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A FITTING PROCEDURE FOR CONDUCTIVE OPACITY
IN A STELLAR MEDIUM

BY

P. BOUVIER and M. PATENAUDE

Observatoire de Geneve

ABSTRACT

An expeditious although sufficiently accurate procedure is proposed here to include the
conductive opacity into the overall opacity of the stellar medium, according to the most recent advances
in the theory of electron conduction. The method has been successfully tested m a case where
previously tabulated opacity values were available.

RESUME

Un precede rapide mais suffisamment exact est propose pour inclure, dans l'opacite globale du
milieu stellaire, l'opacite conductive telle qu'elle resulte des versions les plus recentes de la theorie
de conduction electronique. Cette methode a ete correctement verifiee dans un cas oil Ton disposait
de valeurs d'opacite prealablement tabulees.

1. CONDUCTION VERSUS RADIATION TRANSFER

The radiative energy transfer inside a star is connected to the opacity of the

stellar medium by the well-known expression for the radial energy flux

4acT3 dT
^rad - -T — (1)

3 p/crad dr

where a, c, p, T have their usual meanings and /crad denotes the mean radiation
absorption coefficient per unit mass. Consequently,

4 acT3
Aad (2)

3 PKrad

may be called the radiation conductivity coefficient.
On the other hand, the radial flux of energy transported by electron conduction
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d T
pcond (3)

enables us to define the thermal electron conductivity coefficient Acond to which
corresponds, in the sense of relation (2), a coefficient of conductive opacity

4 acT3
^"cond ~ ] (^)

3 P Äond

When both these modes of energy transfer are simultaneously at work, the
fluxes (1) and (3) should be added, therefore also the conductivities, so that the
overall opacity k will be given by

Insofar as the mean free path of the photons is distinctly larger than that of the

electrons, as it occurs in the interior of main sequence stars, the conductive transfer
is quite inefficient when compared to radiative transfer. Now, if the density increases

and the electron gas becomes degenerates, the lower momenta states will all be

occupied, thereby hindering electron scattering. At high degeneracy, conductive
transfer shall predominate so that, according to (5), k k Kcond and the opacity is

essentially conductive.
In the stellar medium, electrons will undergo collisions with ions (e-i collisions)

and with other free electrons (e-e collisions); for high degeneracy of the electron gas,
the electrons tend to build a continuous sea of uniform negative charge, unsuitable
for scattering and moreover in a (e-e) scattering, the final quantum state of both
electrons must be unoccupied, not only that of the single electron involved in a

(e-i) scattering. For such reasons, only (e-i) interactions were considered in the early
treatments of thermal electron conduction (Mestel, i950); nevertheless, the method
is incorrect with a partially degenerate medium and Lampe (19o8a) has shown that
(e-e) interactions should be retained even in highly degenerate plasmas.

2. ELECTRON CONDUCTION IN THE STELLAR MEDIUM

The stellar medium is usually regarded as a gaseous mixture of non degenerate
ions and of free electrons which may present any degree of degeneracy. The gaseous
character of the plasma implies weak coupling between the particles; the potential
energy of any particle in the plasma remains much smaller than its average kinetic

energy.
For the sake of clarity about the later developments, we shall recall concisely,

in the present section and the following one, the main features of the conduction

1

_
1 i

^ Uad U'ond
(5)
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theory in the light of the recent advances of Lampe (1968a, 19686) and Hubbard-
Lampe (1969).

Owing to their large mass M, the ions do not contribute appreciably to the

conductive energy transfer, so that they may be considered in local maxwellian

equilibrium, described by the familiar distribution function of positions and momenta

/; (x, p, t) -—— exp - ^ (6)
{InMkT) 1 \ 2 MkTJ

where the ion concentration /i; and temperature T both depend on x, t.

The electrons, of mass m and assumed non relativistic, will be distributed in
phase space according to a nearby Fermi-distribution

/e(x,p, 0 =/e(0)(x,p2,t) +/e(1,(x,p,t) (7)

where

(8)

ijj being the degeneracy parameter depending, like T, on x, t.

The perturbation term fe{l) is due to the temperature gradient VT imposed on
the medium by the energy flux, together with the electric field E required to ensure
the average electric neutrality.

The distribution functions just introduced are normalized to the concentrations:

J fi.e(x, P, 0 d3p nite(x,t) (9)

In the first-order perturbation theory, (7) will currently be written in the form

/e(*. P. 0 feW [1 + (1 - y/e<0)) P, 0] (10)

h3
where 1 — —fe 's the probability for the perturbed electron to find itself in a state

unoccupied in the equilibrium distribution.
The evolution offe (x, p, t) in time is governed by a Boltzmann-type of equation

CO
Dl <5!

the l.h.s. of which can be written,

df df(0) e 8f(0)Jl+(y.VT)^-+-E'--£- (12)
dt dT m dv

where e E' is the total force acting on an electron, due to the electric field E and to
the pressure gradient VP\
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1

eE' eE h— VP (Chapman and Cowling, 1961).
ne

The r.h.s. of (11) describes the stochastic variation of fe on account of e-i and

e-e encounters; it includes the sum of two contributions, each of them represented

by a multiple integral over the initial momenta and the parameters specifying the

encounter. The cross-sections for both types of collision are calculated in the Born
approximation with a shielded Coulomb field and, in view of the e-e collisions, care
is taken of energy as well as momentum exchange during the collision (dynamical
shielding). Keeping also in mind the exclusion principle for the possible electron

states, one finally gets for the r.h.s. of (11) the form proposed by Lenard and Balescu

(Lampe, 1968a).

Replacing fe by its value (10) and neglecting terms quadratic in /e(I), we may then

write, symbolically,

Ve
at

L(0) (13)
coll

where L is a linear functional transformation of the unknown function <P.

3. POLYNOMIAL SOLUTIONS

To solve this Boltzmann (or Lenard-Balescu) equation (11), linearized in <P

according to (10), (12), (13), it is sufficient (Chapman-Cowling, 1961) to retain for
an expression linear both in V log T and E', viz.

<P(x,p, 0 A (p2) (p/'m) {V TI T) + D (p2) (p/mkT) • e E' (14)

A, D being two unknown scaiar functions of the electron's momentum modulus.

Going back with (10), (12), (14) into (11), one obtains, after equating separately
the coefficients of V TjT and E', two linear integral equations, one for A (p2), the
other for D (p2).

Following here the Champan-Enskog method of resolution, we expand A and D
in polynomial series of the form

A(p2) t «jPjiP2)> D(P2) £ djPj(p2) (15)
i=o j=0

where the Pj(p2) are expected to build a complete set of orthonormal functions.
As a matter of fact, the eigenfunctions of the operator L are unknown in general;
but in case of a nondegenerate electron gas, the orthogonality relations appearing
in the problem lead us to choose the Sonine polynomials for the P} (p2), in spite of
the fact that these polynomials, multiplied by the spherical functions Y (6, cp)
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only coincide with the eigenfunctions of L for a very restricted type of interaction
between the plasma particles (Jancel et Kahan, 1963).

Other polynomials must be found for a degenerate electron gas, suggested by the

orthogonality relations and Lampe (1968a) gives the explicit form of such
polynomials in the case of a highly degenerate electron gas.

Anyway, the integral equations for A, D will then yield a system of order n -> oo

of linear algebraic equations for the a;-, dj respectively:

n n

X ajkaj *k, X «jk dj sk (16)
l=o j=o

Approximate solutions of (16) will be found by truncating the sums to a finite number
n of terms and with a suitable choice for the P} (p2) we may expect the approximate
solutions a/"\ dj{n) to converge rapidly towards the exact solutions cij, dj as n -* oo.

4. THE FIRST TWO POLYNOMIAL APPROXIMATIONS
FOR THERMAL CONDUCTIVITY

The energy flux carried by electron conduction is equal to

F=T^i/e(1,p2p^ (17)
2 m

Substituting/e(1) by its expression in (10) and eliminating further E' between (17)
and the condition that the electric density current vanishes in the medium, it becomes

possible to express F in the form (3), written as

F — X VT

where the value of the thermal conductivity X x(n> depends of the order n to which
the algebraic system (16) has been truncated.

With n 1, one obtains (Lampe, 1968a) in terms of some Fermi functions,

\2&n2m/k\6
^(1) (l) (2lF5l2-25F23/2IFll2)2 T /an (18)

further, when n 2;
2

A(2) A(1) 1 ^—) (19)
V «11 «22/

the aJk are collisional integrals containing the physics of the problem; the contribution

of the e-i collisions can be expressed through Fermi functions Fv (ip) of integer
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and half-integer order; it also contains a logarithmic factor 0ei brought in the (e-i)
scattering cross-section by the shielding effect. As for the contribution to ajk from the

e-e collisions it is much more difficult to evaluate and it also contains a similar collision

logarithm 6ee.

Relying on the numerical values given by Landshoff (1949) for the matrix
elements included in the ajk pertaining to a non degenerate plasma made up of
electrons and single ions of isotopic number Z, we verify that

Furthermore, when Z becomes large, the (e-e)-collisions contribution decreases and

if we neglect it, retaining only the (e-i)-interactions, then 2(2) -* 6.5 2(1).

Moreover, the introduction of a third polynomial solution appears unnecessary,
since it only results in a correction less than 8 per cent (Hubbard and Lampe, 1969).

On the other hand, if the electron gas is highly degenerate (ij/ > 1), we may adopt
part of the Lorentz approximation to evaluate the (e-i) contribution to aJk, namely
that the maximum energy transferred in a (e-i) collision remain much less than kT.
Consequently the exact value of the thermal conductivity is then already given by the

one polynomial solution to an accuracy of 1 per cent, independently of the (e-e)

encounters.
We now turn back to expression (18) for A(1); the element alk has the form

with Z as a mean isotopic number for a mixture of different ions of species a:

A(2) 2.4 2(1) if Z 1 (hydrogen)
and X(1) 3.1 2n) if Z 2 (helium)

^11 ^llei~bUiiee

where allei, itself sum of three terms (Lampe, 1968ft) is proportional to

z £ w eei t5/2

neZ (20)
a

ne, nx being respectively the electron and ion concentrations.
Further

(21)

n(4,) I Vd Vln(l +e*-v J [ew "* + 1] dW (22)
o o
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Putting all this into (18) allows us finally to write for the first polynomial approximation

of the thermal electron conduction

A(i> kV2_ (21F5/2—25F*/2/F1/2)2 T5'2
(23)

5A n yj2 m e* Z £ ty) 0ei + 4 r, (</,) 0ee

The calculation of X(2) according to (19), requires still the evaluation of the elements

ai2>a22> which is quite difficult with regard to the e-e terms (Lampe 19686).

4. OPACITY TABLES

On the basis of the results recalled in the previous sections, Hubbard and

Lampe (1969) managed to compute conduction opacity tables for hydrogen, helium,
carbon and two special mixtures, one for a typical red-giant core (^^ 0.98, XN

0.015, XNe 0.005) and the other for a solar-type star.
The density range runs from 10~5,75 to 10+6gcirT3, the temperature-range

from 103 to 109 deg K but the log k values have been computed, in function of log p,
log T, only within the domain of validity of the theories underlying the above results,
in particular for weakly coupled and non-relativistic electrons.

In the stellar evolutionary calculations which we intend to carry out, at first
during the core hydrogen-burning phase from the zero age main sequence to the red

giant tip, we shall have to interpolate the opacity at each stage, between two of four
opacity tables corresponding to decreasing hydrogen abundances. These four tables

we have selected among those given by Cox and Stewart (1969); they are related to
the mixtures named MAS II, CS XII, CS XIII, CS XIV characterized respectively
by the hydrogen abundances XH 0.70, 0.50 0.20, 0.00.

The Cox-Stewart tables contain, in function of log p and log T values of the

radiative opacity (without and with the effect of lines) and of the effective opacity
(log k) by including the electron conduction according to the Mestel (1950) and

Lee (1950) theory where e-e interactions were ignored.
More recently, Paczynski (1970) and Demarque and Heasley (1971) have

been using the radiative Cox-Stewart opacities together with the conductive Hubbard-
Lampe opacities, but we cannot use their results because of the unknown procedure
which they applied to combine opacities pertaining to different chemical compositions.

The direct calculation of X from the expressions (19) and (23) is most unwieldy
on account, partly of uncertainties in the evaluation of Qee and partly of the extreme

sensitivity of the factor (21 F5/2-25 F3/2/F, /2)2 appearing in (23) to the accuracy
adopted for the numerical values of the relevant Fermi functions.
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By way of short cut, we propose here an approximate method to include systematically

for any degree of degeneracy, the Hubbard-Lampe conductive opacities into
the four afore mentioned Cox-Stewart tables which we need in our evolutionary
computations.

5. A METHOD FOR INCLUDING CONDUCTIVE OPACITY AT ANY iA

We retain the fact that we have at our disposal a conductive opacity table 2T0

established for a given chemical composition denoted symbolically by Xo> an<3 giving
the values of log Kcond in terms of log p, log T as usual.

^cond ^ (P, Zo)

and the corresponding degeneracy parameter ijj can always be calculated from the
basic relation

POA, T;xo) Pe mH ne

^mH(2mkf'2 Fi/2W)T312 (24)

where, apart from the well known universal constants m, mH, and k, ne is the free

electron concentration already present in (20), pe the mean mass number per free

electron and Xx the relative abundance by mass of the element {Zx, AJ.
Instead of deriving i// from given p and T, let us from now on regard iA and T

as the independent variables; then we may obtain p for the given composition Xo

and ij/, T values from the relation (24) and further, interpolating in table ,Z0, the

opacity value

k (P OA, T- xo), T, Xo) k0 k OA, T; x0)

Keeping first the same T-value, we may similarly obtain by interpolation in STa other
values for k0 and then start the same procedure again for another value of T, thus

building gradually a limited table ^"o extrapolated from 2T0 in the iA range of interest.
The problem is now to find out the conductive opacity iq K(\f/,T; Xi) for

another chemical composition Xi not too widely different from /0, and for which we
have no table v To attain this end, let us consider the opacity ratio

Pe (Xo) A OA, T\ Xq)

*0 Pe(Xi) A(iA, T; Xi)

deduced from (4) and (24) at given iA, T. We now require that, in passing from Xo

to Xi, the mean isotopic number Z defined by (20) should not vary appreciably.
By examining the form of the coefficients ajk (Lampe, 19686) occurring in

expression (19), it is easy to see that they have the general form
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(aJkZ +ßjit) T5'2

where the chemical composition appears mainly in Z, although also in ajk but there

only through the collision logarithm 0ei. Neglecting this last dependence, we will
assume that a^/a, i a22 is a slowly varying function of Z and that, in first approximation,

A(2)/A(1) is practically independent of chemical composition. Then the A ratio
in the r.h.s. of (25) can be taken as that of the A(1)j, equal, according to (23), to

W,T,Xo) Z1ZW)0.lW,T)+4r,W)O„W,T)
W,T,Xl) Zo£W)0ri(^T)+4f/W)0„Wr,r)

where Zu Z0 are the mean Z values for each of the chemical compositions, £ (t/0,

r] (tj/) are given by (21) and (22) and the dependence of 6ei on % has been dropped.
In a wholly ionized medium, we recall that

n7l =1^ (27*)
OE Ax

=E^r {21b)
a Ax

Let the composition X\ be, for sake of definiteness, such that ne (x,) > fie (/0)>
therefore also Zx > Z0. Owing to the positive character of the quantities £, rj, 6,

it is apparent from (26) that

1 <
AOMUo) <z1
^ (lA, T;xi)

<
Z0

so that, in consequence of (25),

He(Xo) k, Z, nJx.o)

He(Xl) *o Z0ne(xi)

the bounding values being all the more close to each other that the chemical compositions

are more similar. Let us denote by k ^and k'[ the opacities obtained by equating
the K-ratio to its lower, respectively upper bound:

«; *.(*>)
(28o)

He(Xl)

° (28b)
*1 ZtHe(Xo)

*o Z0 (Ie (/,)
The A-ratio could only attain its upper bound, according to (26), if the Z are

large or if the e-e contribution becomes very much smaller than the (e-i) contribution.
In fact we are dealing here with Z s fairly close to unity and the e-e contribution is

never negligible, even to high degeneracies (Lampe, 1968a).
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Therefore we shall try to approximate the conductive opacity iq either by jq
or by the mean of log k\, log /q preferentially weighted in favour of log /q.

6. TESTING THE METHOD

As a preliminary test, let us apply the procedure in a case where previously
tabulated values exist for both chemical compositions envisaged; for example pure
hydrogen (/0) and a solar composition (jq) as used by Hubbard and Lampe (1969)
in connection with a paper of Bahcall, Bahcall, Shaviv (1968) dealing with the

solar-neutrino problem and involving several possible solar models. Retaining more
specially model C, the composition Xi is defined by XH 0.764, XHe 0.221,

X 0.015 (X, heavy element abundance).

Adopting the same distribution of heavy elements as the one determined by
Lambert and Warner for the solar photosphere (1968) we find, from the relations (27)

applied to composition Xi,
/q1 0.882 Z/q1 1.073 (29)

By the way, the MAS II mixture used in one of our interpolating tables for
stellar evolutionary computations, is a little less hydrogenrich (^ 0.70) than the

Bahcall-Shaviv models, but the heavy element distribution (£=0.02) appears to be

very close to that of Lambert-Warner; the carbon is equally abundant and the

oxygen is slightly more abundant in MAS II. We have, for the MAS II mixture,

/q1 0.850 Z/q1 1.068

Let us choose for log T the three values 6, 7, 8 and for log ij/ the three values 0,

1,2; the Hubbard-Lampe opacity table for hydrogen 0 yields, by linear interpolation,

the log k0 values for the densities p0 (ij/, T); whence table 1 containing the values

of log k0 written just under those of log p0

Table 1

\ *\ 0 l 2

log r\

6 0.791 1.105 1.358
3.328 2.844 2.401

7 2.291 2.605 2.858
2.511 2.046 1.629

8 3.791 4.105 4.358
1.654 1.216 0.809

values of log p0 (above) and log tc0 (below) in terms of log T, t]i
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Keeping the same ip and 7"-values, we pass from p0 to p, with the values (29)
for chemical mixture Xi, viz-

log Pi log Po + 0.055

the new densities p, leading, as one interpolates in the Hubbard-Lampe opacity
table ST x for solar composition, to values of log ic, and the table 2 contains, similarly
to table 1, the log p, and log ic, values for composition Xi-

Table 2

\ *\ 0 l 2

log T N,

6 0.846 1.160 1.413
3.294 2.813 2.378

7 2.346 2.680 2.913
2.475 2.043 1.600

8 3.846 4.160 4.413
1.617 1.179 0.776

values of log p, (above) and log ic, (below) in terms of log T, <J<

If 9~y did not exist, we could always calculate k[ and k[ by the relations (28),
viz. in the present case,

log k j log Kq —0.055

log/c'j log Kq +0.031

and the mean values ic,, ic, defined by

1

logic, -(logic, +logK-,) (30a)

1

logic, -(logic, +logfc,) (30b)

become here

logic, logiCo —0.012

logic, logic0 —0.034

In the following table 3, we have collected the values of log ic, and log k\ since

it turns out that, among various approximations to log k„ log ic, leads to values in
closest agreement with the interpolated values given in table 2.
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Table 3

\ 0
|

1

1

2

6 3.294 2.810 2.367
3.273 2.789 2.346

7 2.477 2.012 1.595
2.456 1.991 1.574

8 1.620 1.182 0.775
1.600 1.161 0.754

values of log kl (above) and log /q (below) in terms of log T, 7

Comparing tables 2 and 3, one verifies that the relative deviations (iq —/q)//q
all remain below 3 per cent; the approximation log k[ is still fairly good, (/q —/q)/iq
never exceeding 7.5 per cent and if we content ourselves with an accuracy of 10%,
log iq or log Kq may also be used.

This preponderance in the choice of log iq is again apparent if one considers the

Hubbard-Lampe table as connected to a slightly different chemical composition,
like those of the other Bahcall-Shaviv solar models.

7. CONCLUSION

In conclusion, as we pass from one particular chemical composition Xo f°r which
we do have a table ST0 of conductive opacities, to another Xi, not too different from
Xo but for which an opacity table t does not exist, we may approximate the
conductive opacity jq by the mean value iq defined by (30b) or, in terms of (30a), (28), by

1 - r 3i zi/«.(*>) ,,nlogiq log/q + -log—— + -log- — (31)
4 4 Z0 fiJxi)

The procedure just described is easy to apply and avoids a considerable amount
of calculations; it appears to us to be more expeditious than the limited fitting
formulae of the type used by Sweigart (1973) for the Hubbard-Lampe (1969) and
the Canuto (1970) data. According to the previous test, the method is quite accurate
and we should recall that, in most cases which we are facing, conductive opacity is

only part of the overall opacity (5).
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In our stellar evolutionary computations, we have to interpolate, as mentioned

before, over a 4-fold grid of opacity tables t, 2T2, -^~3> corresponding to
chemical compositions Xi, X2> Xa with decreasing values of XH (section 4).

These tables contain separately the radiative opacities and on the other hand,

we have the Hubbard-Lampe conductive opacities for pure hydrogen (&~0) and pure
helium (&~s). We apply the foregoing method in passing first from pure hydrogen to

composition Xi to get the conductive opacities Kt which we combine, using (5), to
the radiative opacities of table ZT 1; thus obtaining a table 2T\ of overall opacities
where the electron conduction is taken care of according to the Hubbard and Lampe
results.

Similarly, we pass from composition y, with table to composition y2 (not
too different from y,), thus constructing a table 3~\ of overall opacity. It will not be

necessary to distinghuish here between composition y4 and pure helium so that,
starting from y4 and table ^"5 we first combine the radiative opacity from J"4 with
the conductive opacity from ^~5, getting the overall opacity table ST4 for composition

y4. Then we pass on to y3, for which a table ST3 will be similarly established and

as a matter of verification, we could pass from y3 to y2 in order to confirm table ^"2.
Interpolation over the 4 fold grid ST\ ^"2 9~'z will enable us to compute, at

every stage of evolution, the overall opacity including electron conduction according
to the latest improvements. Insofar as we dispose of appropriate radiative opacity
tables, the procedure can readily be extended to the core helium burning stage.
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