Zeitschrift: Berichte der Schweizerischen Botanischen Gesellschaft = Bulletin de la

Société Botanique Suisse

Herausgeber: Schweizerische Botanische Gesellschaft

Band: 90 (1980)

Heft: 3-4

Artikel: Die Artengruppen des Ranunculus polyanthemos L. in Europa

Autor: Baltisberger, Matthias

DOI: https://doi.org/10.5169/seals-63717

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 11.07.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Die Artengruppe des *Ranunculus polyanthemos* L. in Europa

von Matthias Baltisberger

Institut für spezielle Botanik der Eidg. Technischen Hochschule Zürich

Manuskript eingegangen am 14. April 1980

Inhaltsverzeichnis

1.	Problemstellung
2.	Material
2.1.	Sammeln und kultivieren der Pflanzen
2.2.	Fundorte der untersuchten Ranunculus-Populationen
3.	Morphologische Untersuchungen
3.1.	Charakterisierung der Artengruppe
3.2.	Bestimmungsschlüssel
3.3.	Diagnosen der Arten
3.4.	Variabilität der Merkmale
4.	Ökologie und geographische Verbreitung
4.1.	Ökologie
4.2.	Geographische Verbreitung
5.	Zytologische Untersuchungen
5.1.	Methoden
5.2.	Chromosomenzahlen
5.3.	Chromosomenmorphologie
5.4.	Chromosomenbanding
6.	Bestäubungen und Kreuzungen
6.1.	Methode
6.2.	Selbstbestäubungen und Fremdbestäubungen
6.3.	Kreuzungen zwischen Arten der polyanthemos-Gruppe
7.	Eigenschaften der Bastarde
8.	Diskussion
8.1.	Morphologie
8.2.	Ökologie und Verbreitung
8.3.	Zytologie
8.4.	Bestäubungen, Kreuzungen und Bastarde
8.5.	Artbildung in der Artengruppe des Ranunculus polyanthemos
	Tafeln
9.	Zusammenfassung
	Summary
10.	Literaturverzeichnis

1. Problemstellung

Die Artengruppe des Ranunculus polyanthemos umfasst in Europa nach Tutin et al. (1964) neben R. polyanthemos L. die Arten R. polyanthemophyllus Koch et Hess, R. polyanthemoides Bor., R. nemorosus DC., R. Thomasii Ten. und R. serpens Schrank. Hess (1955) führte als erster systematische und zytogenetische Untersuchungen an Arten aus der polyanthemos-Gruppe durch. Dabei konnte er eine neue Art (R. polyanthemophyllus) abtrennen. Wie aus den Untersuchungen von Hess an R. polyanthemophyllus, R. nemorosus und R. serpens hervorgeht, sind diese Arten selbststeril und fremdbestäubend. Alle 3 Arten bastardieren leicht miteinander und die Bastarde sind fertil. Dies war auch für die anderen Arten der Gruppe zu erwarten. Bastardierungen und Genintrogressionen können deshalb die grosse morphologische Vielfalt der einzelnen Arten erklären, und es erschien durchaus möglich, dass der wenig bekannte R. polyanthemoides und auch R. polyanthemophyllus solche Formenschwärme umfassen.

Um diesen Fragen nachzugehen, wurde in West- und Südeuropa die ganze Artengruppe des *R. polyanthemos* morphologisch und zytogenetisch untersucht. Von besonderem Interesse waren dabei auch die Verbreitungsareale der Arten mit den Berührungsgebieten mehrerer Arten sowie die Standortsansprüche der einzelnen Arten.

In einer späteren Arbeit werden die Beziehungen zwischen der polyanthemos-Gruppe und anderen, morphologisch ähnlichen Arten (R. bulbosus L., R. repens L.) untersucht.

2. Material

2.1. Sammeln und Kultivieren der Pflanzen

In der Zeit von 1976 bis 1979 wurden etwa 1000 Pflanzen von 58 europäischen Fundorten kultiviert. Die von mir selbst an diesen Standorten gesehenen Populationen umfassen meist je 100 bis 1000 Pflanzen, von denen 10 bis 20 Individuen in einer Umgebung von etwa 10 m zufällig ausgewählt und gesammelt wurden. Die Pflanzen wurden in Zürich (540 m ü.M.) eingetopft und im Freien eingesenkt. Für Kreuzungsexperimente und zytologische Untersuchungen wurden die Pflanzen ins Gewächshaus genommen. Einige Populationen wurden aus Samen im Gewächshaus gezogen.

2.2. Fundorte der untersuchten Ranunculus-Populationen

Die Fundorte sind für die einzelnen Arten von Norden nach Süden und von Westen nach Osten geordnet, zuerst für die Schweiz, dann für die übrigen Länder. Nach den geographischen Angaben folgen Sammler, Sammeldatum und Angaben über den Standort (pH-Bestimmung des Oberbodens mit "Hellige-Bodenindikator", Kalktest mit 10%-iger Salzsäure); weiter wird angegeben, ob die kultivierten Pflanzen lebend gesammelt (L) oder aus Samen gezogen wurden (S) oder ob nur Herbarpflanzen für die Untersuchungen verwendet wurden (H).

Ranunculus polyanthemos

Deutsche Demokratische Republik

1) Kohnstein bei Seega; E. Landolt, 5.7.1968; Trockenrasen, längs der Gebüsche. S

Polen

2) Bialystok, Bialowieża; J. Duvigneaud, 28.7.1973. S

Russland

- 3) Kisslowodsk im Alikolooka-Tal, nördliches Kaukasusvorland; E.Landolt, 11.7.1975; Trockene Hochstaudenflur; 900 m. S
- 4) Elbrus, Bilim-Region, Nordkaukasus; E. Landolt, 12.7.1975; längs der Bewässerungskanäle; 1400 m. S

Ranunculus polyanthemophyllus

Schweiz

- 5) Ragaz, Kt. St. Gallen; H. Hess, Oktober 1974; am Rande der Rheinauen; 500 m. L
- 6) Oberhalb Seehorn, Davos-Wolfgang, Kt. Graubünden; M. Baltisberger, 28.6.1975; Waldrand und Wiese; 1590 m. H
- 7) Unterhalb des Bahnofes Hohtenn, Kt. Wallis; M. Baltisberger, 25.5.1977; feuchtes Strassenbord; 1070 m. L
- 8) Bei Brägji, oberhalb Niedergesteln, Kt. Wallis; M. Baltisberger, 25.5.1977; lichter Wald; 980 m. L

Italien

9) An der Strasse Seravezza-Castelnuovo di Garf., Apuanische Alpen; M. Baltisberger, 3.6.1978; Wiese; 790 m. H

Ranunculus polyanthemoides

Bundesrepublik Deutschland

Lamperstal bei Alendorf, ca. 10 km S von Blankenheim, Nordrhein-Westfalen;M.Baltisberger, 23.6.1979; Wiesen und lichter Laubmischwald. L

Luxemburg

N von Eischen, ca. 30 km WNW von Luxemburg; M.Baltisberger, 22.6.1979; Strassenbord und Waldrand bei einem Fichtenwald; pH 7. L

Frankreich

12) Val Suzon, ca. 12 km NW von Dijon; M.Baltisberger, 26.6.1979; lichter Laubmischwald; pH 7, Kalk vorhanden. L

Jugoslawien

Oberhalb Krani, am Presbansko-Jezero, Mazedonien; M. Baltisberger und M. Müller, 22.6.1977; trockene Wiese, 1130 m. L

Griechenland

14) Kurz nach Metsovon, an der Strasse Ioanina-Kalabaka, Pindus-Gebirge; M. Baltisberger und M. Müller, 16.6.1977; Strassenbord und Wiese; 1350 m, pH 6.5, Kalk vorhanden. L

Ranunculus nemorosus

Schweiz

- 15) Siblinger Schlossranden, Kt. Schaffhausen; M. Baltisberger, 24.5.1979; lichter Laubmischwald; 700 m. H
- Thiersteinberg bei Oberfrick, Kt. Aargau; M. Baltisberger, 17.9.1977; lichter Wald; 700 m. L
- 17) Zwischen Oberlinsbach und Salhöchi, N von Aarau, Kt. Aargau; H. Hess, 14.11.1974; Wiesenböschung; 570 m. L

- 18) Geissberg oberhalb Remigen, Kt. Aargau; M. Baltisberger, 27.5.1978; Wiese im Pfeifengras-Föhrenwald; 580 m. H
- 19) Geissberg oberhalb Villigen, Kt. Aargau; M. Baltisberger, 26.5.1978; Wegböschung; 400 m. H
- 20) Bollen, Würenlos, Kt. Aargau; M. Baltisberger, 4.5.1977; lichter Wald; 450 m. H
- 21) Gegend von Samnaun, Kt. Graubünden; M. Baltisberger, 14.7.1977; Wiesen; 1900-2200 m. H

Bundesrepublik Deutschland

NW-Seite des Isteiner Klotzes, ca. 30 km SSW von Freiburg; M.Baltisberger, 14.6.1979; lichter Laubmischwald; 250 m. H

Frankreich

- Rainkopf, ca. 5 km S des Hohneck, Vogesen; M. Baltisberger, 28.6.1979; Wiesen; 1200 m. H
- Soultzmatt, Elsass; M. Baltisberger, 13.8.1977; lichter Carpinuswald; 400 m, pH 8, Kalk vorhanden. L
- Gipfel des Puy de Dôme, Massif Central; E. und M. Baltisberger, 8.6.1978; Wiese; 1460 m, pH 4,5. L
- S-Seite des Puy de Dôme, Massif Central; E. und M. Baltisberger, 8.6.1978; Strassenbord und lichter Wald; 1200 m. H
- An der Strasse von le Mont-Dore nach Besse-en-Chandesse, les Monts Dore, Massif Central; E. und M. Baltisberger, 9.6.1978; Strassenböschung; 1300 m, pH 4. L
- An der Strasse Rabastens-Giroussens, ca. 30 km NE von Toulouse; E. und M. Baltisberger, 11.6.1978; lichter Wald; 180 m, pH 5,5. L
- SE-Seite des Forêt de Bouconne, ca. 10 km WNW von Toulouse; E. und M. Baltisberger, 12.6.1978; lichter Wald; 180 m, pH 5. L
- 30) Bei der Talstation der Sesselbahn auf den Soum des Aulhères, 4 km W von Luz-St. Sauveur, Dép. Hautes Pyrénées; M. Baltisberger, 11.8.1979; steinige Wiese; 1800 m. H
- Vallée d'Eyne, 4 km SW von Mont-Louis, ca. 25 km E von Andorra, Pyrenäen; M.Baltisberger, 14.8.1979; lichter Föhrenwald; 1800 m. H

Österreich

- Pötschenpass, Steiermark/Oberösterreich; E. und M. Baltisberger, 24.7.1978; lichter Fichtenwald; 980 m. H
- An der Strasse von Hohentauern in Richtung Bösenstein, Rottenmanner Tauern, Steiermark; E. und M. Baltisberger, 26.7.1978; lichter Fichtenwald; 1200 m. H
- 34) Oberhalb Obergurgl, Ötztaler Alpen, Tirol; F. Humm, Sommer 1976; steiler, feuchter Hang; 1950 m. L
- 35) Ferlach, S von Klagenfurt, Kärnten; M.Baltisberger, 30.7.1978; Föhrenwald; 470 m. H
- 36) SE-Seite des Hoch Obir, Karawanken, Kärnten; E. und M. Baltisberger, 29.7.1978; Wiese; 1850 m. H
- 37) Siebenhütten, S von Feistritz ob Bleiburg, Karawanken, Kärnten; M. Baltisberger, 31.7.1978; lichter Wald; 1700 m. H
- Oberhalb Siebenhütten, gegen den Knieps-Sattel, S von Feistritz ob Bleiburg, Karawanken, Kärnten; M. Baltisberger, 31.7.1978; Wiese; 1850 m. H

Spanien

39) Beim Parador Nacional de Fuente Dé, W von Potes, Picos de Europa, Prov. Santander; E. und M. Baltisberger, 16.6.1978; steinige Wiese; 1100 m. L

Italien

An der Strasse Sestola-Mt. Cimone, zwischen Pian di Falco und Lago di Ninfa, Apennin, ca. 80 km SW von Bologna; M. Baltisberger und M. Müller, 5.6.1977; Strassenbord; 1490 m, 1490 m, pH 7, Kalk vorhanden. L

- Oberhalb Casotti, an der Strasse Lucca-Abetone, Apennin; M. Baltisberger und M. Müller, 5.6.1977; Strassenbord und Wiese; 680 m, pH 5. L
- 42) Strassenrand S von La Pizza, kurz vor La Maesta, ca. 10 km N von Carrara, Apuanische Alpen; M. Baltisberger und M. Müller, 4.6.1977; lichter Pinus-Wald; 940 m, pH 7, Kalk vorhanden. L
- Campocecina, W des Mt. Sagro, ca. 10 km NE von Carrara, Apuanische Alpen; M. Baltisberger und M. Müller, 4.6.1977; Wiese; 1300 m, pH 5. L
- Oberhalb Buti, an der Strasse Buti-Calci, Mt. Pisano, E von Pisa; M. Baltisberger, 2.6.1978; lichter Pinus-Wald; 540 m. H

Jugoslawien

- 45) Snežnik, ca. 50 km N von Rijeka, Slovenien; M. Baltisberger und M. Müller, 28.6.1977; Wiesen zwischen Legföhren; 1670 m. L
- 5 km N von Cemerno, an der Strasse nach Kalinovik, Zelengora, Herzegovina; W. Lippert und D. Podlech, August 1973; 1380 m. S
- 47) 35 km W von Peč, unterhalb des Cakor-Passes, Montenegro; E. Landolt, 8.8.1976; schattiges, steiles Strassenbord; 1540 m, pH 7. L
- E des Cakor-Passes, W von Peč, Montenegro; M. Baltisberger und M. Müller, 24.6.1977; schattiges Strassenbord; 1540 m, pH 7, wenig Kalk. L

Ranunculus Thomasii

Italien

- 49) Mt. Sagro, ca. 10 km NE von Carrara, Apuanische Alpen; E. Landolt, Sommer 1972; steppenartiger Rasen auf trockenem Kalk; 1500 m. L
- 50) Etwa 1 km S der Station La Palena, ca. 20 km SE von Sulmona, Abruzzen; M. Baltisberger und M. Müller, 8.6.1977; feuchte Wiese; 1250 m, pH 6,5. L
- N-Seite des Mt. Botte Donato, La Sila, Calabrien; M. Baltisberger und M. Müller, 9.6.1977; Wiese mit Gebüschen; 1670 m, pH 5. L
- 52) Unterhalb des Gipfels des Mt. Botte Donato, La Sila, Calabrien; M. Baltisberger und M. Müller; 1890 m, pH 4. L

Ranunculus serpens

Schweiz

- 53) Grammet, N von Lausen, Kt. Baselland; M. Baltisberger, 24.10.1976; Buchenwald; 550 m. H
- N-Seite des Vorberges, zwischen Hasenmatt und Gitzilue, am Weissenstein, Jura, NW von Grenchen, Kt. Solothurn; M. Baltisberger, 5.9.1977; lichter Wald mit wenig Unterwuchs, Boden steinig; 1250-1300 m. S
- Unterhalb des Weges Rittmarren-Cholertoni, im Bannwald oberhalb Ricken, Kt. St. Gallen; M. Baltisberger, 10.11.1977; lichter Fichtenwald mit wenig Unterwuchs; 1070 m, pH 5. L

Bundesrepublik Deutschland

- Bei der Kirchsteinhütte, im Längental bei Arzbach, SW von Lenggries, Brauneckgebiet (Vorkarwendel), Kreis Tölz, Bayern; W.Lippert, 1.7.1979; am Rande eines hochstaudenreichen Fichtenwaldes. L
- Zwischen Klause und der Kirchsteinhütte, im Längental bei Arzbach, SW von Lenggries, Brauneckgebiet (Vorkarwendel), Kreis Tölz, Bayern; W. Lippert, 1.7.1979; in einem versauerten Fichtenwald. L
- Am Weg von der Bergstation der Kreuzeckbahn zum Mauerschartenkopf, Wettersteingebirge, Kreis Garmisch-Partenkirchen, Bayern; W. Lippert, 24.6.1979; am Rande eines subalpinen, krautreichen Fichtenwaldes. L

3. Morphologische Untersuchungen

Die Untersuchungen wurden einerseits an Herbarmaterial und andererseits an lebenden Pflanzen in der Natur und in Kultur durchgeführt. Um die Einflüsse der Umweltfaktoren zu eliminieren, müssen die verschiedenen Arten unter gleichen Kulturbedingungen gehalten werden. So können genetisch fixierte Merkmale von Standortsmodifikationen unterschieden werden.

3.1. Charakterisierung der Artengruppe

2- bis mehrjährig; mit kurzem Rhizom, meist von Fasern aus verwitterten Blattscheiden umgeben. Grundständige Blätter radiär geteilt. Blütenstiele gefurcht. Blütendurchmesser 2-3,5 cm; Perigonblätter 5, grünlich, kürzer als die Honigblätter, dicht abstehend behaart, den Honigblättern anliegend; Honigblätter 5, gelb, mit dunklerem Saftmal, am Grunde mit einer von einer Schuppe bedeckten Honigdrüse. Früchtchen berandet, rundlich, seitlich abgeflacht, kahl, mit kurzem geradem bis langem eingerolltem Schnabel, Blütenboden behaart.

Blütezeit: Frühling bis Spätsommer.

3.2. Bestimmungsschlüssel

Für die Bestimmung benötigt man vollständige Pflanzen mit gut ausgebildeten Blättern (Frühlings- und Sommerblätter) und mit reifen Früchtchen. Die Reihenfolge der Arten im Schlüssel wird in der ganzen Arbeit beibehalten.

- Stengel aufrecht; grundständige Blätter dunkelgrün, meist tiefer als bis auf 1/3 3-teilig; Stengelblätter nie in Rosetten, Stengel sich nie in den Blattachseln bewurzelnd; Honigblätter leuchtend gelb bis zitronengelb
 - 2 Pflanzen meist höher als 40 cm, meist reichverzweigt; Adern auf der Oberseite der Honigblätter vom Grund nur bis zum Rand des Saftmales gut sichtbar
 - 3 Grundständige Blätter bis zum Stielansatz 3-teilig; Mittelabschnitt bis 1 cm lang gestielt, tief, bis auf 1/5 3-teilig
 - 4 Früchtchenschnabel kurz, bis 1/5 so lang wie das Früchtchen, gerade bis wenig gebogen

 R. polyanthemos
 - 4* Früchtchenschnabel 1/3 bis 1/2 so lang wie das Früchtchen, eingerollt

 R. polyanthemophyllus
 - 3* Grundständige Blätter tief, teilweise fast bis zum Stielansatz 3-teilig; Mittelabschnitt höchstens bis auf 1/3 3-teilig
 - 5 Früchtchenschnabel 1/5 bis 1/2 so lang wie das Früchtchen, gerade oder wenig bis hakig gebogen R. polyanthemoides
 - 5* Früchtchenschnabel 1/3 bis 1/2 so lang wie das Früchtchen, eingerollt

 R. nemorosus

- 2* Pflanzen bis 40 cm hoch, mit 1 bis 3, selten 4 Blüten pro Stengel; grundständige Blätter bis zum Stielansatz 3-teilig; Mittelabschnitt meist gestielt, meist länger (bis 2 mal so lang) wie die Seitenabschnitte; Adern auf der Oberseite der Honigblätter vom Grund bis zum Rand des Honigblattes gut sichtbar; Früchtchenschnabel 1/5 bis 1/3 so lang wie das Früchtchen, wenig bis hakig gebogen
 R. Thomasii
- 1* Stengel schief aufrecht bis niederliegend; grundständige Blätter gelbgrün, höchstens bis auf 1/3 3-teilig; untere Stengelblätter gleich wie die grundständigen, gegen Ende der Blütezeit in den Blattachseln Rosetten bildend, welche sich bewurzeln; Honigblätter dunkelgelb bis orange; Früchtchenschnabel 1/3 bis 1/2 so lang wie das Früchtchen R. serpens

3.3. Diagnosen der Arten

Ranunculus polyanthemos L. (Abb. 1) in: Spec. Plant., Vol. I, Ed. I, p. 554, 1753

2- bis mehrjährig; 40-100~cm~hoch, Stengel~aufrecht, reichverzweigt, im unteren Teil meist dicht abstehend behaart, im oberen Teil anliegend behaart. Grundständige~Blätter~dunkelgrün, beiderseits locker bis dicht abstehend behaart, im Umriss 5- bis 7-eckig, bis~zum~Stielansatz~3-teilig; Mittelabschnitt~bis~l~cm~lang~gestielt, tief, bis~auf~l/5, 3-teilig, Seitenabschnitte oft bis zum Grund 2-teilig und die Teile nochmals tief geteilt; alle Teile mit unregelmässig eingeschnittenen, schmal lanzettlichen bis parallelrandigen Abschnitten; Blattzipfel sich weit überdeckend. Untere Stengelblätter gleich wie die grundständigen, mittlere einfacher, obere bis zum Grund geteilt und die Abschnitte schmal lanzettlich und ganzrandig. Blütenstand vielblütig: Honigblätter~leuchtend~gelb~bis~zitronengelb,~die~Adern~auf~der~Oberseite~vom~Grund~nur~bis~zum~Rand~des~Saftmales~gut~sichtbar. Früchtchen 2 bis 3 mm lang; Schnabel~kurz, bis~l/5~so~lang~wie~das~Früchtchen,~gerade~bis~wenig~gebogen.

Ranunculus polyanthemophyllus Koch et Hess (Abb. 2) in: Ber. Schweiz. Bot. Ges. 65, p. 280, 1955

Unterscheidet sich von R. polyanthemos durch folgende Merkmale: mehrjährig; Stengel im unteren Teil meist anliegend behaart, gegen oben kahl werdend. Grundständige Blätter meist mit hellen Flecken; im Sommer erscheinende Blätter weniger tief geteilt, ähnlich den grundständigen Blättern von R. nemorosus. Früchtchen 2,5 bis 4 mm lang; Schnabel 1/3 bis 1/2 so lang wie das Früchtchen, eingerollt.

Ranunculus polyanthemoides Bor. (Abb. 3) in: Fl. Centr., T. 2, Ed. 3, p. 16, 1857 Synonymie siehe Duvigneaud und Lambinon (1977)

Unterscheidet sich von R. polyanthemos durch folgende Merkmale: mehrjährig. Grundständige Blätter tief, teilweise fast bis zum Stielansatz 3-teilig; Mittelabschnitt höchstens bis auf 1/3 3-teilig; Seitenabschnitte tief, selten bis zum Grund 2-teilig; alle Teile mit lanzettlichen bis rhombischen Abschnitten; Blattzipfel sich zum Teil überdeckend. Früchtchen 2,5 bis 3,5 mm lang; Schnabel 1/5 bis 1/2 so lang wie das Früchtchen, gerade oder wenig bis hakig gebogen, selten eingerollt.

Ranunculus nemorosus DC. (Abb. 4)

in: Syst. 1, p. 280, 1818

Zur Nomenklatur siehe Landolt und Hess (1954) und Hess (1955)

Unterscheidet sich von R.polyanthemos durch folgende Merkmale: mehrjährig; 20–100 cm hoch, Stengel bei kleinen Pflanzen wenig verzweigt; Stengel im unteren Teil fast kahl bis dicht behaart, Haare anliegend bis senkrecht abstehend, im oberen Teil kahl bis anliegend behaart. Grundständige Blätter im Umriss 5-eckig, tief, teilweise fast bis zum Stielansatz 3-teilig; Mittelabschnitt im Umriss rhombisch, nochmals höchstens bis auf 1/3 3-teilig; Seitenabschnitte rhombisch, höchstens bis auf 1/3 2-teilig; Abschnitte grob gezähnt; Blattzipfel sich nicht überdeckend. Untere Stengelblätter zum Teil den grundständigen ähnlich, meist kleiner. Blütenstand bei kleinen Pflanzen wenigblütig. Früchtchen 2,5 bis 4 mm lang; Schnabel 1/3 bis 1/2 so lang wie das Früchtchen, eingerollt.

Ranunculus Thomasii Ten. (Abb. 5) in: Fl. Nap. 4, p. 347, 1830

Unterscheidet sich von R.polyanthemos durch folgende Merkmale: mehrjährig; 5-40~cm~hoch, Stengel einfach bis wenig verzweigt. Grundständige Blätter kleiner; Mittelabschnitt meist länger (bis 2 mal so lang) wie die Seitenabschnitte. Untere Stengelblätter nur bei grossen Pflanzen den grundständigen ähnlich. Blütenstand 1- bis 3-, selten 4-blütig; die Adern auf der Oberseite der Honigblätter vom Grund bis zum Rand des Honigblattes gut sichtbar. Früchtchen 2,2 bis 3,5 mm lang; Schnabel 1/5 bis 1/3 so lang wie das Früchtchen, wenig bis hakig gebogen.

Ranunculus serpens Schrank (Abb. 6) in: Baier. Fl. 2, p. 101, 1789 Synonymie siehe Gutermann (1960)

2- bis 3-jährig; bis 30 cm hoch, Stengel zur Blütezeit schief aufrecht, später niederliegend, bis 100 cm lang, wenig verzweigt, im unteren Teil dicht abstehend behaart, im oberen Teil anliegend behaart. Grundständige Blätter gelbgrün, beiderseits dicht abstehend und weich behaart, im Umriss 5-eckig, höchstens bis auf 1/3 3-teilig; Mittelabschnitt und Seitenabschnitte im Umriss rhombisch, grob gezähnt bis nochmals (höchstens bis auf 1/2) geteilt; Blattzipfel sich nie überdeckend. Untere Stengelblätter gleich wie die grundständigen; in den Blattachseln erscheinen schon während der Blütezeit weitere Blätter; diese bilden stengelständige Rosetten, welche sich, wenn der Stengel niederliegt, bewurzeln; obere Stengelblätter wie bei R.polyanthemos. Blütenstand wenigblütig (2 bis 3 Blüten pro Stengel); Honigblätter dunkelgelb bis orange, die Adern auf der Oberseite vom Grund nur bis zum Rand des Saftmales gut sichtbar. Früchtchen 2,5 bis 4 mm lang; Schnabel 1/3 bis 1/2 so lang wie das Früchtchen, eingerollt.

3.4. Varabilität der Merkmale

Die Variabilität der folgenden Merkmale wurde untersucht:

3.4.1. Wuchsform

Alle Arten ausser *R. serpens* haben aufrechte Stengel. Experimentelle Untersuchungen haben gezeigt, dass *unter äusseren Einwirkungen* (Schnitt, Viehfrass, Tritt) auch Pflanzen der anderen Arten, gleich wie *R. serpens*, den Stengel niederlegen und an den Blattachseln Wurzeln treiben können. Oft bleibt der Stengel aber auch schief aufrecht und die Blattrosetten können sich nicht bewurzeln. Solche Pflanzen sind aber trotzdem, wenn man die gesamte Merkmalskombination berücksichtigt, eindeutig einer Art zuzuordnen.

Somit haben alle Arten der polyanthemos-Gruppe die Fähigkeit, sich bewurzelnde, stengelständige Blattrosetten zu bilden; aber nur bei R. serpens ist dieses Merkmal stets vorhanden.

3.4.2. Blattform

Die Blattform ist besonders bei Pflanzen in Berührungsgebieten von verschiedenen Arten (s. 4.2., Verbreitungskarte) sehr variabel. Man findet oft Pflanzen, welche anhand der Blätter nicht eindeutig einer Art zugeordnet werden können.

Besondere Schwierigkeiten bietet *R. polyanthemoides*. Um diese Art besser gegen *R. polyanthemos* und *R. nemorosus* abzugrenzen, wird als Messgrösse ein *Blattindex* eingeführt. Er ist ein Mass für den Teilungsgrad der Blätter. Der Blattindex ist der Quotient, gebildet aus der Fläche des Mittelabschnittes und der Fläche des Umrissrechteckes des Mittelabschnittes (Fig. 1).

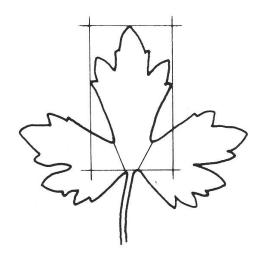


Fig. 1: Blattindex (s. Text).

Zur Bestimmung der Fläche des Mittelabschnittes wurden die zu untersuchenden Blätter fotokopiert und der Mittelabschnitt ausgeschnitten und gewogen. Auf einer Eichkurve konnte dann die Fläche abgelesen werden (Tab. 1).

Tab. 1: Blattindices von R. polyanthemos, R. polyanthemoides und R. nemorosus.

Art	Anzahl	Mittel-	Stand-	Streuung	Blattin	dex
	Blätter	wert	abw.		Min.	Max.
R. polyanthemos	22	0,29	0.054	0,0029	0,19	0,36
R. polyanthemoides	33	0,41	0,062	0,0038	0,30	0,53
R. nemorosus	28	0,53	0,052	0,0027	0,43	0,68

Der Mittelwert der Blattindices von R. polyanthemoides liegt in der Mitte zwischen den Mittelwerten der beiden anderen Arten. Die Standardabweichung bei R. polyanthemoides ist grösser, die Streuung der Werte der Blattindices breiter (Fig. 2). Extreme Blattindices von R. polyanthemoides liegen in den Bereichen der anderen Arten: so liegt der kleinste Blattindex von R. polyanthemoides (0,30) innerhalb des Bereiches von R. polyanthemos (0,19–0,36) und der gösste (0,53) innerhalb des Bereiches von R. nemorosus (0,43–0,68). Dies zeigt, dass die Variabilität der Blattform bei R. polyanthemoides gross und im wesentlichen intermediär zwischen R. polyanthemos und R. nemorosus ist.



Fig. 2:

Mittelwerte (¶) der Blattindices mit den dazugehörenden Standardabweichungen (Werte aus Tab. 1).

A: R.polyanthemosB: R.polyanthemoides

C: R.nemorosus

3.4.3. Behaarung

Die Behaarung an Stengeln, Blattstielen und Blättern ist ein sehr variables Merkmal. Auch innerhalb von Populationen, die in den überigen Merkmalen homogen sind, kann man von fast kahlen bis zu dicht behaarten Pflanzen alle Übergänge feststellen. Behaarungsmerkmale haben deshalb keinen systematischen Wert in der Gruppe des R. polyanthemos.

3.4.4. Früchtchenschnabel

Um die Variabilität der Früchtchenschnäbel bei den einzelnen Arten festzustellen, wurden von jeder Art je 100 Früchtchen untersucht; von *R. polyanthemoides* aber wurden 200 Früchtchen beurteilt, da die Streuung gross ist. Die Früchtchen wurden je nach Form und Länge der Schnäbel in Klassen eingeordnet (Tab. 2, Fig. 3).

Tab. 2: Beurteilung der Früchtchenschnäbel.

A: R. polyanthemos

B: R. polyanthemophyllus

C: R. polyanthemoides

D: R. nemorosus

E: R. Thomasii F: R. serpens

Form	relative Länge	Klassen-	Anza	ahl Frü	chtche	n		
	zum Früchtchen	nummer	Α	В	C	D	E	F
gerade	1/10 1/5	I	33					
gebogen	1/10 - 1/5	II	67		2			
gerade	1/5 - 1/4	III			16		7	
gebogen	1/5 - 1/4	IV			26		68	
gebogen	1/4 - 1/3	V			28		24	
nakig	1/4 - 1/3	VI			70		1	
hakig	1/3 - 1/2	VII		1	51			
eingerollt	1/3 - 1/2	VIII		99	7	100		9'

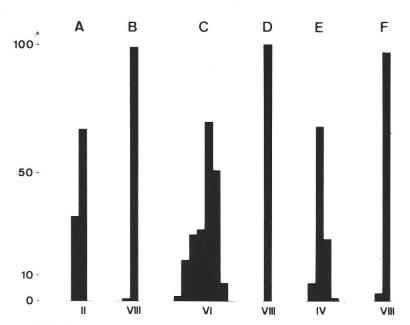


Fig. 3:

Graphische Darstellung der in Tab. 2 enthaltenen Werte.

Ordinate: Klassenhäufigkeit N.

Abszisse: Nummer der Klasse mit der grössten Häufigkeit.

A: R. polyanthemos

D: R. nemorosus

B: R. polyanthemophyllus

E: R. Thomasii

C: R. polyanthemoides

F: R. serpens

Bei R. polyanthemoides fallen die zahlreichen Klassen und damit die grosse Variabilität der Länge und Form der Früchtchenschnäbel auf. Es gibt alle Übergänge zwischen polyanthemos- und nemorosus-Früchtchen. Man kann sogar an derselben Pflanze Früchtchen mit verschiedenen Schnabelformen feststellen.

Die Form und Länge der Früchtchenschnäbel ist ein für die einzelnen Arten kennzeichnendes Merkmal mit einer kleinen Variationsbreite. Nur R. polyanthemoides zeigt eine für diese Art typische, grosse Variabilität (Abb. 7).

4. Ökologie und geographische Verbreitung

Um vertiefte Einsichten in die Ökologie und die Verbreitung der Arten zu gewinnen und um Material zu beschaffen, wurden mehrere Exkursionen in Mittel-, West- und Südeuropa durchgeführt.

4.1. Ökologie

Ranunculus polyanthemos ist eine licht- und wärmebedürftige Art. Sie kommt in Trockenwiesen und steppenartigen Wiesen, aber auch in sonnigen Gebüschen und Steppenwäldern vor. Sie bevorzugt trockene, lockere Böden. Hauptverbreitung ist die kolline Stufe; R. polyanthemos kommt aber in Skandinavien selten auch bis in die subalpine Stufe vor (Hegi 1975).

R. polyanthemophyllus hat ähnliche Standortsansprüche wie R. polyanthemos. Auch er benötigt intensive Sonneneinstrahlung, dabei kommt er aber auch in wechselfeuchten Wiesen und im Gebiet von Auenwäldern vor. Oft findet man ihn auch in lichten Föhrenwäldern. Die Art kommt in der kollinen und montanen Stufe vor.

R. polyanthemoides wächst in feuchten bis trockenen Wiesen und in lichten Wäldern der kollinen Stufe; er verbindet ökologisch R. polyanthemos und R. nemorosus.

R. nemorosus hommt auf feuchten bis mässig trockenen, kalkhaltigen bis versauerten Böden vor. Neben ungedüngten Naturwiesen und Flachmooren trifft man ihn auch in lichten Laub- und Nadelwäldern. Er kommt von der kollinen bis in die subalpine, selten in die alpine Stufe vor.

R. Thomasii wächst auf Wiesen der montanen und subalpinen Stufe (1000–1900 m) auf versauerten bis kalkhaltigen Böden. Er besiedelt die gleiche Standorte wie R. nemorosus.

R. serpens findet man auf versauerten bis kalkreichen feuchten Böden ohne geschlossene Pflanzendecke. Er kommt in Wäldern und nie in Wiesen vor. Man trifft ihn in der montanen und subalpinen Stufe, seltener auch in der kollinen Stufe.

4.2. Geographische Verbreitung

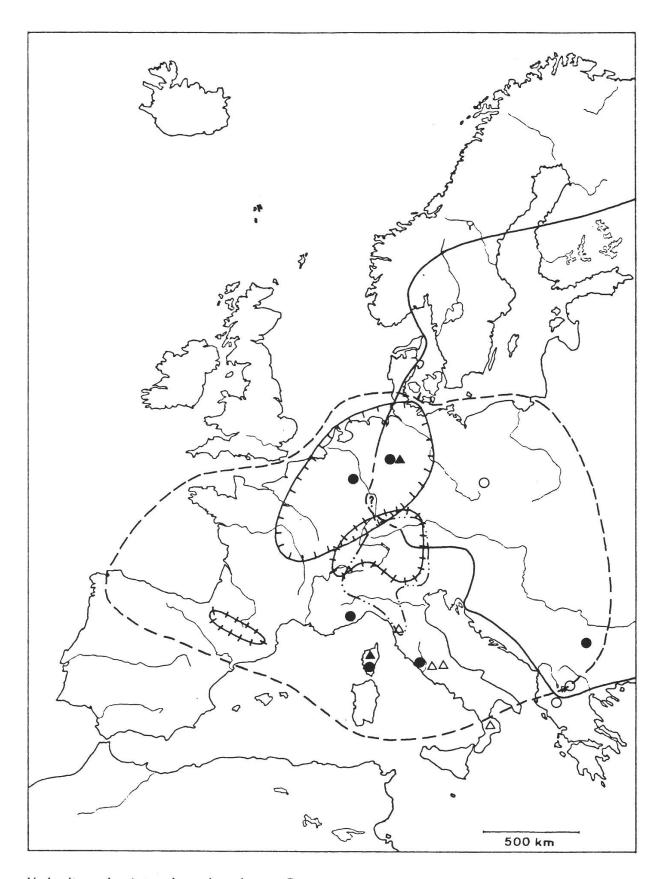
Bei den Verbreitungskarten wurden die Karten von Meusel et al. (1965) als Grundlage genommen. Die folgenden Herbarien wurden revidiert und zur Präzisierung der Verbreitungsangaben ausgewertet:

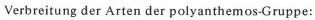
BAS	Botanisches Institut der Universität Basel
M	Botanische Staatssammlung München
RO	Istituto Botanico, Città Universitaria, Roma
WU	Botanisches Institut und Botanischer Garten der Universität Wien
ZT	Institut für spezielle Botanik der Eidgenössischen Technischen Hochschule
	Zürich

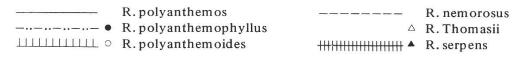
Herbarmaterial von Exkursionen und experimentellen Untersuchungen wird später im Herbar des Institutes für spezielle Botanik der Eidgenössischen Technischen Hochschule Zürich (ZT) deponiert.

R. polyanthemos ist eine osteuropäisch-asiatische Art, welche westwärts bis nach Skandinavien, Westdeutschland, Österreich und Jugoslawien vorkommt. Laut Literaturangaben (z.B. Hegi 1975) soll R. polyanthemos auch im Mainzerbecken und am Kaiserstuhl vorkommen. Auf einer Exkursion im Sommer 1979 konnte diese Art aber in beiden Gebieten nicht gefunden werden. Die Angaben aus Mittel- und Südbayern beziehen sich auf R. polyanthemophyllus (Merxmüller 1965, Krach und Fischer 1979). Die Südgrenze verläuft durch Griechenland (Meusel et al. 1965). R. polyanthemos kommt in der Schweiz nicht vor.

R. polyanthemophyllus kommt in den Alpen, im Schwarzwald, in Südbayern, in Vorarlberg, im Trentino, in den Bergamasker Alpen und in den Apuanischen Alpen vor. Isolierte Fundorte befinden sich in Nordhessen (Rühl 1974), bei Blankenheim (Nordrhein-Westfalen; M. Baltisberger), "Mt. Ceppo" (N von San Remo) und "Oriolo romano" (N von Rom, beide Italien; RO), in Korsika (Gamisans 1977) und bei Pirot (Serbien, Jugoslawien; WU).


R. polyanthemoides kommt in Mittel- und Nordfrankreich, Belgien, Luxemburg, Holland und Westdeutschland vor. Isolierte Fundorte sind bei Landeshut (Schlesien; WU) und neu bei Krani (Südjugoslawien; M. Baltisberger) und im Pindus (Nordgriechenland; M. Baltisberger).


R. nemorosus ist eine westeuropäische Art, welche aus England und Skandinavien nicht angegeben ist. Sie geht nordwärts bis Dänemark, südwärts bis Mittelspanien, Sardinien, Süditalien und Nordgriechenland. Die Ostgrenze ist nicht abgeklärt; nach Meusel et al. (1965) geht sie durch Polen und die Ukraine.


R. Thomasii galt als Endemit der Sila, einem kleinen Gebirgszug von etwa 50 km Länge, in Calabrien, Süditalien. Dort kommt die Art in Wiesen sehr häufig vor. Neue Fundorte wurden in Mittelitalien festgestellt (Monti Simbruini, Parco Nazionale d'Abruzzo, diverse Belege in RO; südliche Ausläufer der Majella, M. Baltisberger). Ein isolierter Fundort befindet sich in den Apuanischen Alpen (lebendes Material von E. Landolt).

R. serpens ist eine mitteleuropäische Gebirgspflanze (Pyrenäen, Alpen, Jura, Vogesen, Schwarzwald, Allgäu, Südbayern, Vorarlberg, Tirol und westliche Teile des Landes Salzburg). Isolierte Fundorte in Nordhessen (Winterhoff 1969, Rühl 1971) und Korsika (BAS).

Die Standorte von R. Thomasii könnten von R. nemorosus auch besiedelt werden. Warum dies nicht geschieht, obwohl R. nemorosus keine 5 km entfernt vorkommt, kann nicht gesagt werden. Auch ist erstaunlich, dass keine Introgressionen zwischen den beiden Arten festgestellt wurden.

5. Zytologische Untersuchungen

An mehreren Pflanzen von jeder untersuchten Population wurden in Wurzelspitzen in 10 bis 20 Metaphasen die Chromosomen gezählt. Zudem wurden die Karyotypen der Arten ausgemessen.

5.1 Methoden

5.1.1. Präparation

Die Wurzelspitzen wurden während 2-4 Stunden mit einer 0,05%-igen Colchizinlösung vorbehandelt, anschliessend in Aethanol/Eisessig (3:1) fixiert und darin im Kühlschrank aufbewahrt.

- a) Für die Untersuchungen der Chromosomenmorphologie wurden die Wurzelspitzen in Orcein-lacto-propionsäure (nach Dyer 1963) gegeben und über Nacht im Kühlschrank aufbewahrt. Darauf wurden sie kurz aufgekocht, in einem Tropfen Orcein-lacto-propionsäure gequetscht und in Caedax eingeschlossen.
- b) Bei Färbungen für Chromosomenbanding wurden die Wurzelspitzen einen Tag nach dem Fixieren verarbeitet, da bei längerem Fixieren die Chromosomen nicht mehr so gut anfärbbar sind. Es wurde nach der von Marks (1975) für mitotische Chromosomen entwickelten Methode gearbeitet (modifiziert nach Schweizer, mündliche Mitteilung): die Wurzelspitzen wurden in Eisessig (45%) bei 60°C während 10–15 Minuten mazeriert und dann zwischen Objektträger und Deckglas gequetscht. Das Deckglas wurde mittels Trockeneis entfernt. Die Objektträger wurden zum Trocknen über Nacht stehen gelassen. Dann wurden sie während 10–12 Minuten in eine gesättigte Bariumhydroxid-Lösung gestellt (Raumtemperatur), anschliessend mit destilliertem Wasser gespült, für 2–3 Stunden in 2 x SSC bei 60°C gegeben und wieder mit destilliertem Wasser gespült. Dann wurde mit Giemsa (1 Teil Giemsas-Lösung von Merck mit 50 Teilen Sörensen Phosphat-Puffer, pH 6.8, verdünnt) 1/2–2 Stunden gefärbt und mit destilliertem Wasser gespült. Die trockenen Präparate wurden in Euparal eingebettet.

5.1.2. Auswertung der Metaphasen

Mit einem Zeichenapparat wurden Metaphasen, in denen die Chromosomen separiert und etwa gleich stark kontrahiert waren, 3400 fach vergrössert gezeichnet. als Markerchromosomen zur Feststellung der Kontraktion wurden die telozentrischen Chromosomen mit Satelliten benützt. Es wurden Metaphasenplatten ausgewählt, bei denen die Länge der Markerchromosomen bis auf 0,3 μ übereinstimmte. Auf den Zeichnungen wurden die einzelnen Chromosomenarme ausgemessen. Die Gesamtlänge eines Chromosoms ergibt sich aus der Addition der Werte der beiden Arme; das Centromer wird also für die Länge der Chromosomen nicht berücksichtigt. Die Chromosomen werden in den Karyogrammen (schematische Darstellung des Chromosomensatzes) so angeordnet, dass das Centromer stets auf die gleiche Höhe zu liegen kommt; der längere Schenkel der Chromosomen liegt immer auf derselben Seite und die Reihenfolge der Chromosomen im Karyogramm ist gegeben durch die abnehmende Länge der längeren Schenkel. So kann ein Chromosomensatz übersichtlich dargestellt werden.

Die Lage des Centromers lässt sich genau durch eine Verhältniszahl (auch Centromerindex genannt) ausdrücken. Baumberger (1971) diskutiert in seiner Arbeit die verschiedenen Möglichkeiten, Verhältniszahlen zu bilden; aus messtechnischen Gründen verwendet er das Verhältnis langer Arm zur Gesamtlänge des Chromosoms. Den gleichen Index benützen auch Ledley und Ruddle (1966), Schweizer (1973), Greilhuber und Speta (1976) und Schweizer und Ehrendorfer (1976).

Diese Methode ergibt folgende Intervallgrenzen für die Indices:

	Abkürzung	Centromerindex
Telozentrisch	T	1
Akrozentrisch	A	0,70 - 0,99
Submetazentrisch	SM	0,53 - 0,69
Metazentrisch	M	0.50 - 0.52

Patau (1960, 1965) geht auf die Schwierigkeiten ein bei der Zuordnung der homologen Chromosomen. Er stellt fest, dass Chromosomen mit gleichem Index nur unterscheidbar sind, wenn mindestens 10% Längenunterschied oder sogenannte Marker (z.B. sekundäre Einschnürungen, Satelliten) vorhanden sind. Chromosomenpaare mit gleichem Index und einem Längenunterschied von weniger als 10% werden in einer Gruppe zusammengefasst.

Spezielle Probleme bieten Chromosomen mit gleich langen Armen (Pohlmann 1978). Da aus verschiedenen Gründen (Präparation, Zeichnungs- und Messungenauigkeiten) die beiden Arme selten eine genau gleiche Länge aufweisen, wird nach den Messdaten meist ein Arm als der längere Arm angenommen. Dies führt zu einem nicht existierenden Unterschied und damit zu Fehlern. Man sollte demnach die Forderung, die Patau (1960, 1965) für ganze Chromosomen stellt, auch für die einzelnen Arme eines Chromosoms stellen: die einzelnen Chromosomenarme können nur unterschieden werden, wenn deren Längen sich um mindestens 10% unterscheiden. Beträgt der Unterschied weniger als 10%, können die Arme nicht unterschieden werden und das Chromosom ist als metazentrisches Chromosom aufzufassen. Dies bewirkt, dass Chromosomen mit dem Centromerindex 0,52 noch als metazentrisch zu betrachten sind.

5.2. Chromosomenzahlen

a) R. polyanthemos 2n = 2x = 16 (Fig. 4)

Chromosomenzählungen an Pflanzen aus der Deutschen Demokratischen Republik und aus Polen ergaben immer die diploide Chromosomenzahl 2n = 16.

In Tab. 3 sind die bisherigen Chromosmenzählungen zusammengestellt.

Fig. 4: Metaphasenplatte aus einer Wurzelspitze von R.polyanthemos. 3400 x.

Tab. 3: Chromosomenzählungen an Arten der polyanthemos-Gruppe.

Autor	Jahr	Anz. Pop.	2 n	Materialherkunft
R. polyanthemos				
Larter	1932	?	16	unbekannt
Tischler	1935	?	16	Westdeutschland
Felföldy	1947	1	14	Ungarn
Pólya	1949	î	16	Ungarn
Mattick (in Tischler)	1950	?	16	unbekannt
Reese	1953	i	16	Westdeutschland
Baksay	1956	1	16	Ungarn
Andersson	1958	1	16	Schweden (B-Chrom.)
Böcher	1958	3	16	Dänemark (1x mit B-Chrom
Bocher	1930	2	16	Ungarn
				Jugoslawien
61 1: 1 1	1071	1	16	Polen
Skalinska et al.	1961	2	16	
Sorsa	1962	1	32	Finnland
Alexandrova	1967	1	16	Russland
Vachova (in Majovsky et al.)	1970	1	16	Tschechoslowakei
Holub et al.	1972	2	16	Tschechoslowakei
Lungeanu (in Löve 1972)	1972	1	18	Rumänien
Vachova (in Ferakova)	1972	1	16	Tschechoslowakei
Goepfert	1974	5	16	unbekannt
Baltisberger	unpubl.	1	16	Ostdeutschland (1)*
	•	1	16	Polen (2)*
R. polyanthemophyllus				
Hess	1955	1	16	Schweiz
Baltisberger	unpubl.	1	16	Schweiz (5)*
R. polyanthemoides				
Gregory	1941	?	16	unbekannt
Duvigneaud & Lambinon	1977	1	16	Holland
zanginada a zamomon	1777	1	16	Westdeutschland
Baltisberger	unpubl.	1	16	Westdeutschland (10)*
Daitisoeigei	unpuoi.	1	16	Luxemburg (11)*
		1	16	Frankreich (12)*
		8.75	16	Jugoslawien (13)*
		1	16	Griechenland (14)*
		1	10	oricemental (1-1)
R. nemorosus	1022	1	16	Dänemark
Langlet	1932	1		Schweiz
Hess	1955	3	16	
Böcher	1958	1	16	Dänemark
_	2 2	1	16	Jugoslawien
Gregson	1965	1	16	Ostdeutschland
Alexandrova	1967	1	16	Russland
Goepfert	1974	2	16	unbekannt
Baltisberger	unpubl.	1	16	Schweiz (17)*
		1	16	Österreich (34)*
		1	16	Italien (42)*
		2	16	Jugoslawien (46, 48)*
R. Thomasii				
Baltisberger	unpubl.	4	16	Italien (49-52)*
R. serpens				
Hess	1955	3	16	Schweiz
Baltisberger	unpubl.	2	16	Schweiz (54, 55)*
	P	3	16	Westdeutschland (56, 57, 58)*

^{*} Die Nummern beziehen sich auf die Fundortsnummern (s. 2.2.)

Andersson (1958) und Böcher (1958) haben bis jetzt als einzige bei *R. polyanthemos* neben 2n = 16 Chromosomen noch akzessorische oder B-Chromosomen festgestellt; ihr Material stammte aus Schweden und Dänemark. Ich konnte in keinem Präparat B-Chromosomen feststellen.

Abweichende Chromosomenzahlen für R. polyanthemos wurden von 3 Autoren angegeben. So von Felföldy (1947), der an Material aus Ungarn 2n = 14 Chromosomen zählte. Es ist zu vermuten, dass er Pflanzen aus der Gruppe des Ranunculus acris L. untersucht hat. (Man trifft auch in Herbarien immer wieder Vertreter dieser Gruppe, die zur polyanthemos-Gruppe gestellt wurden.)

Bei Sorsa (1962) findet man für R. polyanthemos aus Finnland die Angabe n = 16; dies ist die einzige Angabe einer tetraploiden Zahl innerhalb der Artengruppe des R. polyanthemos (wahrscheinlich Druckfehler!).

Lungeanu (in Löve 1972) gibt für R. polyanthemos aus Rumänien die Chromosomenzahl 2n = 18 an. Bis jetzt wurde noch nie bei einer Art der Gattung Ranunculus eine Chromosomenzahl auf der Basis x = 9 gezählt.

b) R. polyanthemophyllus 2n = 2x = 16

Meine Zählungen an Pflanzen aus der Schweiz bestätigen die früheren Angaben von Hess (1955) (Tab. 3).

c) R. polyanthemoides 2n = 2x = 16

Meine Zählungen an Pflanzen aus der Bundesrepublik Deutschland, Luxemburg, Frankreich, Jugoslawien und Griechenland ergaben als diploide Chromosomenzahl immer 2n = 16. In Tab. 3 sind die bisherigen Chromosomenzählungen zusammengestellt.

d) R. nemorosus 2n = 2x = 16

Meine Zählungen an Pflanzen aus der Schweiz, Österreich, Italien und Jugoslawien ergaben immer die diploide Chromosomenzahl 2n = 16. Auch alle früheren Angaben (Tab. 3) stimmen damit überein.

e) R. Thomasii 2n = 2x = 16

Die Chromosomenzahl von R. Thomasii wurde zum ersten Mal festgestellt. Sie wurde an Pflanzen aus allen zur Verfügung stehenden Populationen überprüft; alle Pflanzen hatten 2n = 2x = 16 Chromosomen (Tab. 3).

f) R. serpens 2n = 2x = 16

Meine Zählungen an Pflanzen aus der Schweiz und der Bundesrepublik Deutschland ergaben stets 2n = 2x = 16 Chromosomen. Auch Hess (1955) zählte 16 Chromosomen (Tab. 3).

g) Bastarde zwischen Arten der polyanthemos-Gruppe

Es wurden über 50 Pflanzen der F_1 -Generation, mehr als 30 Pflanzen der F_2 -Generation und etwa 40 Pflanzen der F_3 -Generation untersucht. Alle Chromosomenzählungen ergaben 2n = 2x = 16.

5.3. Chromosomenmorphologie

Für die Ausmessung der Chromosomen wurden von Ranunculus polyanthemos, R. polyanthemophyllus und R. nemorosus je 7 Metaphasen einer Pflanze ausgewählt. Die Berechnungen (Durchschnitte, Standardabweichungen) zeigten, dass die Unterschiede der Karyotypen dieser 3 Arten statistisch nicht signifikant sind. Untersuchungen an Metaphasen von R. polyanthemoides, R. Thomasii und R. serpens zeigten, dass auch diese Karyotypen nicht von den Karyotypen der anderen Arten unterschieden werden können. Deshalb wurden als Kontrolle bei diesen 3 Arten nur noch je 2 Metaphasen einer Pflanze ausgemessen (Tab. 4).

Tab. 4: Untersuchungsmaterial für die Auswertung der Karyotypen.

Art	Materialherkunft *	Anzahl Metaphasen		
R.polyanthemos	Ostdeutschland (1)	7		
R.polyanthemophyllus	Schweiz (5)	7		
R.polyanthemoides	Westdeutschland (10)	2		
R. nemorosus	Schweiz (17)	7		
R.Thomasii	Italien (51)	2		
R. serpens	Westdeutschland (57)	2		

^{*} Die Nummern hinter den Ländern beziehen sich auf die Fundortsnummern (s. 2.2.)

Jeder Karyotyp der untersuchten Arten zeigt die gleichen 5 morphologisch gut unterscheidbaren Chromosomenpaare oder Chromosomengruppen:

- 1 Paar telozentrischer Chromosomen mit Satelliten (Nr. I)
- 1 Paar akrozentrischer Chromosomen mit Satelliten (Nr. II)
- 3 weitere Paare akrozentrischer Chromosomen ohne Satelliten (Nr. III-V)
- 2 Paare submetazentrischer Chromosomen (Nr. VI, VII)
- 1 Paar metazentrischer Chromosomen (Nr. VIII)

Für alle Arten gilt dieselbe Chromosomenformel:

2TSAT 8A(2ASAT) 4SM 2M

Bei den meisten der ausgewerteten Metaphasen waren alle 4 Satelliten zu sehen. Die einzelnen Satelliten bestehen aus 2 deutlich unterscheidbaren "Halb-Satelliten" (Chromatiden), die zum Teil ganz voneinander getrennt sind und oft auch verschieden weit vom dazugehörenden Chromosom weggerückt sind. Sie wurden nicht ausgemessen.

Die totalen Längen der Karyotypen (TLK) sind in Tab. 5 enthalten. R. nemorosus hat die grösste TLK mit 81.9μ , R. Thomasii die kleinste mit 79.1μ . Die Differenz von 2.8μ macht etwa 3.5% aus; dies ist weniger als die methodischen Fehler ausmachen. Die Karyotypen können deshalb nicht anhand ihrer totalen Länge unterschieden werden.

Tab. 5: Totale Längen der	Karyotypen	(TLK).
---------------------------	------------	--------

Art	TLK	*
D l l		
R. polyanthemos	79,7 μ	
R. polyanthemophyllus	79,5 μ	
R. polyanthemoides	79,5 μ	
R. nemorosus	81.9μ	
R. T·homasii	79,1 μ	
R. serpens	80,5 μ	

Die Werte für die einzelnen Karyotypen sind in den Tabellen 6-11 enthalten. Die Centromerindices wurden aufgrund der Mittelwerte berechnet. Da die Karyotypen der einzelnen Arten keine statistisch signifikanten Unterschiede aufweisen, wird nur das Karyogramm von *R. polyanthemos* gezeigt (Fig. 5).

Fig. 5: Karyogramm von R. polyanthemos.

In Tab. 6–11 verwendete Abkürzungen:

CT	Chromosomentyp	$\overline{\mathbf{x}}$	Mittelwert
Nr	Chromosomennummer	S	Standardabweichung
LA	Langer Arm	SAT	Satelliten
KA	Kurzer Arm	TL	Totale Länge
LA/TL	Centromerindex (Langer Arm zu	r Totalen	Länge)

Tab. 6: Chromosmenwerte (in μ) von R. polyanthemos.

	LA		KA		0.45		
Nr	$\bar{\mathbf{x}}$	S	$\overline{\mathbf{x}}$	S	SAI	I L	LA/TL
I	4,36	0,287	_	N1	+	4,36	1,00
H	4,19	0,269	0.58	0,037	+	4,77	0.88
III-V	3,73	0,373	1;02	0,153	-	4.75	0.79
VI, VII	3,20	0,317	2.05	0,273	-	5,25	0,61
VIII	3,08	0,274	2,87	0,268	-	5,95	0,52
	III-V VI, VII	I 4,36 II 4,19 III-V 3,73 VI, VII 3.20	I 4,36 0,287 II 4,19 0,269 III-V 3,73 0,373 VI, VII 3,20 0,317	I 4,36 0,287 — II 4,19 0,269 0,58 III—V 3,73 0,373 1:02 VI, VII 3,20 0,317 2,05	I 4,36 0,287 II 4,19 0,269 0,58 0,037 III-V 3,73 0,373 1;02 0,153 VI, VII 3,20 0,317 2.05 0,273	I 4,36 0,287 + II 4,19 0,269 0,58 0,037 + III-V 3,73 0,373 1;02 0,153 - VI, VII 3,20 0,317 2,05 0,273 -	I 4,36 0,287 + 4,36 II 4,19 0,269 0.58 0,037 + 4,77 III-V 3,73 0,373 1;02 0,153 - 4,75 VI, VII 3,20 0,317 2.05 0,273 - 5,25

Tab. 7: Chromosomenwerte (in μ) von R. polyanthemophyllus.

СТ	Nr	LA		KA		SAT	TL	LA/TL
	INT	$\overline{\mathbf{X}}$	S	$\overline{\mathbf{x}}$	S	SAI	I L	LA/IL
T_{SAT}	I	4,24	0,182	_	and the same of th	+	4,24	1,00
ASAT	II	4,13	0,198	0,56	0,076	+	4,69	0,88
A	III-V	3,61	0,311	0,99	0,142		4,60	0,78
SM	VI, VII	3,26	0,186	2,31	0,314		5,57	0,59
M	VIII	2,96	0,110	2,90	0,134	·	5,86	0,51

Tab. 8: Chromosomenwerte (in μ) von R. polyanthemoides.

СТ	NI.	LA		KA		SAT	TL	LA/TL
C1	Nr	$\overline{\mathbf{x}}$	S	$\overline{\mathbf{x}}$	S	SAI	I L	LA/IL
T_{SAT}	I	4,21	0,113	_	-	+	4,21	1,00
ASAT	II	4,14	0,164	0,59	0,096	+	4,73	0,88
A	III-V	3,75	0,253	0,99	0,182	_	4,74	0,79
SM	VI, VII	3,22	0,283	2,18	0,158		5,40	0,60
M	VIII	2,96	0,160	2,81	0,135	_	5,77	0,51

Tab. 9: Chromosomenwerte (in μ) von R. nemorosus.

СТ	Nr	LA		KA		CAT	TI	T A /TCT
		X	S	$\overline{\mathbf{x}}$	S	SAT	TL	LA/TL
T_{SAT}	I	4,23	0,172	_	-	+	4,23	1,00
ASAT	II	4,22	0,176	0,56	0,103	+	4,78	0,88
A	III-V	3,77	0,246	1,09	0,180	-	4,86	0,78
SM	VI, VII	3,22	0,222	2,34	0,246		5,56	0,58
M	VIII	3,14	0,235	3,09	0,235		6,23	0,50

Tab. 10: Chromosomenwerte (in μ) von R. Thomasii.

СТ	Nr	LA		KA		CAT	TO I	*
		$\overline{\mathbf{x}}$	S	$\overline{\mathbf{X}}$	S	SAT	TL	LA/TL
T_{SAT}	I	4,26	0,074	_	_	+	4,26	1,00
A_{SAT}	II	4,07	0,203	0,59	0,125	+	4,66	0,87
A	III-V	3,91	0,274	0,96	0,074	-	4,87	0,80
SM	VI, VII	3,07	0,107	2,04	0,228	_	5,11	0,60
M	VIII	2,97	0,241	2,81	0,140	_	5,78	0,51

Tab. 11: Chromosomenwerte (in μ) von R. serpens

СТ	Nr	LA		KA		CAT	TI	T A /TOT
		X	S	X	S	SAT TL	TL	LA/TL
T_{SAT}	I	4,24	0,064	_		+	4,24	1,00
A_{SAT}	II	4,15	0,188	0,51	0,104	+	4,66	0,89
A	III-V	3,86	0,298	1,03	0,143	, ,	4,89	0,79
SM	VI, VII	3,29	0,071	2,05	0,203	_	5,34	0,62
M	VIII	3,08	0,180	2,93	0,168		6,01	0,51

5.4. Chromosomenbanding

Präparationen und Färbungen für Chromosomenbanding erbrachten immer ein ähnliches Bild: zum Teil können bei Chromosomen, welche beim Quetschen aus den Zellen ausgetreten sind, schmale, kaum sichtbare interkalare Bänder festgestellt werden. An Chromosomen, welche in den Zellen geblieben sind, sind keine Bänder zu sehen. Deshalb konnte das Banding nicht ausgewertet werden.

Univ.-Doz. Dr. D. Schweizer (Botanisches Institut der Universität Wien), ein Spezialist für diese Färbmethoden, anerbot sich freundlicherweise, Versuche zur Färbung für Chromosomenbanding durchzuführen. Auch er erzielte bei seinen Färbungen an Wurzelspitzen keine brauchbaren Resultate (Schweizer, in lit.).

6. Bestäubungen und Kreuzungen

Bei allen Kombinationsangaben von Kreuzungen wird zuerst der weibliche Elter genannt. Reziproke Kreuzungen werden in den Tabellen nacheinander angeführt.

6.1. Methode

Im Laufe des Morgens wurden bei weit entwickelten Blütenknospen oder bei sich öffnenden Blüten die Antheren entfernt. Es wurde darauf geachtet, dass noch kein Staubbeutel geplatzt war. Anschliessend wurden die Narben bestäubt. Um andere Fremdbestäubungen zu verhindern, wurden über die Blüten zylindrische Hülsen gestülpt. Diese Hülsen waren oben geschlossen und wurden unten mit Watte zugestopft. Die Blütenstiele wurden sodann mit den Kreuzungsnummern gekennzeichnet und mit einer Stütze versehen. So konnten die Blüten normal abblühen und eine andere Fremdbestäubung war ausgeschlossen. Nach etwa 4 Wochen waren die Früchtchen reif. Man muss sie ernten, solange sie noch grün sind, sich aber durch leichten Druck vom Blütenboden lösen. So geerntete und sofort ausgesäte Früchtchen keimen bereits innerhalb von 4 bis 6 Wochen und nicht erst im darauffolgenden Frühjahr. Auf diese Weise erhält man schon im Herbst kräftige Pflanzen, die im Freien gut überwintern. Im Frühling kommen diese Pflanzen bereits zum Blühen.

6.2. Selbstbestäubungen und Fremdbestäubungen

6.2.1. Selbstbestäubungen

Es wurden Selbstbestäubungen durchgeführt sowohl mit Pollen derselben Blüten als auch mit Pollen von anderen Blüten derselben Pflanze. Da keine Unterschiede im Früchtchenansatz festgestellt wurden, werden die beiden Selbstbestäubungstypen im folgenden nicht getrennt aufgeführt.

Ranunculus nemorosus und R. serpens sind, wie Hess (1955) zeigte, in hohem Grade selbststeril. Bei R. polyanthemophyllus konnte er aber aus 16 Selbstbestäubungen 9 Tochterpflanzen zum Blühen bringen. Um dies zu verifizieren, wurden an 22 Blüten von R. polyanthemophyllus Selbstbestäubungen durchgeführt. Nur 3 von den mehr als 400 Karpellen entwickelten sich zu gut ausgebildeten Früchtchen, von denen aber keines keimte.

Weiter wurden an 8 Blüten von *R. polyanthemos*, an 3 Blüten von *R. polyanthemoides* und an 6 Blüten von *R. Thomasii* Selbstbestäubungen durchgeführt. Von den wenigen Früchtchen, welche sich entwickelten, keimte eines aus einer Selbstbestäubung bei *R. polyanthemos*. Die schwächliche Pflanze konnte zur Blüte gebracht werden, zeigte aber eine abnorme Morphologie: der Stengel war dünn und so schwach, dass er sich nicht aufrecht halten konnte; die grundständigen Blätter waren eiförmig bis lanzettlich, nicht geteilt, nur grob gezähnt; die Blüten sahen denjenigen von *Ranunculus Ficaria* L. ähnlich, mit vielen (bis 10), schmal ovalen Honigblättern und 5–8 Perigonblättern; der Pollen war nur zu etwa 20% normal ausgebildet. Es konnte kein Früchtchenansatz beobachtet werden, obwohl experimentell sowohl selbstals auch fremdbestäubt wurde. Die Pflanze hatte normal 2n = 2x = 16 Chromosomen.

An 22 Blüten von Bastardpflanzen der F₁- und F₂-Generation wurden Selbstbestäubungen durchgeführt. Es entwickelten sich nur 3 Früchtchen, von denen keines keimte.

6.2.2. Fremdbestäubungen

Fremdbestäubungen zwischen Pflanzen derselben Population wurden bei Ranunculus nemorosus und R. Thomasii durchgeführt (in Tab. 12 mit * gekennzeichnet).
Fremdbestäubungen zwischen Vertretern verschiedener Populationen derselben Art
wurden bei R. polyanthemoides, R. nemorosus und R. Thomasii durchgeführt
(Tab. 12).

Etwa 90% der so bestäubten Blüten zeigten normalen Früchtchenansatz (10–25 Früchtchen pro Blüte) und etwa 80% der Früchtchen keimten. Alle Keimlinge wuchsen zu kräftigen Pflanzen heran, welche normal zum Blühen und Fruchten kamen.

Dass etwa 10% der experimentellen Kreuzungen keinen Früchtchenansatz zeigten, könnte darauf zurückzuführen sein, dass nur einmal bestäubt wurde. Waren die Narben zum Zeitpunkt der Bestäubung noch nicht rezeptiv, so führte dies zwangsläufig zu einem Misserfolg dieser Kreuzung.

Tab. 12: Fremdbestäubungen. Bestäubungen zwischen Pflanzen derselben Population sind mit * bezeichnet.

Art	bestäubte Blüten	Blüten mit Früchtchenansatz	gezogene Nachkommen
R.polyanthemoides	2	2	49
R. nemorosus*	10	9	158
R. nemorosus	26	24	396
R. Thomasii*	2	2	28
R. Thomasii	10	7	125

Aus den Ergebnissen der Selbst- und Fremdbestäubungen folgt, dass die Arten der polyanthemos-Gruppe selbststeril und allogam sind.

6.3. Kreuzungen zwischen Arten der polyanthemos-Gruppe

Es wurden 289 Kreuzungen durchgeführt, welche sich auf 22 zum Teil reziproke Kombinationen verteilen (Tab. 13). Unter "Kreuzungen mit Bastarden" werden alle Kreuzungen zusammengefasst, bei denen mindestens der eine Elter ein Bastard war. Es wurden Kreuzungen bis zur F3-Generation durchgeführt, dazu Rückkreuzungen und Mehrfachbastardierungen.

Etwa 90% der Kreuzungen zeigten einen normalen Früchtchenansatz (10-25 Früchtchen pro Blüte) und die Früchtchen keimten zu ca. 80%. Alle Keimlinge wuchsen zu kräftigen Pflanzen heran.

Tab. 13: Kreuzungen zwischen Arten der Gruppe des Ranunculus polyanthemos.

Kombination (Mutterpflanze zuerst!)	bestäubte Blüten	Blüten mit Früchtchen- ansatz	gezogene Bastarde	
R. polyanthemos X R. polyanthemophyllus	6	4	35	
R. polyanthemophyllus × R. polyanthemos	11	9	83	
R. polyanthemos X R. nemorosus	14	11	102	
R. nemorosus × R. polyanthemos	30	26	390	
R. polyanthemos X R. Thomasii	3	3	53	
R. Thomasii × R. polyanthemos	8	7	104	
R. polyanthemos X R. serpens	1	1	9	
R. polyanthemophyllus X R. nemorosus	9	7	69	
R. nemorosus X R. polyanthemophyllus	15	13	183	
R. polyanthemophyllus X R. Thomasii	4	4	63	
R. Thomasii × R. polyanthemophyllus	8	8	104	
R. polyanthemoides X R. polyanthemos	1	1	14	
R. polyanthemoides X R. polyanthemophyllus	1	1	15	
R. polyanthemoides X R. nemorosus	9	8	135	
R. nemorosus X R. polyanthemoides	10	8	122	
R. polyanthemoides X R. Thomasii	5	4	87	
$R. Thomasii \times R. polyanthemoides$	2	1	17	
R. nemorosus X R. Thomasii	20	19	343	
R. Thomasii \times R. nemorosus	19	16	235	
R. nemorosus X R. serpens	3	3	46	
R. Thomasii × R. serpens	9	6	117	
R. serpens X R. Thomasii	3	3	40	
Kreuzungen mit Bastarden	98	87	1142	
Total	289	250	3508	

7. Eigenschaften der Bastarde

Die Bastarde aller Generationen aus Kreuzungen innerhalb der Artengruppe sind vital und fertil wie die Elternpflanzen.

F₁-Bastarde sind intermediär in den folgenden Merkmalen: Form, Farbe und Grösse der Blätter; Grösse der Früchtchen; Form und Länge der Früchtchenschnäbel.

Einige Merkmale von *R. serpens* werden jedoch dominant vererbt: die Zweijährigkeit; das Niederlegen der Stengel gegen Ende der Blütezeit; die Bildung sich bewurzelnder Blattrosetten in den Achseln der Stengelblätter; die Farbe der Honigblätter (dunkelgelb bis orange).

Die für R. Thomasii typische Aderung auf der Oberseite der Honigblätter wird rezessiv vererbt; sie konnte an keinem Bastard mit R. Thomasii als einem Elter festgestellt werden.

Pflanzen der F₂- und F₃-Generationen sowie aus Rückkreuzungen sind an den Merkmalskombinationen zu erkennen, oder sie sind von den Eltern der F₁-Generation nicht unterscheidbar.

Bastarde zwischen R. polyanthemos und R. nemorosus können nicht von R. polyanthemoides unterschieden werden. R. polyanthemoides ist deshalb höchstwahrscheinlich hybridogenen Ursprungs.

Bastarde zwischen R. polyanthemoides und anderen Arten aus der Gruppe (ausser R. serpens) sind nicht unterscheidbar von Bastarden von R. polyanthemos mit anderen Arten der Gruppe (F₁ bis F₃) und deren Rückkreuzungen, wie dies zu erwarten ist, da R. polyanthemoides morphologisch einen Zwischenbereich einnimmt und eine grosse morphologische Variationsbreite besitzt (Schnäbel der Früchtchen, Blatteilung).

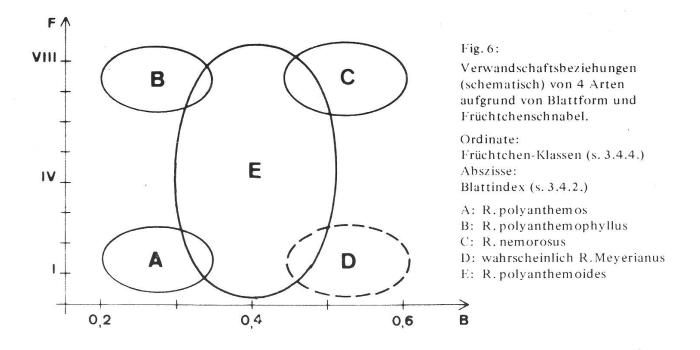
Bastarde zwischen R. polyanthemophyllus und R. nemorosus sind an den langen, hakig eingerollten Früchtchenschnäbel zu erkennen.

Aus den Ergebnissen der Kreuzungsexperimente folgt, dass die genetische Affinität zwischen den Arten der *polyanthemos*-Gruppe gross ist. In der Natur sind deshalb in allen Berührungsgebieten der verschiedenen Arten Bastarde zu erwarten. Bis jetzt wurden folgende Bastarde in der Natur gefunden:

- a) R. polyanthemophyllus X R. nemorosus (Schweiz, Hess 1955; Westdeutschland, Rühl 1974).
- b) $R. polyanthemophyllus \times R. serpens$ (Westdeutschland, Rühl 1974).
- c) R. nemorosus X R. serpens (Schweiz, Hess 1955; Westdeutschland, Gutermann 1960 und Rühl 1974).

8. Diskussion

Die Arten der Gruppe des Ranunculus polyanthemos sind sehr nahe verwandt; dies folgt aus ihrer Morphologie, Zytologie und ihrer Kreuzbarkeit.


8.1. Morphologie

Die morphologische Variabilität der einzelnen Arten ist gross, ganz besonders in Berührungsgebieten. Deshalb können die Arten nur anhand von *Merkmalskombinationen* erkannt werden.

Gleiche Verhältnisse treten auch bei anderen Artengruppen der Gattung Ranunculus auf, so z.B. bei der Artengruppe des R. montanus Willd. (Landolt 1954, 1956), bei der Artengruppe des R. acris L. (Coles 1971) und des R. bulbosus L. (Coles 1973). Pflanzen dieser Gruppen können meist nur anhand von Merkmalskombinationen sicher bestimmt werden.

Die morphologische Variabilität der Arten der polyanthemos-Gruppe bleibt auch in Kultur erhalten. Sie ist also genetisch bedingt. Dagegen wurde bei experimentellen Untersuchungen an den Artengruppen des Aconitum variegatum L. (Götz 1967) und des A. Napellus L. (Seitz 1969) festgestellt, dass die morphologische Variabilität zu einem grossen Teil auf Umweltfaktoren zurückzuführen ist. Dabei spielen vor allem die Höhenlage und die Sonneneinstrahlung eine grosse Rolle.

Für die einzelnen Arten sind folgende Merkmale und Merkmalskombinationen typisch (s. 3.3.): *R. serpens* hat dunkelgelbe bis orangefarbene Honigblätter und stengelständige, sich nach der Blütezeit bewurzelnde Blattrosetten; *R. Thomasii* zeichnet sich durch den Habitus (bis 40 cm hohe, 1- bis 3-blütige Pflanzen) und die Aderung der Honigblätter aus; die übrigen 4 Arten der *polyanthemos*-Gruppe unterscheiden sich nur an Früchtchen und Blättern, wobei 3 der 4 möglichen Kombinationen als Arten in West- und Südeuropa bekannt sind und *R. polyanthemoides* die intermediären Formen umfasst. Dieser Sachverhalt ist in einem Euler-Venn-Diagramm dargestellt (Fig. 6).

Die für das Diagramm verwendeten Daten stammen aus den Untersuchungen über die Blattform (s. 3.4.2.) und über die Form und Länge der Früchtchenschnäbel (s. 3.4.4.).

Eine weitere, 5. Art hätte gemäss Diagramm folgende Merkmalskombination (Fig. 6, D): wenig tief geteilte Blätter (wie *R. nemorosus*) und kurze, gerade bis schwach gebogene Früchtchenschnäbel (wie *R. polyanthemos*). Eine solche Art wird ausführlich beschrieben in der Flora der U.S.S.R. (Komarov 1937) unter dem Namen *R. Meyerianus Rupr.*; sie kommt von Zentralasien nach Westen bis auf die Halbinsel Krim und an den Dnjepr vor und hat, wie die anderen Arten der Gruppe, 2n = 2x = 16 Chromosomen (Alexandrova 1967). Ich konnte davon kein Material einsehen.

8.2. Ökologie und Verbreitung

a) Ökologie (s. 4.1.)

R. polyanthemophyllus besiedelt wie R. polyanthemos Wiesen und lichte Wälder mit intensiver Sonneneinstrahlung. Da er die gleiche Blattform wie R. polyanthemos hat, könnte dieser Standort die Blattform selektioniert haben.

R. nemorosus kommt in feuchten bis mässig trockenen Wiesen und lichten Wäldern vor.

R. polyanthemoides besiedelt intermediäre Standorte von R. polyanthemos und R. nemorosus. Dies ist ein weiteres Indiz für seinen hybridogenen Ursprung.

Die Standorte von R. Thomasii könnten auch von R. nemorosus besiedelt werden. Warum dies nicht geschieht, obwohl R. nemorosus keine 5 km entfernt vorkommt, kann nicht gesagt werden. Erstaunlicherweise wurden auch keine Introgressionen festgestellt.

Durch seinen Standort ist R. serpens von den anderen Arten gut getrennt.

b) Verbreitung (s. 4.2.)

R. polyanthemos ist eine osteuropäisch-asiatische Art. Die Westgrenze der Verbreitung war bisher umstritten und ist auch jetzt nicht abgeklärt. Trotz intensiver Suche konnte R. polyanthemos, der nach Literaturangaben am Kaiserstuhl und im Mainzerbecken vorkommen soll, dort nicht gefunden werden. Die westlichsten mir bekannten Fundorte sind (von Norden nach Süden): Hamburg (Westdeutschland; Herbar Hamburg), Minden (Westdeutschland; Herbar Hamburg), Augsburg (Donautal, Westdeutschland; Herbar München), Rijeka (Jugoslawien; Herbar Universität Wien).

R. polyanthemophyllus und R. serpens kommen vor allem in Zentraleuropa vor. Beide Arten sind zusammen in Nordhessen mehrfach anzutreffen, weit vom Hauptverbreitungsgebiet entfernt (Winterhoff 1969, Rühl 1971 und 1974). Dieses gemeinsame Vorkommen ist erstaunlich, da die beiden Arten ganz verschiedene Standortsansprüche haben, und wird weiter untersucht.

Die Verbreitung von R. polyanthemoides, der als Bastard von R. polyanthemos und R. nemorosus aufzufassen ist, liegt ausserhalb und in Randgebieten der Verbreitung von R. polyanthemos: Westdeutschland, Belgien, Holland, Luxemburg, Frankreich und, als neue Fundorte, in Südjugoslawien und Nordgriechenland. In diesen Gebieten ist auch R. nemorosus nicht häufig. So sind die Möglichkeiten der Rückkreuzungen mit beiden Eltern gering, so dass sich dort Bastardschwärme, die vermutlich schon in der postglazialen Wärmezeit entstanden sind, halten können. Da der grösste Teil des Verbreitungsareals (siehe auch Balkan!) von R. polyanthemoides ausserhalb des gemeinsamen Verbreitungsgebietes der Eltern liegt, wird R. polyanthemoides im Artrang beibehalten.

R. nemorosus ist in Europa weit verbreitet; die Ostgrenze der Verbreitung ist nicht bekannt.

R. Thomasii war bisher aus Mittel- und Norditalien nicht bekannt; er galt als Endemit von Süditalien (La Sila, Calabrien).

8.3. Zytologie

Die zytologischen Untersuchungen der Arten der Gruppe des Ranunculus polyanthemos ergaben immer die Chromosomenzahl 2n = 2x = 16 (s. 5.2.). Alle Arten besitzen den gleichen Karyotyp mit der folgenden Chromosomenformel: $2T_{SAT}8A(2A_{SAT})$ 4SM 2M (s. 5.3.).

Entsprechende Ergebnisse erhielt auch Goepfert (1974). Er hat unter anderem Karyotypanalysen an R. polyanthemos und R. nemorosus durchgeführt. Die Herkunft des Materials ist nicht bekannt; Goepfert schreibt lediglich, dass er von R. polyanthemos 5 Populationen und von R. nemorosus 2 Populationen studiert habe. Goepfert interpretiert die Satelliten der telozentrischen Chromosomen als kurzen Arm. Deshalb gibt er nur ein Paar Chromosomen mit Satelliten an. Da die Satelliten der telozentrischen Chromosomen gleich sind wie die Satelliten der akrozentrischen Chromosomen (die Satelliten bestehen aus 2 "Halb-Satelliten" = Chromatiden, im Gegensatz zu den ungeteilten Chromosomenarmen), behalte ich die Interpretation telozentrische Chromosomen mit Satelliten bei.

8.4. Bestäubungen, Kreuzungen und Bastarde

Aus den Ergebnissen der Selbst- und Fremdbestäubungen folgt, dass die Arten der *polyanthemos*-Gruppe *selbststeril* und *allogam* sind (s. 6.2.). Dies zeigte Hess (1955) schon für *R. polyanthemophyllus*, *R. nemorosus* und *R. serpens*.

Die Selbstinkompatibilität und die allogame Bestäubung innerhalb der Artengruppe des R. polyanthemos bewirkt, dass keine reinen Linien entstehen, wie dies nach Riley (1956) in der Artengruppe des Thlaspi alpestre L. (Cruciferae) der Fall ist. Da die Thlaspi-Arten nicht obligat autogam sind, kommt es immer wieder zu Fremdbestäubungen. Durch die jedoch viel häufigeren Selbstbestäubungen (bis zu 90%) entstehen einheitliche Lokalrassen, die von Jordan (1846) eingehend beschrieben wurden.

Jordan (1864) hat auch innerhalb der Artengruppe des *R. polyanthemos* lokale Sippen beschrieben. Wegen der grossen Variabilität der Arten sind aber solche Lokalrassen nicht von systematischem Wert.

Hess (1955) kreuzte erfolgreich R. polyanthemophyllus, R. nemorosus und R. serpens in allen Kombinationen. Auch jetzt zeigten bei den Kreuzungsexperimenten innerhalb der Artengruppe alle Kombinationen zwischen den 6 Arten (nur die Kombination von R. polyanthemoides mit R. serpens wurde noch nicht durchgeführt) normalen Früchtchenansatz (s. 6.3.). Alle Bastarde bis zur F3-Generation und alle Rückkreuzungen und Mehrfachbastardierungen waren normal fertil (s. 7.1.).

Bei den Untersuchungen der Bastarde (F₁ bis F₃ und Rückkreuzungen) stellte sich heraus, dass die Bastarde zwischen R. polyanthemos und R. nemorosus nicht von R. polyanthemoides unterschieden werden können (s. 7.1.). So erscheint R. polyanthemoides als ein hybridogener Formenschwarm (siehe auch Verbreitung und Ökologie, 4. und 8.2.).

R. polyanthemophyllus könnte wegen seiner Gestalt (s. 3.3.) und wegen seiner Verbreitung und seines Standortes (s. 4. und 8.2.) als Relikt aus Bastardschwärmen zwischen R. polyanthemos und R. nemorosus betrachtet werden. Es ist anzunehmen, dass das Verbreitungsgebiet von R. polyanthemos zur postglazialen Wärmezeit viel

weiter nach Westen gereicht hat als heute, ähnlich wie die Verbreitungsgebiete zahlreicher anderer südwest- und zentralasiatischer Steppenpflanzen. Da R. polyanthemophyllus, wie R. polyanthemos, Standorte mit intensiver Sonneneinstrahlung besiedelt. wäre es denkbar, dass aus Bastarden Pflanzen mit schmalen Blattzipfeln, wie sie R. polyanthemos besitzt, selektioniert wurden. Gegen diese Bastardhypothese spricht. dass R. polyanthemophyllus ohne Ausnahme, wie R. nemorosus, lange, eingerollte Früchtchenschnäbel besitzt. Die Verbreitungsgebiete von R. polyanthemos und R. polyanthemophyllus überschneiden sich kaum (Südbayern; s. 4.2.), es könnten somit nur selten Rückkreuzungen mit R. polyanthemos stattfinden; da R. polyanthemophyllus aber im Verbreitungsgebiet von R. nemorosus vorkommt, könnten Form und Länge der Früchtchenschnäbel bei R. polyanthemophyllus mit Genintrogressionen von R. nemorosus erklärt werden. Die experimentellen Befunde bestätigen diese Hypothese aber nicht: Bei keinem der experimentellen Bastarde (494 Pflanzen der F₁. 102 aus Rückkreuzungen, 89 Pflanzen der F₂ und 57 der F₃) zwischen R. polyanthemos und R. nemorosus konnte die Merkmalskombination von R. polyanthemophyllus festgestellt werden (tiefgeteilte Blätter mit schmalen Zipfeln; langer, eingerollter Früchtchenschnabel).

8.5. Artbildung in der Artengruppe des Ranunculus polyanthemos

Die Artbildung in der *polyanthemos*-Gruppe kann man sich folgendermassen vorstellen:

Aus einer polymorphen Sippe in Südosteuropa oder Zentralasien entstanden bereits vor den Eiszeiten durch Selektion R. polyanthemos und R. nemorosus. R. polyanthemos, mit den schmalen Blattzipfeln und dem kurzen und kleinen Früchtchenschnabel (beide Eigenschaften setzen die Transpiration herab), kann man als eine durch Selektion bedingte Anpassung an das trockene kontinentale Klima weiter Gebiete Osteuropas und Zentralasiens deuten. R. nemorosus, mit weniger geteilten Blättern (einer ungefähr doppelt so grossen Assimilationsfläche), entstand als Laubwaldpflanze feuchterer Gebiete, die später auch durch den Menschen geschaffene, waldfreie Standorte ausserhalb kontinentaler Klimate besiedelt hat. Der lange Schnabel des Früchtchens mit der viel grösseren Narbe kann für die Fremdbestäubung als Selektionsvorteil angesehen werden.

Im westlichen Europa entstand postglazial in lichten Waldgesellschaften unter dem Einfluss intensiver Einstrahlung, jedoch weniger extremer Bedingungen als im kontinentalen Osten, R. polyanthemophyllus. Die Blätter dieser Art sind sehr ähnlich jenen von R. polyanthemos, sonst enspricht die Art in den Hauptmerkmalen R. nemorosus. Wie die experimentellen Untersuchungen zeigen (s. 8.4.), ist diese Selektionshypothese wahrscheinlicher als die Annahme, R. polyanthemophyllus sei aus Kreuzungen zwischen R. polyanthemos und R. nemorosus hervorgegangen.

Durch Bastardierungen von R. polyanthemos mit R. nemorosus entstand ebenfalls postglazial R. polyanthemoides. Diese Erkenntnis folgt aus den morphologischen Merkmalen dieser Art (s. 3.3.), die mit jenen der experimentell erzeugten Bastarde übereinstimmen (s. 7.1.), und weiter aus der Zytologie (s. 5.2. und 5.3.), dem Standort (s. 4.1.) und der Verbreitung (s. 4.2.).

Über die Differenzierung von R. Thomasii kann nichts gesagt werden. Man muss sich fragen, wie sich R. Thomasii als Art bilden und halten konnte: sein Standort stimmt mit jenem von R. nemorosus überein, der keine 5 km entfernt vorkommt, und erstaunlicherweise wurden trotz sorgfältiger Suche keine Introgressionen zwischen beiden Arten beobachtet (s. 4.).

Wie experimentelle Untersuchungen zeigten, haben alle Arten der Gruppe die Fähigkeit, sich bewurzelnde, stengelständige Blattrosetten zu bilden; dieses Merkmal ist aber nur bei R. serpens stets vorhanden (s. 3.4.1.). R. serpens ist durch seinen Standort (feuchte Wälder ohne geschlossenen Unterwuchs) von den übrigen Arten der Gruppe getrennt (s. 4.1.); er gleicht morphologisch R. nemorosus (grob geteilte Blätter; lange, eingerollte Früchtchenschnäbel; s. 3.3.). Deshalb wäre es denkbar, dass R. serpens von R. nemorosus durch Selektion separiert wurde. Der Standort von R. serpens erlaubt eine gute Ausnützung der vegetativen Vermehrung durch stengelständige Blattrosetten. Die Standorte der übrigen Arten (Wiesen) verhindern eine solche vegetative Vermehrung, da die Blattrosetten wegen der geschlossenen Vegetation nicht auf den Boden zu liegen kommen und somit nicht Wurzeln fassen können.

Über Möglichkeiten der Artbildung hat Grant (1971) folgende Hypothesen entwickelt: Er unterscheidet zwischen primärer Artbildung (ohne Hybridisierung) und Artbildung durch Hybridisierung. Die primäre Artbildung ist gekennzeichnet durch divergente Entwicklungsrichtungen einer polymorphen Sippe. Der Artbildung durch Hybridisierung geht eine primäre Artbildung voraus. Dabei können die Bastarde dieselbe oder durch Polyploidisierung eine andere Ploidiestufe haben als die Eltern.

In der Artengruppe des R. polyanthemos entstanden vor den Eiszeiten R. polyanthemos und R. nemorosus durch primäre Artbildung. Postglazial entstanden, wahrscheinlich auch durch primäre Artbildung, R. polyanthemophyllus und R. serpens. Ebenfalls postglazial entstand R. polyanthemoides durch Hybridisierung von R. polyanthemos mit R. nemorosus. Die Entstehung von R. Thomasii ist nicht bekannt.

Pflanzengruppen, bei denen Artbildung durch Hybridisierung stattgefunden hat, werden als *Hybridkomplexe* bezeichnet. Grant (1971) gibt verschiedene Hybridkomplexe an. Teile der Artengruppe des *R. polyanthemos (R. polyanthemos, R. polyanthemoides, R. nemorosus)* erfüllen alle Kriterien, welche Grant für einen *homogamen Hybridkomplex* aufstellt (normale Sexualität der Arten bei gleicher Ploidiestufe).

Grant (1971) stellt fest, dass es schwierig ist, einen homogamen Komplex als solchen zu erkennen, da dies bereits genaue Kenntnisse der Sippen der Pflanzengruppe voraussetzt; auffällige zytologische Merkmale, wie z.B. verschiedene Ploidiestufen oder Apomixis, fehlen gänzlich.

Bisher sind nur wenige homogame Hybridkomplexe experimentell nachgewiesen. So bilden z.B. die Gilia-Arten der Sektion Eugilia (Polemoniaceae) in Kalifornien (USA) einen homogamen Hybridkomplex (Grant 1953). Die Arten sind geographisch, ökologisch und zum Teil auch genetisch isoliert, sie sind also weiter differenziert als die Arten der Gruppe des Ranunculus polyanthemos. Weitere homogame Komplexe findet man auch bei Ceanothus (Rhamnaceae) in Kalifornien (USA; McMinn 1944, Nobs 1951 und 1963), bei Quercus (Fagaceae) in den USA und in Europa (Stebbins 1950, Tucker 1952a, 1952b und 1953) und bei Aquilegia (Ranunculuaceae) in den USA (Grant 1952).

Legenden für die Abbildungen 1-7 auf den Seiten 175-181:

Abb. 1: Ranunculus polyanthemos L. Kohnstein bei Seega, Ostdeutschland 2/5 natürlicher Grösse

Abb. 2: Ranunculus polyanthemophyllus Koch et Hess Raron, Kt. Wallis, Schweiz 2/5 natürlicher Grösse

Abb. 3: Ranunculus polyanthemoides Bor.
Lamperstal bei Alendorf, Nordrhein-Westfalen, Westdeutschland
2/5 natürlicher Grösse

Abb. 4: Ranunculus nemorosus DC. Hohentauern, Steiermark, Österreich 2/5 natürlicher Grösse

Abb. 5: Ranunculus Thomasii Ten. La Sila, Calabrien, Italien 3/4 natürlicher Grösse

Abb. 6: Ranunculus serpens Schrank Petersalp, Schwende, Kt. Appenzell Inner Rhoden, Schweiz 2/5 natürlicher Grösse

Abb. 7: a) Reife Früchtchen verschiedener Ranunculi. Reihen von oben nach unten:

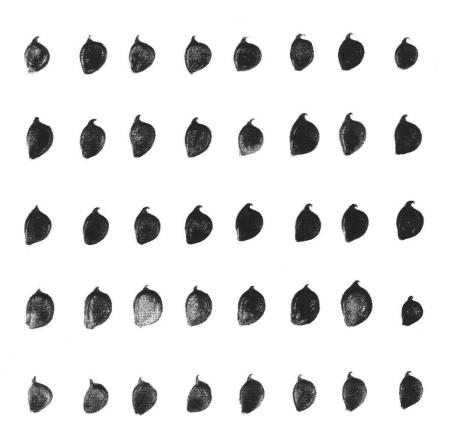
- 1) R. polyanthemos (Bialystok, Polen)
- 2) R. polyanthemophyllus (Ragaz, Schweiz)
- 3) R. nemorosus (Obergurgl, Österreich)
- 4) R. Thomasii (La Sila, Italien)
- 5) R. serpens (Weissenstein, Schweiz)
- Abb. 7: b) Reife Früchtchen von Ranunculus polyanthemoides. Reihen von oben nach unten:
 - 1) Kaiserstuhl, Westdeutschland *
 - 2). Val Suzon, bei Dijon, Frankreich *
 - 3) Val Suzon, bei Dijon, Frankreich *
 - 4) Krani, Mazedonien, Jugoslawien
 - 5) Pindusgebirge, Griechenland

Vergrösserung 2fach.

^{*} Alle Früchtchen der Reihe stammen von einer einzigen Pflanze.



Abb. 3



a

b

9. Zusammenfassung

Die Artengruppe des Ranunculus polyanthemos wurde morphologisch und zytogenetisch untersucht. In diese Artengruppe gehören in Europa R. polyanthemos L., R. polyanthemophyllus Koch et Hess, R. polyanthemoides Bor., R. nemorosus DC., R. Thomasii Ten. und R. serpens Schrank. Der asiatische, westwärts bis auf die Krim und ins Dnjepr-Gebiet vorkommende R. Meyerianus Rupr. (s. 8.1.) ist nicht in die Untersuchungen einbezogen.

- 1) Die Arten werden morphologisch beschrieben (s. 3.3.) und in einem digitalen, synoptischen Schlüssel dargestellt (s. 3.2.); die Reihenfolge der Arten im Schlüssel wird in der ganzen Arbeit beibehalten. Die Variabilität wichtiger Merkmale wurde geklärt:
 - a) Neu ist, dass das für *R. serpens* typische Merkmal der sich bewurzelnden, stengelständigen Blattrosetten *alle* Arten der Gruppe latent besitzen: Bei den anderen Arten wird dieses Merkmal jedoch nur unter dem Einfluss äusserer Faktoren (Schnitt, Tritt, Viehfrass) ausgebildet (s. 3.4.1.).
 - b) Die *Blattform* ist für alle Arten *variabel*, aber für jede Art *typisch*. *R. polyanthemoides* besitzt eine für diese Art kennzeichnende grosse Variabilität (s. 3.4.2.).
 - c) Die Behaarung von Stengel und Blättern ist ein sehr variables Merkmal ohne systematischen Wert (s. 3.4.3.).
 - d) Die Form und Länge der Früchtchenschnäbel ist ein für die einzelnen Arten kennzeichnendes Merkmal mit kleiner Variationsbreite; nur R. polyanthemoides zeigt eine für diese Art typische grosse Variabilität (s. 3.4.4.; Abb. 7).
- 2) Die Standortsansprüche sind in Kapitel 4.1. angegeben: R. polyanthemos und R. polyanthemophyllus besiedeln Standorte mit hoher Sonneneinstrahlung; R. nemorosus und R. Thomasii kommen auf feuchten bis mässig trockenen Wiesen vor, R. nemorosus zudem auch in lichten Wäldern; R. polyanthemoides verbindet ökologisch R. polyanthemos und R. nemorosus; R. serpens ist ausschliesslich in feuchten Wäldern ohne geschlossenen Unterwuchs anzutreffen.
- 3) Die Verbreitungen der 6 Arten der polyanthemos-Gruppe zeigt eine Karte (s. 4.2.). Unsicher bleiben weiterhin die westlichsten Fundorte von R. polyanthemos; als solche sind in der Literatur bisher das Mainzerbecken und der Kaiserstuhl (NW von Freiburg) angegeben; trotz intensiver Suche konnte ich die Art dort nicht finden. Die westlichsten, mir bekannten Fundorte sind: Hamburg, Minden, Augsburg (alle Westdeutschland) und Rijeka (Jugoslawien). Neue Fundorte von R. polyanthemoides können aus Südjugoslawien (Krani, Mazedonien) und Nordgriechenland (Pindusgebirge) angegeben werden. Auch für R. Thomasii, der bis jetzt nur aus Süditalien (La Sila, Calabrien) bekannt war, können neue Fundorte angegeben werden: Berge zwischen Rom und Pescara (Monti Simbruini, Parco Nazionale d'Abruzzo, Majella) in Mittelitalien und in den Apuanischen Alpen (Monte Sagro) in Norditalien.

- 4) Die zytologischen Untersuchungen ergaben für alle Arten der polyanthemos-Gruppe die Chromosomenzahl 2n = 2x = 16 (s. 5.2.); für R. Thomasii wird die Chromosomenzahl zum erstenmal angegeben. Die Karyotypen der 6 Arten sind statistisch nicht unterscheidbar; die Chromosomenformel für alle Arten lautet (s. 5.3.): $2T_{SAT}$ $8A(2A_{SAT})$ 4SM 2M. Giemsafärbungen erbrachten kein auswertbares Chromosomenbanding (s. 5.4.).
- 5) Alle Arten der polyanthemos-Gruppe sind selbstinkompatibel (selbststeril) und allogam (s. 6.2.). Aus den Kreuzungsexperimenten (s. 6.3.) geht hervor, dass die 6 Arten leicht miteinander bastardieren und die Bastarde (F₁ bis F₃ und Rückkreuzungen) ebenso fertil sind wie die Eltern. Die Untersuchung der Bastarde zeigte, dass Bastarde zwischen R. polyanthemos und R. nemorosus nicht von R. polyanthemoides zu unterscheiden sind (s. 7.1.).
- 6) Die Artbildung in der Artengruppe des R. polyanthemos kann man sich folgendermassen vorstellen (s. 8.5.): Sehr wahrscheinlich differenzierten sich R. polyanthemos und R. nemorosus aus einer polymorphen Sippe in Südosteuropa oder Zentralasien (vor den Eiszeiten). Ökologie und Verbreitung weisen darauf hin, dass sich R. polyanthemophyllus in Westeuropa durch Anpassung an unterschiedliche Standorte postglazial aus R. nemorosus entwickelt hat; weniger wahrscheinlich ist die Herkunft dieser Art aus durch den Standort selektionierten Bastardschwärmen zwischen R. polyanthemos und R. nemorosus. R. polyanthemoides besteht aus postglazial entstandenen Bastardschwärmen (die Bastardnatur ist experimentell nachgewiesen) von R. polyanthemos und R. nemorosus. Über die Differenzierung von R. Thomasii kann nichts gesagt werden. R. serpens könnte sich, wie R. polyanthemophyllus, durch Selektion von R. nemorosus separiert haben.
- 7) Den Hypothesen von Grant (1971) folgend, stellt ein Teil der Artengruppe des R. polyanthemos einen homogamen Hybridkomplex dar; einige Arten der Gruppe sind wahrscheinlich durch primäre Artbildung entstanden (s. 8.5.).
- 8) R. polyanthemoides wird im Artrang beibehalten, da der grösste Teil des Verbreitungsareals (siehe auch Balkan!) ausserhalb des gemeinsamen Verbreitungsgebietes der beiden Eltern (R. polyanthemos und R. nemorosus) liegt (s. 4.2. und 8.2.).

Summary

The group of Ranunculus polyanthemos L. in Europe.

The paper deals with morphological and cytogenetical investigations in the group of Ranunculus polyanthemos. The European group consists of R. polyanthemos L., R. polyanthemophyllus Koch et Hess, R. polyanthemoides Bor., R. nemorosus DC., R. Thomasii Ten. and R. serpens Schrank; the Asiatic taxon R. Meyerianus Rupr. occuring in the region of the Dnepr River and westwards up to the Crimea, was not included into the study (s. 8.1.).

- 1) All taxa are described morphologically (s. 3.3.) and a digital, synoptic key to their determination is presented (s. 3.2.); the same sequence of taxa accepted in the key is followed throughout the whole paper. As far as the variability of important morphological characters is concerned, the following results were obtained:
 - a) Nodal rooting, typical of *R. serpens*, occurs in the whole group; however, all taxa but *R. serpens* are rooting on the nodes only under influence of particular external factors (e.g. mowing, trampling, grazing) (s. 3.4.1.).
 - b) Leaf morphology is in general highly variable, but each of the studied taxa manifests its own variation range; a pronounced variability occurring in this respect in R. polyanthemoides is characteristic of this taxon (s. 3.4.2.).
 - c) The greatly varying *hairiness* of stems and leaves is of no diagnostic importance (s. 3.4.3.).
 - d) Shape and length of the beak in achenes are distinctive for particular taxa and, except for R. polyanthemoides, only slightly varying (s. 3.4.4.; Abb. 7).
- 2) Ecological requirements are discussed in Chapter 4.1. R. polyanthemos and R. polyanthemophyllus occur in sunny sites; R. nemorosus appears both in sparsely populated forests as well as in meadows, whereas R. Thomasii occurs only in the latter type of station; ecological preferences of R. polyanthemoides represent a continous transition from R. polyanthemos to R. nemorosus; R. serpens is confined to moist forests with no closed under growth.
- 3) Geographical distribution of the six taxa is presented in a map (s. 4.2.). The previously reported westernmost stations of R. polyanthemos viz. the region of Mainz as well as Kaiserstuhl north-west of Freiburg were not confirmed, in spite of repeated searching. The westernmost stations known to the author are thus Hamburg, Minden, Augsburg (West Germany) as well as Rijeka (Yugoslavia). New stations of R. polyanthemoides were found in South Yugoslavia (Krani, Macedonia) as well as in North Greece (Pindus Mts). R. Thomasii was hitherto reported only from South Italy (La Sila, Calabria); new stations of this taxon were discovered in mountains between Rome and Pescara, in central part of Italy as well as in the Apuan Alps (North Italy).

- 4) All the studied taxa proved to be diploid with somatic chromosome number 2n = 2x = 16 (s. 5.2.). The present results confirm thus the previous data; the chromosome number of R. Thomasii was studied for the first time. The caryotypes of particular taxa offer no statistically significant differences; the caryotype formula valid for the whole material is $2T_{SAT}$ 8A(2A_{SAT}) 4SM 2M (s. 5.3.). No distinct bands were observed in chromosomes stained with Giemsa (s. 5.4.).
- 5) All the taxa of the group are self-incompatible (self-sterile) and allogamous (s. 6.2.). Interspecific crosses carried out within the group revealed no barriers to hybridization (s. 6.3.), the hybridogenous offspring i.e. F₁-F₃ individuals as well as backcross types being as highly fertile as were the parents. The experimentally obtained hybrids between R. polyanthemos and R. nemorosus were undistinguisheable from R. polyanthemoides (s. 7.1.).
- 6) The following comments are offerred on the speciation mechanisms within the R. polyanthemos group (s. 8.5.): R. polyanthemos and R. nemorosus may have gradually arisen at pre-glacial time in SE-Europe or Central Asia from the same polymorphic ancestor. Data on ecology and geographical distribution indicate that R. polyanthemophyllus is of a post-glacial origin and may has differentiated in West Europe, under an influence of particular ecological factors, from R. nemorosus rather than from a hybrid swarm R. polyanthemos X R. nemorosus. R. polyanthemoides corresponds to a hybrid swarm resulting from crosses between R. polyanthemos and R. nemorosus and formed at the post-glacial time; the hybridogenous origin of this taxon was proved experimentally. Possible way of formation of R. Thomasii remains an open question. R. serpens might have arisen from R. nemorosus in a similar way as R. polyanthemophyllus.
- 7) Following the concepts recently presented by Grant (1971), the group of *R. polyanthemos* should be partly considered as a *homogamic hybrid complex*; it is not excluded, however, that the differentiation of some taxa within the group was influenced by a *primary speciation* (s. 8.5.).
- 8) The distribution area of R. polyanthemoides is mostly separated from the ranges of its both putative parent taxa R. polyanthemos and R. nemorosus; the specific rank, previously given to R. polyanthemoides, remains therefore unchanged.

Verdankungen

An dieser Stelle möchte ich Herrn Professor Dr. Hans E. Hess, Institut für spezielle Botanik der ETH Zürich, danken für seine grosse Erfahrung, die er mir immer wieder zur Verfügung stellte, und für seine Hilfe bei der Abfassung des Manuskriptes. Frau Professor Dr. Kristina Urbanska, Geobotanisches Institut Stiftung Rübel Zürich, bin ich zu Dank verpflichtet für die Einführung in die zytologischen Arbeitsmethoden und die zahlreichen Anregungen. Herrn Univ.-Doz. Dr. Dieter Schweizer, Botanisches Institut der Universität Wien, habe ich zu danken, dass er mich in die Methoden des Chromosomenbandings bei Pflanzen eingeführt und Parallelversuche durchgeführt hat. Herrn Friedrich Humm, Technischer Mitarbeiter am Institut für spezielle Botanik der ETH Zürich, danke ich für die Pflege der zahlreichen Pflanzen. Bei der Herstellung der Photographien war ich auf die zuvorkommende und fachmännische Unterstützung durch Herrn Stanislav Křiž, Labor für Elektronenmikroskopie I der ETH Zürich, angewiesen. Schliesslich möchte ich allen Sammlern und den Direktoren der Herbarien danken, die mir Material zur Bearbeitung zukommen liessen.

10. Literaturverzeichnis

- Alexandrova T.V. 1967. Karyogeographical characterisation of some Caucasian species of Ranunculus. Bot. Zhur. 52, 42-45.
- Andersson H. 1958. Cytological and morphological observations in the genus Ranunculus. I. Bot. Not. 111, 237-240.
- Baksay L. 1956. Cytotaxonomical studies on the flora of Hungary. Ann. Hist.-Nat. Mus. Nat. Hung. S.N. 7, 321-334.
- Baumberger H. 1971. Chromosomenzahlbestimmungen und Karyotypanalysen bei den Gattungen Anemone, Hepatica und Pulsatilla. Ber. Schweiz. Bot. Ges. 80, 17–95.
- Böcher T.W. 1958. Chromosome studies in the Ranunculus polyanthemus complex. Bot. Tidskr. 54, 160-166.
- Boreau A. 1857. Flore du centre de la France et du bassin de la Loire. Tome 2, Ed. 3. Paris, 771 p. (p. 16-17).
- Coles S.M. 1971. The Ranunculus acris L. complex in Europe. Watsonia 8, 237-261.
- 1973. Ranunculus bulbosus L. in Europe. Watsonia 9, 207-228.
- De Candolle A.P. 1818. Systema 1, 564 p. (p. 280).
- Duvigneaud J. und Lambinon J. 1977. Une renoncule critique et méconnue de Belgique et des régions voisines: Ranunculus polyanthemoides Boreau. Dumortiera 6, 11-20.
- Dyer A.F. 1963. The use of lacto-propionic orcein in rapid squash methods for chromosome preparations. Stain Techn. 38, 85-90.
- Felföldy L.J.M. 1947. Chromosome numbers of certain Hungarian plants. Arch. Biol. Hung. Ser. 2: 17, 101-103.
- Ferakova V. 1972. Bemerkungen zur Flora der Umgebung der Stadt Hlohovec in der Slowakei. III. Acta Fac. Rer. Nat. Univ. Comenianae Bot. 20, 149-158.
- Gamisans J. 1977. Contribution à l'étude de la flore de la Corse. VII. Candollea 32, 51-72.
- Goepfert D. 1974. Karyotypes and DNA content in species of Ranunculus L. and related genera. Bot. Not. 127, 464-489.
- Götz E. 1967. Die Aconitum variegatum-Gruppe und ihre Bastarde in Europa. Feddes Rep. 76, 1-62.

- Grant V. 1952. Isolation and hybridization between Aquilegia formosa and A.pubescens. El Aliso 2, 341-360.
- 1953. The role of hybridization in the evolution of the leafy-stemmed Gilias.
 Evolution 7, 51-64.
- 1971. Plant speciation. Columbia University Press, New York, 435 p.
- Gregory W.C. 1941. Phylogenetic and cytological studies in the Ranunculaceae. Trans. Am. Philos. Soc. N.S. 31: V, 443-520.
- Gregson N.M. 1965. Chromosome morphology and cytogenetics in the genus Ranunculus L. Ph. D. Thesis, Univ. Liverpool, 349 p.
- Greilhuber J. und Speta F. 1976. C-banded karyotypes in the Scilla hohenackeri group, S.persica, and Puschkinia (Liliaceae). Plant Syst. Evol. 126, 149-188.
- Gutermann W. 1960. Ein verkannter und übersehener Hahnenfuss in Bayern. Ber. Bayer. Bot. Ges. 33, 23-26.
- Hegi G. 1975. Illustrierte Flora von Mitteleuropa. Band III, Teil 3: Nymphaeaceen bis Ranunculaceen. 2. Auflage. Verlag Paul Parey, Berlin und Hamburg, 356 p. (p. 267-272).
- Hess H. 1955. Systematische und zytogenetische Untersuchungen an einigen Ranunculus-Arten aus der Nemorosus-Gruppe. Ber. Schweiz. Bot. Ges. 65, 272-301.
- Holub J. et al. 1972. Annotated chromosome counts of Czechoslovak plants. 31-60. Folia Geobot. Phyto. (Czech.) 7, 167-202.
- Jordan A. 1846. Observations sur plusieurs plantes nouvelles, rares ou critiques de la France. 3^{ème} fragm. J.P. Baillière, Paris, 254 p.
- 1864. Diagnose d'espèces nouvelles ou méconnues. I. F. Savy, Paris, 355 p.
- Komarov V.L. 1937. Flora of the U.S.S.R. Vol. VII: Ranales and Rhoeadales. Izdatel'stvo Akademii Nauk SSSR, Moskva-Leningrad, 615 p. (p. 343-344).
- Krach J. und Fischer R. 1979. Bemerkungen zur Verbreitung einiger Pflanzensippen in Südfranken und Nordschwaben. Ber. Bayer. Bot. Ges. 50, 161-172.
- Landolt E. 1954. Die Artengruppe des Ranunculus montanus Willd. in den Alpen und im Jura. Ber. Schweiz. Bot. Ges. 64, 9-83.
- 1956. Die Artengruppe des Ranunculus montanus Willd. in den Pyrenäen und anderen europäischen Gebirgen westlich der Alpen. Ber. Schweiz. Bot. Ges. 66, 92-117.
- und Hess H. 1954. Untersuchungen am Originalmaterial von Ranunculus breyninus Crantz.
 Ber. Schweiz. Bot. Ges. 64, 5-8.
- Langlet O. 1932. Über Chromosomenverhältnisse und Systematik der Ranunculaceae. Sv. Bot. Tidskr. 26, 381–400.
- Larter L.N.H. 1932 Chromosome variation and behaviour in Ranunculus. J. of Genet. 26, 255-283.
- Ledley R.S. und Ruddle F.H. 1966. Chromosome analysis by computer. Sci. Am. 214, 40-46.
- Linnaeus C. 1753. Species Plantarum. Vol. I, Ed. I, 560 p. (p. 554). (Faks. 1957, London).
- Löve A. 1972. IOPB chromosome number reports XXXVIII. Taxon 21, 679-684.
- Majovsky J. et al. 1970. Index of chromosome numbers of Slovakian flora (part 2). Acta Fac. Rer. Nat. Univ. Comenianae Bot. 18, 45-60.
- Marks G.E. 1975. The Giemsa-staining centromers of Nigella damascena. J. Cell Sci. 18, 19-25.
- McMinn H.E. 1944. The importance of field hybrids in determining species in the genus Ceanothus. Proc. Calif. Acad. Sci. 25, 323-356.
- Merxmüller H. 1965. Neue Übersicht der im rechtsrheinischen Bayern einheimischen Farne und Blütenpflanzen. Teil 1. Ber. Bayer. Bot. Ges. 38, 93-115.
- Meusel H. et al. 1965. Vergleichende Chorologie der zentraleuropäischen Flora. Kartenband. Gustav Fischer Verlag, Jena, 258 p. (p. 163-164).
- Nobs M. 1951. Ceanothus. Carnegie Inst. Wash. Year Book 50, 117-118.
- 1963. Experimental studies on species relationships in Ceanothus. Carnegie Inst. Wash. Publ. 623, 1-94.
- Patau K. 1960. The identification of individual chromosomes, especially in man. Am. J. Hum. Genet. 12, 250-276.
- 1965. Identification of chromosomes. In: Yunis J.J., Human chromosome methodology. Academic Press, New York. (p. 155-186).
- Pohlmann J. 1978. Isobrachiale Chromosomen, ein biometrisches Problem. Mitt. Inst. Allg. Bot. Hamburg 16, 165-170.

- Pólya L. 1949. Chromosome numbers of some Hungarian plants. Acta Geobot. Hung. 6, 124-137.
- Reese G. 1953. Ergänzende Mitteilungen über die Chromosomenzahlen mitteleuropäischer Gefässpflanzen. II. Ber. Deutsch. Bot. Ges. 66, 66-74.
- Riley R. 1956. The influence of breeding system on the genecology of Thlaspi alpestre L. New Phytol. 55,319-330.
- Rühl A. 1971. Floristische Notizen aus dem Weser-Leineberglande. Gött. Flor. Rundbr. 5 (2), 23-25.
- 1974. Beobachtungen über das Auftreten einiger Kleinarten der Ranunculus polyanthemos-Gruppe im Weser-Leine- und im Hessischen Berglande. Gött. Flor. Rundbr. 8(4), 106-108.
- Schrank F. v. P. 1789. Baierische Flora, Band 2. München, 670 p. (p. 101-102).
- Schweizer D. 1973. Vergleichende Untersuchungen zur Längsdifferenzierung der Chromosomen von Vicia faba L. Verh. Naturf. Ges. Basel 83, 1-75.
- und Ehrendorfer F. 1976. Giemsa banded karyotypes, systematics, and evolution in Anacyclus (Asteraceae-Anthemideae). Plant Syst. Evol. 126, 107-148.
- Seitz W. 1969. Die Taxonomie der Aconitum napellus-Gruppe in Europa. Feddes Rep. 80, 1-76. Skalinska M. et al. 1961. Further additions to Chromosome numbers of Polish angiosperms. Acta Soc. Bot. Polon. 30, 463-489.
- Sorsa V. 1962. Chromosomenzahlen finnischer Kormophyten. I. Ann. Acad. Sci. Fenn. S.A, IV, Biol. 58, 1-14.
- Stebbins G.L. 1950. Variation and evolution in plants. Columbia University Press New York, 643 p. (p. 61-66).
- Tenore M. 1830. Flora Napolitana, Vol. 2, parte 2, tomo IV. Napoli, 358 p. (p. 347).
- Tischler G. 1935. Die Bedeutung der Polyploidie für die Verbreitung der Angiospermen. Bot. Jahrb. 67, 1–36.
- 1950. Die Chromosomenzahlen der Gefässpflanzen Mitteleuropas. S'Gravenhage,
 W. Junk, 263 p. (p. 26).
- Tucker J.M. 1952a. Taxonomic interrelationships in the Quercus dumosa complex. Madrono 11, 234-251.
- 1952b. Evolution of the Californian oak Quercus alvordiana. Evolution 6, 162-180.
- 1953. The relationship between Quercus dumosa and Quercus turbinella. Madrono 12, 49-60.
- Tutin T.G. et al. 1964. Flora europaea, Vol. 1: Lycopodiaceae to Platanaceae. University Press, Cambridge, 464 p. (p. 226-227).
- Winterhoff W. 1969. Ranunculus nemorosus DC. ssp. serpens (Schrank) Tutin in Hessen und Südniedersachsen. Hess. Flor. Briefe 18, Brief 205, 1-5.

Matthias Baltisberger Geobotanisches Institut Eidg. Technische Hochschule Universitätsstr. 2 CH - 8092 Zürich