ce colloque.
- 2. Onde électrique, mai 1955, p. 444-6.
 3. Annales de Physique, 10, 1955. pp. 16-70.
- 4. WHITE et MORGAN, J. Amer. Chem. Soc., 57, 1935, pp. 2071-80.
- 5. Reinisch, Mme, Comptes rendus Ac. Sci. Paris, 237, 1953, pp. 50-52 et 564-66.
- 6. Cole, K. S. et R. H. Cole, J. Chem. Phys., 9, 1941, pp. 341-51; R. H. Cole, J. Chem. Phys., 23, 1955, pp. 493-99.