Temps de relaxation diélectrique de l'eau dans la chabasie

Autor(en): Ducros, Pierre

Objekttyp: Article

Zeitschrift: Archives des sciences [1948-1980]

Band (Jahr): 11 (1958)

Heft 7: Colloque Ampère

PDF erstellt am: **13.09.2024**

Persistenter Link: https://doi.org/10.5169/seals-738845

Nutzungsbedingungen

Die ETH-Bibliothek ist Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an den Inhalten der Zeitschriften. Die Rechte liegen in der Regel bei den Herausgebern. Die auf der Plattform e-periodica veröffentlichten Dokumente stehen für nicht-kommerzielle Zwecke in Lehre und Forschung sowie für die private Nutzung frei zur Verfügung. Einzelne Dateien oder Ausdrucke aus diesem Angebot können zusammen mit diesen Nutzungsbedingungen und den korrekten Herkunftsbezeichnungen weitergegeben werden.

Das Veröffentlichen von Bildern in Print- und Online-Publikationen ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Die systematische Speicherung von Teilen des elektronischen Angebots auf anderen Servern bedarf ebenfalls des schriftlichen Einverständnisses der Rechteinhaber.

Haftungsausschluss

Alle Angaben erfolgen ohne Gewähr für Vollständigkeit oder Richtigkeit. Es wird keine Haftung übernommen für Schäden durch die Verwendung von Informationen aus diesem Online-Angebot oder durch das Fehlen von Informationen. Dies gilt auch für Inhalte Dritter, die über dieses Angebot zugänglich sind.

Ein Dienst der *ETH-Bibliothek* ETH Zürich, Rämistrasse 101, 8092 Zürich, Schweiz, www.library.ethz.ch

Temps de relaxation diélectrique de l'eau dans la chabasie

par Pierre Ducros

Laboratoire de Minéralogie-Cristallographie, Faculté des Sciences de Paris

Résumé. — La chabasie présente deux domaines de dispersion diélectrique en ondes kilométriques. Le domaine de plus haute fréquence a été étudié. Il correspond à une énergie d'activation E = 16 Kcal/mole à la pression ordinaire et 22 Kcal/mole sous 1 mm de Hg. La relaxation est attribuée à la rotation gênée des molécules d'eau qui se classent en deux groupes dans la structure. Les variations de E avec la pression sont expliquées par les changements de la teneur en eau du cristal.

La chabasie est une zéolite connue pour ses propriétés d'échangeur d'ion et de tamis moléculaire. C'est un hydrate de formule voisine de CaAl₂ Si₄ O₁₂ . 6H₂ O. L'eau « zéolitique » a une grande mobilité et il était normal de s'attendre à des propriétés diélectriques intéressantes.

Mesures.

L'étude a été faite sur une pastille de poudre comprimée dont les deux faces ont été peintes à l'argent. $\varepsilon = \varepsilon' - i\varepsilon''$ a été mesuré entre les fréquences 100 c et 100 Kc et les températures de 20° à 70° C. La pression était soit 1 atmosphère, soit 1 mm de mercure.

Appareillage.

Les mesures ont été faites sur un pont de Schering (General Radio Co.). La cellule de mesure (fig. 1) est étanche et thermostatée par la circulation d'un liquide à température constante dans le serpentin extérieur.

Résultats.

Les diagrammes de Cole-Cole [1] $\varepsilon'' = f(\varepsilon')$ font apparaître deux domaines de type Debye dont seul le premier peut être étudié avec préci-

sion. La correction de conductibilité en courant continu, d'ailleurs faible, a été faite par la mesure directe de ce terme (Iso-R-mètre Lemouzy). Une

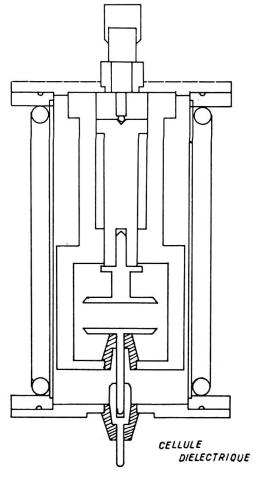
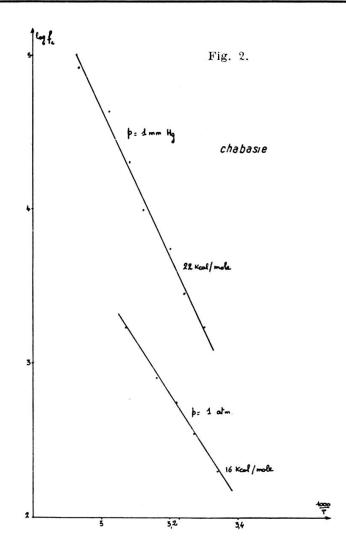


Fig. 1.

grande dispersion des temps de relaxation apparaît pour le premier domaine (fig. 3). Le calcul du temps le plus probable a été fait à l'aide de l'expression du champ de Powles [2]:

$$2 \pi f_c \tau \cdot \frac{3 \varepsilon_0}{2 \varepsilon_0 + \varepsilon_\infty} = 1$$


Cette hypothèse présente l'avantage de pouvoir écrire:

 ϵ total = $\Sigma \epsilon$ composants.

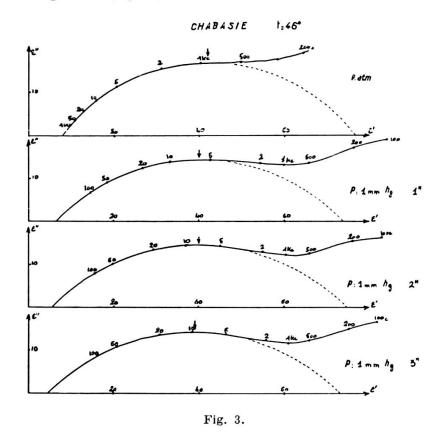
Les valeurs absolues de ε_{∞} et ε_{01} sont connues avec une précision de \pm 15%, les valeurs relatives à \pm 5% près.

a) Etude à pression constante de 1 atmosphère:

t	fc	α	τ.105	
26°	185	0,45	61	
33	375	0,43	30 20	
37	560	0,43		
43	820	0,41	13,8	
53	1.600	0,41	7,0	

 ε_{∞} et ε_{01} ont des valeurs constantes voisines de 8 et 65 respectivement. Le tracé de la droite $\log fc$, $\frac{1}{T}$ (fig. 2) permet la mesure de l'énergie et de l'entropie d'activation.

$$E \,=\, 16 \,\,\pm\, 1 \,\,\, Kcal/mole \qquad \Delta S \,=\, 5 \,\,\pm\, 0.5 \,\, cal/d^{\circ}/mole.$$


b)	Etude	à.	pression	constante	de	1	mm	de.	mer	cure	•
D)	Linuc	u	pression	constante	uc	1	110110	uc	11661	curc	•

t	fc	α	τ. 105	
30°	1.700	0,44	8,5	
36	2.800	0,44	5,0	
40	5.500	0,44	2,6	
47	9.700	0,44	1,5	
52	20.000	0,46	0,72	
58	42.000	0,49	0,34	
68	82.000	0,50	0,18	

$$\epsilon_{\infty}=7$$
 $\epsilon_{01}=65$ $E=22\pm2$ Kcal/mole $S=28\pm4$ Cal/d $^{\circ}$ /mole.

c) Etude à température constante $t = 46^{\circ}$:

A partir de la pression atmosphérique, on établit cette pression de 1 mm de mercure et on observe l'évolution de la dispersion diélectrique en fonction du temps, le départ d'eau demandant plusieurs heures pour la réalisation d'un nouvel équilibre (fig. 3).

Evolution du diagramme de Cole-Cole au cours d'un départ partiel d'eau à température constante.

Temps	fc	α	τ. 105	
0	1.000	0,41	11,3	
1 heure	6.000	0,49	1,9	
2	7.800	0,50	1,45	
3	10.000	0,50	1,13	

Structure de la chabasie.

Deux versions ont été publiées (Wyart [3], Dent et Smith [4]). Elles font toutes les deux apparaître un squelette de tétraèdres (Si, Al) O₄ formant des sortes de cages où se logent les molécules d'eau et les cations (fig. 4). La taille de ces cages est différente dans les deux structures décrites,

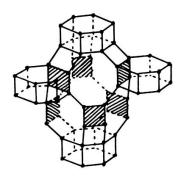


Fig. 4

Structure de la chabasie d'après Dent et Smith.
Position des atomes Si ou Al.

de même que le nombre de molécules d'eau qu'elles contiennent: 3 pour Wyart, 6 à 7 pour Dent et Smith. Dans les deux cas, ces cages communiquent entre elles par de larges canaux permettant le passage des molécules d'eau et des cations.

Interprétation des résultats.

La relaxation diélectrique doit être attribuée à la contribution des molécules d'eau polaires susceptibles de changer d'orientation. Ceci expliquerait la grande constante diélectrique statique, ainsi que les variations de τ avec la pression à température constante. En effet, dans ce cas, on voit que des variations de la teneur en eau du cristal modifient fortement τ .

La grande mobilité des molécules d'eau et des cations change perpétuellement l'entourage d'une molécule d'eau donnée et, par conséquent, le champ de force autour d'elle. Il faut donc donner à τ la valeur d'un temps le plus probable et voir là l'origine de l'importante dispersion des temps de relaxation, voire même, peut-être, l'existence des deux domaines. Wyart a signalé, en effet, qu'il y a lieu de classer les molécules d'eau en deux groupes: une partie au contact des cations, l'autre entourée seulement d'atomes d'oxygène.

L'interprétation microscopique de E et ΔS aux diverses pressions nécessitera des expériences complémentaires, en particulier, à pression de vapeur d'eau constante. En effet, la diminution de τ avec l'élévation de la température provient non seulement de l'augmentation de l'agitation thermique, mais aussi du départ d'eau. Les valeurs de E mesurées correspondent donc à une limite supérieure de la barrière de potentiel de rotation de l'eau dans le cristal, d'autant plus que la pression est faible.

BIBLIOGRAPHIE

- 1. COLE, K. S.-R. H. COLE (1941), J. Chem. Phys., 9, no 4, 341.
- 2. Powles, J. G. (1953), J. Chem. Phys., 21, 633.
- 3. WYART, J. (1933), Bull. Soc. franç. Minér. Crist., 56, 81.
- 4. DENT, L. S., J. V. SMITH (1958), Nature, 181, nº 4626, 1794.